1
|
Grigson SR, Giles SK, Edwards RA, Papudeshi B. Knowing and Naming: Phage Annotation and Nomenclature for Phage Therapy. Clin Infect Dis 2023; 77:S352-S359. [PMID: 37932119 PMCID: PMC10627814 DOI: 10.1093/cid/ciad539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Bacteriophages, or phages, are viruses that infect bacteria shaping microbial communities and ecosystems. They have gained attention as potential agents against antibiotic resistance. In phage therapy, lytic phages are preferred for their bacteria killing ability, while temperate phages, which can transfer antibiotic resistance or toxin genes, are avoided. Selection relies on plaque morphology and genome sequencing. This review outlines annotating genomes, identifying critical genomic features, and assigning functional labels to protein-coding sequences. These annotations prevent the transfer of unwanted genes, such as antimicrobial resistance or toxin genes, during phage therapy. Additionally, it covers International Committee on Taxonomy of Viruses (ICTV)-an established phage nomenclature system for simplified classification and communication. Accurate phage genome annotation and nomenclature provide insights into phage-host interactions, replication strategies, and evolution, accelerating our understanding of the diversity and evolution of phages and facilitating the development of phage-based therapies.
Collapse
Affiliation(s)
- Susanna R Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Sarah K Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| |
Collapse
|
2
|
Bajiya N, Dhall A, Aggarwal S, Raghava GPS. Advances in the field of phage-based therapy with special emphasis on computational resources. Brief Bioinform 2023; 24:6961791. [PMID: 36575815 DOI: 10.1093/bib/bbac574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022] Open
Abstract
In the current era, one of the major challenges is to manage the treatment of drug/antibiotic-resistant strains of bacteria. Phage therapy, a century-old technique, may serve as an alternative to antibiotics in treating bacterial infections caused by drug-resistant strains of bacteria. In this review, a systematic attempt has been made to summarize phage-based therapy in depth. This review has been divided into the following two sections: general information and computer-aided phage therapy (CAPT). In the case of general information, we cover the history of phage therapy, the mechanism of action, the status of phage-based products (approved and clinical trials) and the challenges. This review emphasizes CAPT, where we have covered primary phage-associated resources, phage prediction methods and pipelines. This review covers a wide range of databases and resources, including viral genomes and proteins, phage receptors, host genomes of phages, phage-host interactions and lytic proteins. In the post-genomic era, identifying the most suitable phage for lysing a drug-resistant strain of bacterium is crucial for developing alternate treatments for drug-resistant bacteria and this remains a challenging problem. Thus, we compile all phage-associated prediction methods that include the prediction of phages for a bacterial strain, the host for a phage and the identification of interacting phage-host pairs. Most of these methods have been developed using machine learning and deep learning techniques. This review also discussed recent advances in the field of CAPT, where we briefly describe computational tools available for predicting phage virions, the life cycle of phages and prophage identification. Finally, we describe phage-based therapy's advantages, challenges and opportunities.
Collapse
Affiliation(s)
- Nisha Bajiya
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Suchet Aggarwal
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| |
Collapse
|
3
|
Gopinath GR, Jang H, Beaubrun JJG, Gangiredla J, Mammel MK, Müller A, Tamber S, Patel IR, Ewing L, Weinstein LM, Wang CZ, Finkelstein S, Negrete F, Muruvanda T, Allard M, Sockett DC, Pagotto F, Tall BD, Stephan R. Phylogenomic Analysis of Salmonella enterica subsp. enterica Serovar Bovismorbificans from Clinical and Food Samples Using Whole Genome Wide Core Genes and kmer Binning Methods to Identify Two Distinct Polyphyletic Genome Pathotypes. Microorganisms 2022; 10:microorganisms10061199. [PMID: 35744717 PMCID: PMC9228720 DOI: 10.3390/microorganisms10061199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Bovismorbificans has caused multiple outbreaks involving the consumption of produce, hummus, and processed meat products worldwide. To elucidate the intra-serovar genomic structure of S. Bovismorbificans, a core-genome analysis with 2690 loci (based on 150 complete genomes representing Salmonella enterica serovars developed as part of this study) and a k-mer-binning based strategy were carried out on 95 whole genome sequencing (WGS) assemblies from Swiss, Canadian, and USA collections of S. Bovismorbificans strains from foodborne infections. Data mining of a digital DNA tiling array of legacy SARA and SARB strains was conducted to identify near-neighbors of S. Bovismorbificans. The core genome analysis and the k-mer-binning methods identified two polyphyletic clusters, each with emerging evolutionary properties. Four STs (2640, 142, 1499, and 377), which constituted the majority of the publicly available WGS datasets from >260 strains analyzed by k-mer-binning based strategy, contained a conserved core genome backbone with a different evolutionary lineage as compared to strains comprising the other cluster (ST150). In addition, the assortment of genotypic features contributing to pathogenesis and persistence, such as antimicrobial resistance, prophage, plasmid, and virulence factor genes, were assessed to understand the emerging characteristics of this serovar that are relevant clinically and for food safety concerns. The phylogenomic profiling of polyphyletic S. Bovismorbificans in this study corresponds to intra-serovar variations observed in S. Napoli and S. Newport serovars using similar high-resolution genomic profiling approaches and contributes to the understanding of the evolution and sequence divergence of foodborne Salmonellae. These intra-serovar differences may have to be thoroughly understood for the accurate classification of foodborne Salmonella strains needed for the uniform development of future food safety mitigation strategies.
Collapse
Affiliation(s)
- Gopal R. Gopinath
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.J.-G.B.); (J.G.); (M.K.M.); (I.R.P.); (L.E.); (L.M.W.); (C.Z.W.); (S.F.); (F.N.); (B.D.T.)
- Correspondence: ; Tel.: +1-240-402-3612
| | - Hyein Jang
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.J.-G.B.); (J.G.); (M.K.M.); (I.R.P.); (L.E.); (L.M.W.); (C.Z.W.); (S.F.); (F.N.); (B.D.T.)
| | - Junia Jean-Gilles Beaubrun
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.J.-G.B.); (J.G.); (M.K.M.); (I.R.P.); (L.E.); (L.M.W.); (C.Z.W.); (S.F.); (F.N.); (B.D.T.)
- Biological Analysis Division, Public Health Command Europe Laboratory Sciences, Room 102, Bldg 3810, Kirchberg Kaserne, RP 66849 Landstuhl, Germany
| | - Jayanthi Gangiredla
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.J.-G.B.); (J.G.); (M.K.M.); (I.R.P.); (L.E.); (L.M.W.); (C.Z.W.); (S.F.); (F.N.); (B.D.T.)
| | - Mark K. Mammel
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.J.-G.B.); (J.G.); (M.K.M.); (I.R.P.); (L.E.); (L.M.W.); (C.Z.W.); (S.F.); (F.N.); (B.D.T.)
| | - Andrea Müller
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.); (R.S.)
| | - Sandeep Tamber
- Food Directorate, Bureau of Microbial Hazards/Health Canada, Ottawa, ON K1A 0K9, Canada; (S.T.); (F.P.)
| | - Isha R. Patel
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.J.-G.B.); (J.G.); (M.K.M.); (I.R.P.); (L.E.); (L.M.W.); (C.Z.W.); (S.F.); (F.N.); (B.D.T.)
| | - Laura Ewing
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.J.-G.B.); (J.G.); (M.K.M.); (I.R.P.); (L.E.); (L.M.W.); (C.Z.W.); (S.F.); (F.N.); (B.D.T.)
| | - Leah M. Weinstein
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.J.-G.B.); (J.G.); (M.K.M.); (I.R.P.); (L.E.); (L.M.W.); (C.Z.W.); (S.F.); (F.N.); (B.D.T.)
| | - Caroline Z. Wang
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.J.-G.B.); (J.G.); (M.K.M.); (I.R.P.); (L.E.); (L.M.W.); (C.Z.W.); (S.F.); (F.N.); (B.D.T.)
| | - Samantha Finkelstein
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.J.-G.B.); (J.G.); (M.K.M.); (I.R.P.); (L.E.); (L.M.W.); (C.Z.W.); (S.F.); (F.N.); (B.D.T.)
| | - Flavia Negrete
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.J.-G.B.); (J.G.); (M.K.M.); (I.R.P.); (L.E.); (L.M.W.); (C.Z.W.); (S.F.); (F.N.); (B.D.T.)
| | - Tim Muruvanda
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA; (T.M.); (M.A.)
| | - Marc Allard
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA; (T.M.); (M.A.)
| | - Donald C. Sockett
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Franco Pagotto
- Food Directorate, Bureau of Microbial Hazards/Health Canada, Ottawa, ON K1A 0K9, Canada; (S.T.); (F.P.)
| | - Ben D. Tall
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.J.-G.B.); (J.G.); (M.K.M.); (I.R.P.); (L.E.); (L.M.W.); (C.Z.W.); (S.F.); (F.N.); (B.D.T.)
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.); (R.S.)
| |
Collapse
|
4
|
Versoza CJ, Pfeifer SP. Computational Prediction of Bacteriophage Host Ranges. Microorganisms 2022; 10:149. [PMID: 35056598 PMCID: PMC8778386 DOI: 10.3390/microorganisms10010149] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
Increased antibiotic resistance has prompted the development of bacteriophage agents for a multitude of applications in agriculture, biotechnology, and medicine. A key factor in the choice of agents for these applications is the host range of a bacteriophage, i.e., the bacterial genera, species, and strains a bacteriophage is able to infect. Although experimental explorations of host ranges remain the gold standard, such investigations are inherently limited to a small number of viruses and bacteria amendable to cultivation. Here, we review recently developed bioinformatic tools that offer a promising and high-throughput alternative by computationally predicting the putative host ranges of bacteriophages, including those challenging to grow in laboratory environments.
Collapse
Affiliation(s)
- Cyril J. Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
| | - Susanne P. Pfeifer
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
5
|
Kuźmińska-Bajor M, Śliwka P, Ugorski M, Korzeniowski P, Skaradzińska A, Kuczkowski M, Narajaczyk M, Wieliczko A, Kolenda R. Genomic and functional characterization of five novel Salmonella-targeting bacteriophages. Virol J 2021; 18:183. [PMID: 34496915 PMCID: PMC8425127 DOI: 10.1186/s12985-021-01655-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/29/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The host-unrestricted, non-typhoidal Salmonella enterica serovar Enteritidis (S. Enteritidis) and the serovar Typhimurium (S. Typhimurium) are major causative agents of food-borne gastroenteritis, and the host-restricted Salmonella enterica serovar Gallinarum (S. Gallinarum) is responsible for fowl typhoid. Increasing drug resistance in Salmonella contributes to the reduction of effective therapeutic and/or preventive options. Bacteriophages appear to be promising antibacterial tools, able to combat infectious diseases caused by a wide range of Salmonella strains belonging to both host-unrestricted and host-restricted Salmonella serovars. METHODS In this study, five novel lytic Salmonella phages, named UPWr_S1-5, were isolated and characterized, including host range determination by plaque formation, morphology visualization with transmission electron microscopy, and establishment of physiological parameters. Moreover, phage genomes were sequenced, annotated and analyzed, and their genomes were compared with reference Salmonella phages by use of average nucleotide identity, phylogeny, dot plot, single nucleotide variation and protein function analysis. RESULTS It was found that UPWr_S1-5 phages belong to the genus Jerseyvirus within the Siphoviridae family. All UPWr_S phages were found to efficiently infect various Salmonella serovars. Host range determination revealed differences in host infection profiles and exhibited ability to infect Salmonella enterica serovars such as Enteritidis, Gallinarum, Senftenberg, Stanley and Chester. The lytic life cycle of UPWr_S phages was confirmed using the mitomycin C test assay. Genomic analysis revealed that genomes of UPWr_S phages are composed of 51 core and 19 accessory genes, with 33 of all predicted genes having assigned functions. UPWr_S genome organization comparison revealed 3 kinds of genomes and mosaic structure. UPWr_S phages showed very high sequence similarity to each other, with more than 95% average nucleotide identity. CONCLUSIONS Five novel UPWr_S1-5 bacteriophages were isolated and characterized. They exhibit host lysis range within 5 different serovars and are efficient in lysis of both host-unrestricted and host-restricted Salmonella serovars. Therefore, because of their ability to infect various Salmonella serovars and lytic life cycle, UPWr_S1-5 phages can be considered as useful tools in biological control of salmonellosis.
Collapse
Affiliation(s)
- Marta Kuźmińska-Bajor
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Paweł Korzeniowski
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Magdalena Narajaczyk
- Department of Electron Microscopy, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Alina Wieliczko
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
6
|
Analysis of Yersinia pseudotuberculosis Isolates Recovered from Deceased Mammals of a German Zoo Animal Collection. J Clin Microbiol 2021; 59:JCM.03125-20. [PMID: 33789956 PMCID: PMC8315957 DOI: 10.1128/jcm.03125-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/19/2021] [Indexed: 11/20/2022] Open
Abstract
Yersinia pseudotuberculosis is an important pathogen for both humans and animals. It can infect livestock, as well as pets and wild animals. During recent years, a number of reports have described the isolation of Y. pseudotuberculosis from zoo animals, mainly birds and mammals, for which the infection was mostly lethal. Between 2005 and 2019, there were at least 17 cases of deceased mammals, belonging to five different species, which suffered from a Y. pseudotuberculosis infection at the Zoo Wuppertal, Germany. Since only scarce information exists on the properties of Y. pseudotuberculosis from zoo animals, we characterized eight isolates, covering all infected species, in detail. All isolates were members of biotype 1, but belonged to five serotypes, five sequence types (STs), and seven core-genome multilocus sequence types (cgMLSTs). Using pulsed-field gel electrophoresis (PFGE) analysis and whole-genome sequencing (WGS), the seven isolates could be discriminated from each other. They differed significantly regarding their virulence genes and mobile genetic elements. While the virulence plasmid pYV existed in all serotypes (five isolates), a complete high-pathogenicity island (HPI) was detected only in the serotypes O:1a, O:1b, and O:13 (four isolates), but not in O:2a and O:2b. Similarly, the content of other plasmids and prophages varied greatly between the isolates. The data demonstrate that the deceased mammals were infected by seven individual isolates and not by a single type predominating in the zoo animals.
Collapse
|
7
|
Pulford CV, Perez-Sepulveda BM, Canals R, Bevington JA, Bengtsson RJ, Wenner N, Rodwell EV, Kumwenda B, Zhu X, Bennett RJ, Stenhouse GE, Malaka De Silva P, Webster HJ, Bengoechea JA, Dumigan A, Tran-Dien A, Prakash R, Banda HC, Alufandika L, Mautanga MP, Bowers-Barnard A, Beliavskaia AY, Predeus AV, Rowe WPM, Darby AC, Hall N, Weill FX, Gordon MA, Feasey NA, Baker KS, Hinton JCD. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nat Microbiol 2021; 6:327-338. [PMID: 33349664 PMCID: PMC8018540 DOI: 10.1038/s41564-020-00836-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Bloodstream infections caused by nontyphoidal Salmonella are a major public health concern in Africa, causing ~49,600 deaths every year. The most common Salmonella enterica pathovariant associated with invasive nontyphoidal Salmonella disease is Salmonella Typhimurium sequence type (ST)313. It has been proposed that antimicrobial resistance and genome degradation has contributed to the success of ST313 lineages in Africa, but the evolutionary trajectory of such changes was unclear. Here, to define the evolutionary dynamics of ST313, we sub-sampled from two comprehensive collections of Salmonella isolates from African patients with bloodstream infections, spanning 1966 to 2018. The resulting 680 genome sequences led to the discovery of a pan-susceptible ST313 lineage (ST313 L3), which emerged in Malawi in 2016 and is closely related to ST313 variants that cause gastrointestinal disease in the United Kingdom and Brazil. Genomic analysis revealed degradation events in important virulence genes in ST313 L3, which had not occurred in other ST313 lineages. Despite arising only recently in the clinic, ST313 L3 is a phylogenetic intermediate between ST313 L1 and L2, with a characteristic accessory genome. Our in-depth genotypic and phenotypic characterization identifies the crucial loss-of-function genetic events that occurred during the stepwise evolution of invasive S. Typhimurium across Africa.
Collapse
Affiliation(s)
- Caisey V Pulford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Blanca M Perez-Sepulveda
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rocío Canals
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jessica A Bevington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rebecca J Bengtsson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nicolas Wenner
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Ella V Rodwell
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - Xiaojun Zhu
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rebecca J Bennett
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - George E Stenhouse
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - P Malaka De Silva
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Hermione J Webster
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jose A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Alicia Tran-Dien
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, France
| | - Reenesh Prakash
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Happy C Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Lovemore Alufandika
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Mike P Mautanga
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Arthur Bowers-Barnard
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alexandra Y Beliavskaia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alexander V Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Will P M Rowe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Melita A Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Nicholas A Feasey
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Kate S Baker
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
8
|
Pulford CV, Perez-Sepulveda BM, Rodwell EV, Weill FX, Baker KS, Hinton JCD. Salmonella enterica Serovar Panama, an Understudied Serovar Responsible for Extraintestinal Salmonellosis Worldwide. Infect Immun 2019; 87:e00273-19. [PMID: 31262982 PMCID: PMC6704606 DOI: 10.1128/iai.00273-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In recent years nontyphoidal Salmonella has emerged as one of the pathogens most frequently isolated from the bloodstream in humans. Only a small group of Salmonella serovars cause this systemic infection, known as invasive nontyphoidal salmonellosis. Here, we present a focused minireview on Salmonella enterica serovar Panama, a serovar responsible for invasive salmonellosis worldwide. S Panama has been linked with infection of extraintestinal sites in humans, causing septicemia, meningitis, and osteomyelitis. The clinical picture is often complicated by antimicrobial resistance and has been associated with a large repertoire of transmission vehicles, including human feces and breast milk. Nonhuman sources of S Panama involve reptiles and environmental reservoirs, as well as food animals, such as pigs. The tendency of S Panama to cause invasive disease may be linked to certain serovar-specific genetic factors.
Collapse
Affiliation(s)
- Caisey V Pulford
- Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Blanca M Perez-Sepulveda
- Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ella V Rodwell
- Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | | | - Kate S Baker
- Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jay C D Hinton
- Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
Mohan Raj JR, Vittal R, Huilgol P, Bhat U, Karunasagar I. T4-like Escherichia coli phages from the environment carry bla CTX-M. Lett Appl Microbiol 2018; 67:9-14. [PMID: 29675838 DOI: 10.1111/lam.12994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
The resistance determinant blaCTX-M has many variants and has been the most commonly reported gene in clinical isolates of extended spectrum beta-lactamase producing Escherichia coli. Phages have been speculated as potential reservoirs of resistance genes and efficient vehicles for horizontal gene transfer. The objective of the study was to determine the prevalence and characterize bacteriophages that harbour the resistance determinant blaCTX-M . Escherichia coli specific bacteriophages were isolated from 15 samples including soil and water across Mangaluru, India using bacterial hosts that were sensitive to β-lactams. Phenotypic and genotypic characterization based on plaque morphology, host range, restriction fragment length polymorphism (RFLP), presence of blaCTX-M and electron microscopy was performed. Of 36 phages isolated, seven were positive for Group 1 of blaCTX-M . Based on host range and RFLP pattern, the seven phages were classified into four distinct groups, each harbouring a variant of blaCTX-M . Five phages were T4-like Myoviridae by electron microscopy which was further confirmed by polymerase chain reaction (PCR) for T4 specific gp14. Generalized transduction of the CTX-M gene from these phages was also observed. The high prevalence (20%) of this gene blaCTX-M in the phage pool confirms the significant role of Myoviridae members, specifically T4-like phages in the dissemination of this resistance gene. SIGNIFICANCE AND IMPACT OF THE STUDY The CTX-M gene that confers resistance to Beta-lactam class of drugs is widespread and diverse. Understanding mechanisms of antimicrobial resistance transfer is a key to devise methods for controlling it. Few studies indicate that bacteriophages are involved in the transfer of this gene but the type of phages involved and the degree of involvement remains to be explored. Our work has been able to identify the class of phages and the magnitude of involvement in the dissemination of this gene.
Collapse
Affiliation(s)
- J R Mohan Raj
- Nitte University Centre for Science Education and Research, Mangaluru, India
| | - R Vittal
- Nitte University Centre for Science Education and Research, Mangaluru, India
| | - P Huilgol
- National Institute of Technology Karnataka, Surathkal, Mangaluru, India
| | - U Bhat
- National Institute of Technology Karnataka, Surathkal, Mangaluru, India
| | - I Karunasagar
- Nitte University Centre for Science Education and Research, Mangaluru, India
| |
Collapse
|
10
|
Comparative genomics identifies distinct lineages of S. Enteritidis from Queensland, Australia. PLoS One 2018; 13:e0191042. [PMID: 29338017 PMCID: PMC5770046 DOI: 10.1371/journal.pone.0191042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/27/2017] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica is a major cause of gastroenteritis and foodborne illness in Australia where notification rates in the state of Queensland are the highest in the country. S. Enteritidis is among the five most common serotypes reported in Queensland and it is a priority for epidemiological surveillance due to concerns regarding its emergence in Australia. Using whole genome sequencing, we have analysed the genomic epidemiology of 217 S. Enteritidis isolates from Queensland, and observed that they fall into three distinct clades, which we have differentiated as Clades A, B and C. Phage types and MLST sequence types differed between the clades and comparative genomic analysis has shown that each has a unique profile of prophage and genomic islands. Several of the phage regions present in the S. Enteritidis reference strain P125109 were absent in Clades A and C, and these clades also had difference in the presence of pathogenicity islands, containing complete SPI-6 and SPI-19 regions, while P125109 does not. Antimicrobial resistance markers were found in 39 isolates, all but one of which belonged to Clade B. Phylogenetic analysis of the Queensland isolates in the context of 170 international strains showed that Queensland Clade B isolates group together with the previously identified global clade, while the other two clades are distinct and appear largely restricted to Australia. Locally sourced environmental isolates included in this analysis all belonged to Clades A and C, which is consistent with the theory that these clades are a source of locally acquired infection, while Clade B isolates are mostly travel related.
Collapse
|
11
|
Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Strain SO3 (Sequence Type 302) Isolated from a Baby with Meningitis in Mexico. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00285-16. [PMID: 27103717 PMCID: PMC4841132 DOI: 10.1128/genomea.00285-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete genome of ITALIC! Salmonella entericaserovar Typhimurium strain SO3 (sequence type 302), isolated from a fatal meningitis infection in Mexico, was determined using PacBio technology. The chromosome hosts six complete prophages and is predicted to harbor 51 genomic islands, including 13 pathogenicity islands (SPIs). It carries the ITALIC! Salmonellavirulence plasmid (pSTV).
Collapse
|
12
|
Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Strain SO2 (Sequence Type 302) Isolated from an Asymptomatic Child in Mexico. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00253-16. [PMID: 27081133 PMCID: PMC4832161 DOI: 10.1128/genomea.00253-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete genome sequence of Salmonella enterica serovar Typhimurium strain SO2, isolated from an asymptomatic child in Mexico, was determined using PacBio single-molecule real-time technology. Strain SO2 has six complete chromosomal prophages, namely, ST104, Gifsy-2, ST64B, Gifsy-1, ELPhiS, and FSL SP-004, and carries a Salmonella virulence plasmid.
Collapse
|
13
|
den Bakker HC, Allard MW, Bopp D, Brown EW, Fontana J, Iqbal Z, Kinney A, Limberger R, Musser KA, Shudt M, Strain E, Wiedmann M, Wolfgang WJ. Rapid whole-genome sequencing for surveillance of Salmonella enterica serovar enteritidis. Emerg Infect Dis 2016; 20:1306-14. [PMID: 25062035 PMCID: PMC4111163 DOI: 10.3201/eid2008.131399] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
For Salmonella enterica serovar Enteritidis, 85% of isolates can be classified into 5 pulsed-field gel electrophoresis (PFGE) types. However, PFGE has limited discriminatory power for outbreak detection. Although whole-genome sequencing has been found to improve discrimination of outbreak clusters, whether this procedure can be used in real-time in a public health laboratory is not known. Therefore, we conducted a retrospective and prospective analysis. The retrospective study investigated isolates from 1 confirmed outbreak. Additional cases could be attributed to the outbreak strain on the basis of whole-genome data. The prospective study included 58 isolates obtained in 2012, including isolates from 1 epidemiologically defined outbreak. Whole-genome sequencing identified additional isolates that could be attributed to the outbreak, but which differed from the outbreak-associated PFGE type. Additional putative outbreak clusters were detected in the retrospective and prospective analyses. This study demonstrates the practicality of implementing this approach for outbreak surveillance in a state public health laboratory.
Collapse
|
14
|
Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev 2015; 40:258-72. [PMID: 26657537 PMCID: PMC5831537 DOI: 10.1093/femsre/fuv048] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2015] [Indexed: 01/21/2023] Open
Abstract
Metagenomics has changed the face of virus discovery by enabling the accurate identification of viral genome sequences without requiring isolation of the viruses. As a result, metagenomic virus discovery leaves the first and most fundamental question about any novel virus unanswered: What host does the virus infect? The diversity of the global virosphere and the volumes of data obtained in metagenomic sequencing projects demand computational tools for virus–host prediction. We focus on bacteriophages (phages, viruses that infect bacteria), the most abundant and diverse group of viruses found in environmental metagenomes. By analyzing 820 phages with annotated hosts, we review and assess the predictive power of in silico phage–host signals. Sequence homology approaches are the most effective at identifying known phage–host pairs. Compositional and abundance-based methods contain significant signal for phage–host classification, providing opportunities for analyzing the unknowns in viral metagenomes. Together, these computational approaches further our knowledge of the interactions between phages and their hosts. Importantly, we find that all reviewed signals significantly link phages to their hosts, illustrating how current knowledge and insights about the interaction mechanisms and ecology of coevolving phages and bacteria can be exploited to predict phage–host relationships, with potential relevance for medical and industrial applications. New viruses infecting bacteria are increasingly being discovered in many environments through sequence-based explorations. To understand their role in microbial ecosystems, computational tools are indispensable to prioritize and guide experimental efforts. This review assesses and discusses a range of bioinformatic approaches to predict bacteriophage–host relationships when all that is known is their genome sequence.
Collapse
Affiliation(s)
- Robert A Edwards
- Department of Computer Science, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro, CEP 21941-902, Brazil Division of Mathematics and Computer Science, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439, USA
| | - Katelyn McNair
- Department of Computer Science, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - Karoline Faust
- Department of Microbiology and Immunology, Rega Institute KU Leuven, Herestraat 49, 3000 Leuven, Belgium VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium Laboratory of Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute KU Leuven, Herestraat 49, 3000 Leuven, Belgium VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium Laboratory of Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Bas E Dutilh
- Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro, CEP 21941-902, Brazil Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| |
Collapse
|
15
|
Mohammed M, Cormican M. Whole genome sequencing provides possible explanations for the difference in phage susceptibility among two Salmonella Typhimurium phage types (DT8 and DT30) associated with a single foodborne outbreak. BMC Res Notes 2015; 8:728. [PMID: 26613761 PMCID: PMC4661946 DOI: 10.1186/s13104-015-1687-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/10/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Phage typing has been used for decades as a rapid, low cost approach for the epidemiological surveillance of Salmonella enterica subsp. enterica serovar Typhimurium. Although molecular methods are replacing phage typing the system is still in use and provides a valuable model for study of phage-host interaction. Phage typing depends on the pattern of bacterial resistance or sensitivity to a panel of specific bacteriophages. In the phage typing scheme, S. Typhimurium definitive phage types (DT) 8 and 30 differ greatly in their susceptibility to the 30 typing phages of S. Typhimurium; DT8 is susceptible to 11 phages whereas DT30 is resistant to all typing phages except one phage although both DT8 and DT30 were reported to be associated with a single foodborne salmonellosis outbreak in Ireland between 2009 and 2011. We wished to study the genomic correlates of the DT8 and DT30 difference in phage susceptibility using the whole genome sequence (WGS) of S. Typhimurium DT8 and DT30 representatives. RESULTS Comparative genome analysis revealed that both S. Typhimurium DT8 and DT30 are lysogenic for three prophages including two S. Typhimurium associated prophages (Gifsy-2 and ST64B) and one S. Enteritidis associated prophage (Enteritidis lysogenic phage S) which has not been detected previously in S. Typhimurium. Furthermore, DT8 and DT30 contain identical clustered regularly interspaced short palindromic repeats (CRISPRs). Interestingly, S. Typhimurium DT8 harbours an accessory genome represented by a virulence plasmid that is highly related to the pSLT plasmid of S. Typhimurium strain LT2 (phage typed as DT4) and codes a unique methyltransferase (MTase); M.EcoGIX related MTase. This plasmid is not detected in DT30. On the other hand, DT30 carries a unique genomic island similar to the integrative and conjugative element (ICE) of Enterotoxigenic Escherichia coli (ETEC) and encodes type IV secretion pathway system (T4SS) and several hypothetical proteins. This genomic island is not detected in DT8. CONCLUSIONS We suggest that differences in phage susceptibility between DT8 and DT30 may be related to acquisition of ICE in DT30 and loss of pSLT like plasmid that might be associated with DT30 resistance to almost all phages used in the typing scheme. Additional studies are required to determine the significance of the differences among DT8 and DT30 in relation to the difference in phage susceptibility. This study represents an initial step toward understanding the molecular basis of this host-phage relationship.
Collapse
Affiliation(s)
- Manal Mohammed
- School of Medicine, National University of Ireland Galway, Galway, Ireland.
| | - Martin Cormican
- School of Medicine, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
16
|
Matthews TD, Schmieder R, Silva GGZ, Busch J, Cassman N, Dutilh BE, Green D, Matlock B, Heffernan B, Olsen GJ, Farris Hanna L, Schifferli DM, Maloy S, Dinsdale EA, Edwards RA. Genomic Comparison of the Closely-Related Salmonella enterica Serovars Enteritidis, Dublin and Gallinarum. PLoS One 2015; 10:e0126883. [PMID: 26039056 PMCID: PMC4454671 DOI: 10.1371/journal.pone.0126883] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/08/2015] [Indexed: 11/18/2022] Open
Abstract
The Salmonella enterica serovars Enteritidis, Dublin, and Gallinarum are closely related but differ in virulence and host range. To identify the genetic elements responsible for these differences and to better understand how these serovars are evolving, we sequenced the genomes of Enteritidis strain LK5 and Dublin strain SARB12 and compared these genomes to the publicly available Enteritidis P125109, Dublin CT 02021853 and Dublin SD3246 genome sequences. We also compared the publicly available Gallinarum genome sequences from biotype Gallinarum 287/91 and Pullorum RKS5078. Using bioinformatic approaches, we identified single nucleotide polymorphisms, insertions, deletions, and differences in prophage and pseudogene content between strains belonging to the same serovar. Through our analysis we also identified several prophage cargo genes and pseudogenes that affect virulence and may contribute to a host-specific, systemic lifestyle. These results strongly argue that the Enteritidis, Dublin and Gallinarum serovars of Salmonella enterica evolve by acquiring new genes through horizontal gene transfer, followed by the formation of pseudogenes. The loss of genes necessary for a gastrointestinal lifestyle ultimately leads to a systemic lifestyle and niche exclusion in the host-specific serovars.
Collapse
Affiliation(s)
- T. David Matthews
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Robert Schmieder
- Department of Computer Science, San Diego State University, San Diego, California, 92182, United States of America
| | - Genivaldo G. Z. Silva
- Computational Science Research Center, San Diego State University, San Diego, California, 92182, United States of America
| | - Julia Busch
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Noriko Cassman
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dawn Green
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brian Matlock
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brian Heffernan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gary J. Olsen
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Leigh Farris Hanna
- Molecular Sciences Department, University of Tennessee Health Sciences Center, 858 Madison Ave, Memphis, Tennessee, United States of America
| | - Dieter M. Schifferli
- University of Pennsylvania School of Veterinary Medicine, 3800 Spruce St, Philadelphia, Pennsylvania, 19104, United States of America
| | - Stanley Maloy
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Elizabeth A. Dinsdale
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Robert A. Edwards
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
- Department of Computer Science, San Diego State University, San Diego, California, 92182, United States of America
- Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, Illinois, 60349, United States of America
- * E-mail:
| |
Collapse
|
17
|
Zhu W, Wang J, Zhu Y, Tang B, Zhang Y, He P, Zhang Y, Liu B, Guo X, Zhao G, Qin J. Identification of three extra-chromosomal replicons in Leptospira pathogenic strain and development of new shuttle vectors. BMC Genomics 2015; 16:90. [PMID: 25887950 PMCID: PMC4338851 DOI: 10.1186/s12864-015-1321-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 02/04/2015] [Indexed: 12/20/2022] Open
Abstract
Background The genome of pathogenic Leptospira interrogans contains two chromosomes. Plasmids and prophages are known to play specific roles in gene transfer in bacteria and can potentially serve as efficient genetic tools in these organisms. Although plasmids and prophage remnants have recently been reported in Leptospira species, their characteristics and potential applications in leptospiral genetic transformation systems have not been fully evaluated. Results Three extrachromosomal replicons designated lcp1 (65,732 bp), lcp2 (56,757 bp), and lcp3 (54,986 bp) in the L. interrogans serovar Linhai strain 56609 were identified through whole genome sequencing. All three replicons were stable outside of the bacterial chromosomes. Phage particles were observed in the culture supernatant of 56609 after mitomycin C induction, and lcp3, which contained phage-related genes, was considered to be an inducible prophage. L. interrogans–Escherichia coli shuttle vectors, constructed with the predicted replication elements of single rep or rep combined with parAB loci from the three plasmids were shown to successfully transform into both saprophytic and pathogenic Leptospira species, suggesting an essential function for rep genes in supporting auto-replication of the plasmids. Additionally, a wide distribution of homologs of the three rep genes was identified in L. interrogans isolates, and correlation tests showed that the transformability of the shuttle vectors in L. interrogans isolates depended, to certain extent, on genetic compatibility between the rep sequences of both plasmid and host. Conclusions Three extrachromosomal replicons co-exist in L. interrogans, one of which we consider to be an inducible prophage. The vectors constructed with the rep genes of the three replicons successfully transformed into saprophytic and pathogenic Leptospira species alike, but this was partly dependent on genetic compatibility between the rep sequences of both plasmid and host. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1321-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weinan Zhu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yongzhang Zhu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Biao Tang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yunyi Zhang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Ping He
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yan Zhang
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Boyu Liu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China. .,State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Jinhong Qin
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
18
|
Ogunremi D, Devenish J, Amoako K, Kelly H, Dupras AA, Belanger S, Wang LR. High resolution assembly and characterization of genomes of Canadian isolates of Salmonella Enteritidis. BMC Genomics 2014; 15:713. [PMID: 25156331 PMCID: PMC4165908 DOI: 10.1186/1471-2164-15-713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 08/14/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There is a need to characterize genomes of the foodborne pathogen, Salmonella enterica serovar Enteritidis (SE) and identify genetic information that could be ultimately deployed for differentiating strains of the organism, a need that is yet to be addressed mainly because of the high degree of clonality of the organism. In an effort to achieve the first characterization of the genomes of SE of Canadian origin, we carried out massively parallel sequencing of the nucleotide sequence of 11 SE isolates obtained from poultry production environments (n = 9), a clam and a chicken, assembled finished genomes and investigated diversity of the SE genome. RESULTS The median genome size was 4,678,683 bp. A total of 4,833 chromosomal genes defined the pan genome of our field SE isolates consisting of 4,600 genes present in all the genomes, i.e., core genome, and 233 genes absent in at least one genome (accessory genome). Genome diversity was demonstrable by the presence of 1,360 loci showing single nucleotide polymorphism (SNP) in the core genome which was used to portray the genetic distances by means of a phylogenetic tree for the SE isolates. The accessory genome consisted mostly of previously identified SE prophage sequences as well as two, apparently full-sized, novel prophages namely a 28 kb sequence provisionally designated as SE-OLF-10058 (3) prophage and a 43 kb sequence provisionally designated as SE-OLF-10012 prophage. CONCLUSIONS The number of SNPs identified in the relatively large core genome of SE is a reflection of substantial diversity that could be exploited for strain differentiation as shown by the development of an informative phylogenetic tree. Prophage sequences can also be exploited for SE strain differentiation and lineage tracking. This work has laid the ground work for further studies to develop a readily adoptable laboratory test for the subtyping of SE.
Collapse
Affiliation(s)
- Dele Ogunremi
- />Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario K2H 8P9 Canada
| | - John Devenish
- />Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario K2H 8P9 Canada
| | - Kingsley Amoako
- />Lethbridge Laboratory, Canadian Food Inspection Agency, Township Road 9-1, P. O. Box 640, Lethbridge, Alberta T1J 3Z4 Canada
| | - Hilary Kelly
- />Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario K2H 8P9 Canada
| | - Andrée Ann Dupras
- />Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario K2H 8P9 Canada
| | - Sebastien Belanger
- />Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario K2H 8P9 Canada
| | - Lin Ru Wang
- />Greater Toronto Area Laboratory, Canadian Food Inspection Agency, 2301 Midland Avenue, Scarborough, Ontario M1P 4R7 Canada
| |
Collapse
|
19
|
Genome Sequence of Salmonella enterica subsp. enterica Strain Durban. GENOME ANNOUNCEMENTS 2014; 2:2/3/e00399-14. [PMID: 24812224 PMCID: PMC4014692 DOI: 10.1128/genomea.00399-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the genome sequence of Salmonella enterica subsp. enterica strain Durban, isolated from a patient with salmonellosis and typhoid fever. The strain is closely related to S. enterica subsp. enterica strain P125109 but differs in loss of the ϕSE20 prophage and acquisition of a prophage similar to ELPhiS.
Collapse
|
20
|
Castillo D, Espejo R, Middelboe M. Genomic structure of bacteriophage 6H and its distribution as prophage in Flavobacterium psychrophilum strains. FEMS Microbiol Lett 2013; 351:51-58. [PMID: 24267868 DOI: 10.1111/1574-6968.12342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/16/2013] [Accepted: 11/17/2013] [Indexed: 02/02/2023] Open
Abstract
Flavobacterium psychrophilum is currently one of the most devastating fish pathogens worldwide causing considerable economic losses in salmonid aquaculture. Recently, attention has been drawn to the use of phages for controlling F. psychrophilum, and phages infecting the pathogen have been isolated. Here, we present the genome sequence of F. psychrophilum bacteriophage 6H and its distribution as prophage in F. psychrophilum isolates. The DNA sequence revealed a genome of 46 978 bp containing 63 predicted ORFs, of which 13% was assigned a putative function, including an integrase. Sequence analysis showed > 80% amino acid similarity to a specific region found in the virulent F. psychrophilum strain JIP02/86 (ATCC 49511), suggesting that a prophage similar to phage 6H was present in this strain. Screening for a collection of 49 F. psychrophilum strains isolated in Chile, Denmark, and USA for the presence of four phage 6H genes (integrase, tail tape protein and two hypothetical proteins) by PCR showed the presence of these prophage genes in 80% of the isolates. In conclusion, we hypothesize that bacteriophage 6H belongs to an abundant group of temperate phages which has lysogenized a large fraction of the global F. psychrophilum community.
Collapse
Affiliation(s)
- Daniel Castillo
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark; Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Macul, Santiago, Chile
| | | | | |
Collapse
|
21
|
Edwards RA, Haggerty JM, Cassman N, Busch JC, Aguinaldo K, Chinta S, Vaughn MH, Morey R, Harkins TT, Teiling C, Fredrikson K, Dinsdale EA. Microbes, metagenomes and marine mammals: enabling the next generation of scientist to enter the genomic era. BMC Genomics 2013; 14:600. [PMID: 24007365 PMCID: PMC3766688 DOI: 10.1186/1471-2164-14-600] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 08/28/2013] [Indexed: 01/20/2023] Open
Abstract
Background The revolution in DNA sequencing technology continues unabated, and is affecting all aspects of the biological and medical sciences. The training and recruitment of the next generation of researchers who are able to use and exploit the new technology is severely lacking and potentially negatively influencing research and development efforts to advance genome biology. Here we present a cross-disciplinary course that provides undergraduate students with practical experience in running a next generation sequencing instrument through to the analysis and annotation of the generated DNA sequences. Results Many labs across world are installing next generation sequencing technology and we show that the undergraduate students produce quality sequence data and were excited to participate in cutting edge research. The students conducted the work flow from DNA extraction, library preparation, running the sequencing instrument, to the extraction and analysis of the data. They sequenced microbes, metagenomes, and a marine mammal, the Californian sea lion, Zalophus californianus. The students met sequencing quality controls, had no detectable contamination in the targeted DNA sequences, provided publication quality data, and became part of an international collaboration to investigate carcinomas in carnivores. Conclusions Students learned important skills for their future education and career opportunities, and a perceived increase in students’ ability to conduct independent scientific research was measured. DNA sequencing is rapidly expanding in the life sciences. Teaching undergraduates to use the latest technology to sequence genomic DNA ensures they are ready to meet the challenges of the genomic era and allows them to participate in annotating the tree of life.
Collapse
Affiliation(s)
- Robert Alan Edwards
- Computer Sciences Department, San Diego State University, 5500 Campanile Dr,, San Diego 92182, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Allard MW, Luo Y, Strain E, Pettengill J, Timme R, Wang C, Li C, Keys CE, Zheng J, Stones R, Wilson MR, Musser SM, Brown EW. On the evolutionary history, population genetics and diversity among isolates of Salmonella Enteritidis PFGE pattern JEGX01.0004. PLoS One 2013; 8:e55254. [PMID: 23383127 PMCID: PMC3559427 DOI: 10.1371/journal.pone.0055254] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/21/2012] [Indexed: 12/20/2022] Open
Abstract
Facile laboratory tools are needed to augment identification in contamination events to trace the contamination back to the source (traceback) of Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis). Understanding the evolution and diversity within and among outbreak strains is the first step towards this goal. To this end, we collected 106 new S. Enteriditis isolates within S. Enteriditis Pulsed-Field Gel Electrophoresis (PFGE) pattern JEGX01.0004 and close relatives, and determined their genome sequences. Sources for these isolates spanned food, clinical and environmental farm sources collected during the 2010 S. Enteritidis shell egg outbreak in the United States along with closely related serovars, S. Dublin, S. Gallinarum biovar Pullorum and S. Gallinarum. Despite the highly homogeneous structure of this population, S. Enteritidis isolates examined in this study revealed thousands of SNP differences and numerous variable genes (n = 366). Twenty-one of these genes from the lineages leading to outbreak-associated samples had nonsynonymous (causing amino acid changes) changes and five genes are putatively involved in known Salmonella virulence pathways. While chromosome synteny and genome organization appeared to be stable among these isolates, genome size differences were observed due to variation in the presence or absence of several phages and plasmids, including phage RE-2010, phage P125109, plasmid pSEEE3072_19 (similar to pSENV), plasmid pOU1114 and two newly observed mobile plasmid elements pSEEE1729_15 and pSEEE0956_35. These differences produced modifications to the assembled bases for these draft genomes in the size range of approximately 4.6 to 4.8 mbp, with S. Dublin being larger (∼4.9 mbp) and S. Gallinarum smaller (4.55 mbp) when compared to S. Enteritidis. Finally, we identified variable S. Enteritidis genes associated with virulence pathways that may be useful markers for the development of rapid surveillance and typing methods, potentially aiding in traceback efforts during future outbreaks involving S. Enteritidis PFGE pattern JEGX01.0004.
Collapse
Affiliation(s)
- Marc W Allard
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Akhter S, Aziz RK, Edwards RA. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res 2012; 40:e126. [PMID: 22584627 PMCID: PMC3439882 DOI: 10.1093/nar/gks406] [Citation(s) in RCA: 318] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Prophages are phages in lysogeny that are integrated into, and replicated as part of, the host bacterial genome. These mobile elements can have tremendous impact on their bacterial hosts’ genomes and phenotypes, which may lead to strain emergence and diversification, increased virulence or antibiotic resistance. However, finding prophages in microbial genomes remains a problem with no definitive solution. The majority of existing tools rely on detecting genomic regions enriched in protein-coding genes with known phage homologs, which hinders the de novo discovery of phage regions. In this study, a weighted phage detection algorithm, PhiSpy was developed based on seven distinctive characteristics of prophages, i.e. protein length, transcription strand directionality, customized AT and GC skew, the abundance of unique phage words, phage insertion points and the similarity of phage proteins. The first five characteristics are capable of identifying prophages without any sequence similarity with known phage genes. PhiSpy locates prophages by ranking genomic regions enriched in distinctive phage traits, which leads to the successful prediction of 94% of prophages in 50 complete bacterial genomes with a 6% false-negative rate and a 0.66% false-positive rate.
Collapse
Affiliation(s)
- Sajia Akhter
- Computational Science Research Center, Department of Computer Science, San Diego State University, San Diego, CA 92182, USA.
| | | | | |
Collapse
|