1
|
Vasta V, Daghio M, Cappucci A, Buccioni A, Serra A, Viti C, Mele M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J Dairy Sci 2019; 102:3781-3804. [PMID: 30904293 DOI: 10.3168/jds.2018-14985] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 01/13/2019] [Indexed: 12/29/2022]
Abstract
The interest of the scientific community in the effects of plant polyphenols on animal nutrition is increasing. These compounds, in fact, are ubiquitous in the plant kingdom, especially in some spontaneous plants exploited as feeding resources alternative to cultivated crops and in several agro-industry by-products. Polyphenols interact with rumen microbiota, affecting carbohydrate fermentation, protein degradation, and lipid metabolism. Some of these aspects have been largely reviewed, especially for tannins; however, less information is available about the direct effect of polyphenols on the composition of rumen microbiota. In the present paper, we review the most recent literature about the effect of plant polyphenols on rumen microbiota responsible for unsaturated fatty acid biohydrogenation, fiber digestion, and methane production, taking into consideration the advances in microbiota analysis achieved in the last 10 yr. Key aspects, such as sample collection, sample storage, DNA extraction, and the main phylogenetic markers used in the reconstruction of microbial community structure, are examined. Furthermore, a summary of the new high-throughput methods based on next generation sequencing is reviewed. Several effects can be associated with dietary polyphenols. Polyphenols are able to depress or modulate the biohydrogenation of unsaturated fatty acids by a perturbation of ruminal microbiota composition. In particular, condensed tannins have an inhibitory effect on biohydrogenation, whereas hydrolyzable tannins seem to have a modulatory effect on biohydrogenation. With regard to fiber digestion, data from literature are quite consistent about a general depressive effect of polyphenols on gram-positive fibrolytic bacteria and ciliate protozoa, resulting in a reduction of volatile fatty acid production (mostly acetate molar production). Methane production is also usually reduced when tannins are included in the diet of ruminants, probably as a consequence of the inhibition of fiber digestion. However, some evidence suggests that hydrolyzable tannins may reduce methane emission by directly interacting with rumen microbiota without affecting fiber digestion.
Collapse
Affiliation(s)
- V Vasta
- Food Scientist, viale delle Alpi 40, 90144, Palermo, Italy
| | - M Daghio
- Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - A Cappucci
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - A Buccioni
- Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - A Serra
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - C Viti
- Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - M Mele
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; Centro di Ricerche Agro-ambientali "E. Avanzi," University of Pisa, Via Vecchia di Masrina, 6, 56100 Pisa, Italy.
| |
Collapse
|
2
|
Herzallah S. Enrichment of conjugated linoleic acid (CLA) in hen eggs and broiler chickens meat by lactic acid bacteria. Br Poult Sci 2014; 54:747-52. [PMID: 24397511 DOI: 10.1080/00071668.2013.836734] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The aim of this work was to compare conjugated linoleic acid (CLA) concentrations in chickens supplemented with 4 American Tissue Culture Collection (ATCC) bacterial strains, Lactobacillus plantarum, Lactobacillus lactis, Lactobacillus casei and Lactobacillus fermentum, and 4 isolates of Lactobacillus reuteri from camel, cattle, sheep and goat rumen extracts. 2. Micro-organisms were grown anaerobically in MRS broth, and 10(6) CFU/ml of bacteria were administered orally to mixed-sex, 1-d-old broiler chickens weekly for 4 weeks and to 23-week-old layer hens weekly for 6 weeks. 3. The 4 strains were evaluated for their effects on synthesis of CLA in hen eggs and broiler meat cuts. 4. Administration of pure Lactobacillus and isolated L. reuteri strains from camel, cattle, goat and sheep led to significantly increased CLA concentrations of 0.2-1.2 mg/g of fat in eggs and 0.3-1.88 mg/g of fat in broiler chicken flesh homogenates of leg, thigh and breast. 5. These data demonstrate that lactic acid bacteria of animal origin (L. reuteri) significantly enhanced CLA synthesis in both eggs and broiler meat cuts.
Collapse
Affiliation(s)
- Saqer Herzallah
- a Department of Nutrition and Food Science, Faculty of Agriculture , Mu׳tah University , Karak-Jordan , Karak , Jordan
| |
Collapse
|
3
|
Abstract
The aim of the present work was to study the effects of tannins from carob (CT;Ceratonia siliqua), acacia leaves (AT;Acacia cyanophylla) and quebracho (QT;Schinopsis lorentzii) on ruminal biohydrogenationin vitro.The tannins extracted from CT, AT and QT were incubated for 12 h in glass syringes in cow buffered ruminal fluid (BRF) with hay or hay plus concentrate as a substrate. Within each feed, three concentrations of tannins were used (0·0, 0·6 and 1·0 mg/ml BRF). The branched-chain volatile fatty acids, the branched-chain fatty acids and the microbial protein concentration were reduced (P < 0·05) by tannins. In the tannin-containing fermenters, vaccenic acid was accumulated (+23 %,P < 0·01) while stearic acid was reduced ( − 16 %,P < 0·0005). The concentration of total conjugated linoleic acid (CLA) isomers in the BRF was not affected by tannins. The assay on linoleic acid isomerase (LA-I) showed that the enzyme activity (nmol CLA produced/min per mg protein) was unaffected by the inclusion of tannins in the fermenters. However, the CLA produced by LA-I (nmol/ml per min) was lower in the presence of tannins. These results suggest that tannins reduce ruminal biohydrogenation through the inhibition of the activity of ruminal micro-organisms.
Collapse
|
4
|
Jenkins JK, Courtney PD. Lactobacillus growth and membrane composition in the presence of linoleic or conjugated linoleic acid. Can J Microbiol 2003; 49:51-7. [PMID: 12674348 DOI: 10.1139/w03-003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Five Lactobacillus strains of intestinal and food origins were grown in MRS broth or milk containing various concentrations of linoleic acid or conjugated linoleic acid (CLA). The fatty acids had bacteriostatic, bacteriocidal, or no effect depending on bacterial strain, fatty acid concentration, fatty acid type, and growth medium. Both fatty acids displayed dose-dependent inhibition. All strains were inhibited to a greater extent by the fatty acids in broth than in milk. The CLA isomer mixture was less inhibitory than linoleic acid. Lactobacillus reuteri ATCC 55739, a strain capable of isomerizing linoleic acid to CLA, was the most inhibited strain by the presence of linoleic acid in broth or milk. In contrast, a member of the same species, L. reuteri ATCC 23272, was the least inhibited strain by linoleic acid and CLA. All strains increased membrane linoleic acid or CLA levels when grown with exogenous fatty acid. Lactobacillus reuteri ATCC 55739 had substantial CLA in the membrane when the growth medium was supplemented with linoleic acid. No association between level of fatty acid incorporation into the membrane and inhibition by that fatty acid was observed.
Collapse
Affiliation(s)
- Julie K Jenkins
- Department of Food Science and Technology, Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
| | | |
Collapse
|
5
|
Guerrero A, Casals I, Busquets M, Leon Y, Manresa A. Oxydation of oleic acid to (E)-10-hydroperoxy-8-octadecenoic and (E)-10-hydroxy-8-octadecenoic acids by Pseudomonas sp. 42A2. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1347:75-81. [PMID: 9233689 DOI: 10.1016/s0005-2760(97)00056-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biotransformation of oleic acid with Pseudomonas sp. 42A2 has been found to produce(E)-10-hydroxy-8-octadecenoic acid (2a), (E)-10-hydroperoxy-8-octadecenoic acid (3a), and (E)-7,10-dihydroxy-8-octadecenoic acid (4a). Structures of the metabolites were fully characterized by infrared and 1H and 13C NMR spectra of the acids, by fast atom bombardment (FAB) and electron impact (EI) and chemical ionization (CI) mass spectrometry of the corresponding methyl esters. This is the first time that the two former compounds of trans stereochemistry have been described to have originated from a Pseudomonas sp. cell culture. Time course of products accumulation showed that biotransformation started with bacterial growth, the amount of products 2a (5.58 g/l) and 4a (2.63 g/l) being optimum after 24 h of incubation while hydroperoxide 3a (1.15 g/l) reached its maximum after 16 h of the biotransformation process. Experiments conducted to ascertain whether the conversion enzyme(s) was cell-bound or extracellular, showed that the enzyme(s) is cell bound, located in the periplasmic space and has lipoxygenase activity.
Collapse
Affiliation(s)
- A Guerrero
- Departament de Química Orgànica Biològica, C.I.D. (CSIC), Barcelona,Spain
| | | | | | | | | |
Collapse
|
6
|
Abstract
The occurrence of trans unsaturated fatty acids as by-products of fatty acid transformations carried out by the obligate anaerobic ruminal microflora has been well known for a long time. In recent years, fatty acids with trans configurations also have been detected in the membrane lipids of various aerobic bacteria. Besides several psychrophilic organisms, bacteria-degrading pollutants, such as Pseudomonas putida, are able to synthesize these compounds de novo. In contrast to the trans fatty acids formed by rumen bacteria, the membrane constituents of aerobic bacteria are synthesized by a direct isomerization of the complementary cis configuration of the double bond without a shift of the position. This system of isomerization is located in the cytoplasmic membrane. The conversion of cis unsaturated fatty acids to trans changes the membrane fluidity in response to environmental stimuli, particularly where growth is inhibited due to the presence of high concentrations of toxic substances. Under these conditions, lipid synthesis also stops so that the cells are not able to modify their membrane fluidity by any other mechanism.
Collapse
Affiliation(s)
- H Keweloh
- Department of Microbiology, University of Münster, Germany
| | | |
Collapse
|
7
|
Okuyama H, Okajima N, Sasaki S, Higashi S, Murata N. The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1084:13-20. [PMID: 2054374 DOI: 10.1016/0005-2760(91)90049-n] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The major phospholipid, phosphatidylethanolamine (PE), of Vibrio sp. strain ABE-1 contains a unique trans-unsaturated fatty acid, 9-trans-hexadecenoic acid (16:1(9t], at the sn-2 position of the glycerol moiety. The major molecular species of PE that contain 16:1(9t) at the sn-2 position have either 9-cis-hexadecenoic acid (16:1(9c] or hexadecanoic acid (16:0) at the sn-1 position. The transition temperatures of the liquid-crystal to the gel phase of 16:1(9c)/16:1(9t)-PE and 16:0/16:1(9t)-PE were -3 degrees C and 38 degrees C, respectively, temperatures that were 31 degrees C and 18 degrees C higher than the corresponding temperatures for 16:1(9c)/16:1(9c)-PE and 16:0/16:1(9c)-PE. The proportion of 16:1(9c)/16:1(9t)-PE and 16:0/16:1(9t)-PE increased significantly in cells grown at 20 degrees C over that in cells grown at 5 degrees C. When cells grown at 5 degrees C were incubated at 20 degrees C in the presence of cerulenin, an inhibitor of the synthesis de novo of fatty acids, the level of 16:1(9t) increased almost in parallel with a concomitant decrease in the level of 16:1(9c) at the sn-2 position. These results suggest that 16:1(9c) is converted to 16:1(9t) by the cis/trans isomerization of the double bond in the fatty acid. This conversion is discussed as a possible strategy for adaptation by bacteria to changes in temperature.
Collapse
Affiliation(s)
- H Okuyama
- Department of Botany, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
8
|
Abstract
In anaerobic ecosystems, acyl lipids are initially hydrolyzed by microbial lipases with the release of free fatty acids. Glycerol, galactose, choline, and other non-fatty acid components released during hydrolysis are fermented to volatile fatty acids by the fermentative bacteria. Fatty acids are not degraded further in the rumen or other parts of the digestive tract but are subjected to extensive biohydrogenation especially in the rumen. However, in environments such as sediments and waste digestors, which have long retention times, both long and short chain fatty acids are beta-oxidized to acetate by a special group of bacteria, the H2-producing syntrophs. Long chain fatty acids can also be degraded by alpha-oxidation. Biotransformation of bile acids, cholesterol, and steroids by intestinal microorganisms is extensive. Many rumen bacteria have specific growth requirements for fatty acids such as n-valeric, iso-valeric, 2-methylbutyric, and iso-butyric acids. Some species have requirements for C13 to C18 straight-chain saturated or monoenoic fatty acids for growth.
Collapse
Affiliation(s)
- R I Mackie
- Department of Animal Sciences, University of Illinois, Urbana-Champaign 61801
| | | | | |
Collapse
|
9
|
Okuyama H, Sasaki S, Higashi S, Murata N. A trans-unsaturated fatty acid in a psychrophilic bacterium, Vibrio sp. strain ABE-1. J Bacteriol 1990; 172:3515-8. [PMID: 2345157 PMCID: PMC209171 DOI: 10.1128/jb.172.6.3515-3518.1990] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A high level of a trans-unsaturated fatty acid was found in the phospholipids of a psychrophilic bacterium, Vibrio sp. strain ABE-1. This fatty acid was identified as 9-trans-hexadecenoic acid (C16:19t) by gas-liquid chromatography and infrared absorption spectrometry. C16:1(9)t accounted for less than 1% of the total fatty acids in cells grown at 5 degrees C and reached 12% of the total at 20 degrees C. We suggest that the increase in the level of the trans-unsaturated fatty acid is related to the high growth rate of this bacterium at elevated temperatures. Possible biological roles of the trans-unsaturated fatty acid in the adaptation of the microorganism to the ambient temperature are discussed.
Collapse
Affiliation(s)
- H Okuyama
- Department of Botany, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
10
|
Janssen G, Verhulst A, Parmentier G. Location of double bonds in polyenic long-chain carboxylic acids containing a conjugated diene unit. ACTA ACUST UNITED AC 1988. [DOI: 10.1002/bms.1200150102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Verhulst A, Janssen G, Parmentier G, Eyssen H. Isomerization of polyunsaturated long chain fatty acids by propionibacteria. Syst Appl Microbiol 1987. [DOI: 10.1016/s0723-2020(87)80049-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|