1
|
Ramírez-Arenas PJ, Latisnere-Barragán H, García-Maldonado JQ, López-Cortés A. Highly diverse-Low abundance methanogenic communities in hypersaline microbial mats of Guerrero Negro B.C.S., assessed through microcosm experiments. PLoS One 2024; 19:e0303004. [PMID: 39365803 PMCID: PMC11451985 DOI: 10.1371/journal.pone.0303004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 10/06/2024] Open
Abstract
Methanogenic communities of hypersaline microbial mats of Guerrero Negro, Baja California Sur, Mexico, have been recognized to be dominated by methylotrophic methanogens. However, recent studies of environmental samples have evidenced the presence of hydrogenotrophic and methyl-reducing methanogenic members, although at low relative abundances. Physical and geochemical conditions that stimulate the development of these groups in hypersaline environments, remains elusive. Thus, in this study the taxonomic diversity of methanogenic archaea of two sites of Exportadora de Sal S.A was assessed by mcrA gene high throughput sequencing from microcosm experiments with different substrates (both competitive and non-competitive). Results confirmed the dominance of the order Methanosarcinales in all treatments, but an increase in the abundance of Methanomassiliiccocales was also observed, mainly in the treatment without substrate addition. Moreover, incubations supplemented with hydrogen and carbon dioxide, as well as the mixture of hydrogen, carbon dioxide and trimethylamine, managed to stimulate the richness and abundance of other than Methanosarcinales methanogenic archaea. Several OTUs that were not assigned to known methanogens resulted phylogenetically distributed into at least nine orders. Environmental samples revealed a wide diversity of methanogenic archaea of low relative abundance that had not been previously reported for this environment, suggesting that the importance and diversity of methanogens in hypersaline ecosystems may have been overlooked. This work also provided insights into how different taxonomic groups responded to the evaluated incubation conditions.
Collapse
Affiliation(s)
| | | | - José Q. García-Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Alejandro López-Cortés
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, México
| |
Collapse
|
2
|
Jitsuno K, Hoshino T, Nishikawa Y, Kogawa M, Mineta K, Strasser M, Ikehara K, Everest J, Maeda L, Inagaki F, Takeyama H. Comparative single-cell genomics of Atribacterota JS1 in the Japan Trench hadal sedimentary biosphere. mSphere 2024; 9:e0033723. [PMID: 38170974 PMCID: PMC10826368 DOI: 10.1128/msphere.00337-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Deep-sea and subseafloor sedimentary environments host heterotrophic microbial communities that contribute to Earth's carbon cycling. However, the potential metabolic functions of individual microorganisms and their biogeographical distributions in hadal ocean sediments remain largely unexplored. In this study, we conducted single-cell genome sequencing on sediment samples collected from six sites (7,445-8,023 m water depth) along an approximately 500 km transect of the Japan Trench during the International Ocean Discovery Program Expedition 386. A total of 1,886 single-cell amplified genomes (SAGs) were obtained, offering comprehensive genetic insights into sedimentary microbial communities in surface sediments (<1 m depth) above the sulfate-methane transition zone along the Japan Trench. Our genome data set included 269 SAGs from Atribacterota JS1, the predominant bacterial clade in these hadal environments. Phylogenetic analysis classified SAGs into nine distinct phylotypes, whereas metagenome-assembled genomes were categorized into only two phylotypes, advancing JS1 diversity coverage through a single cell-based approach. Comparative genomic analysis of JS1 lineages from different habitats revealed frequent detection of genes related to organic carbon utilization, such as extracellular enzymes like clostripain and α-amylase, and ABC transporters of oligopeptide from Japan Trench members. Furthermore, specific JS1 phylotypes exhibited a strong correlation with in situ methane concentrations and contained genes involved in glycine betaine metabolism. These findings suggest that the phylogenomically diverse and novel Atribacterota JS1 is widely distributed in Japan Trench sediment, playing crucial roles in carbon cycling within the hadal sedimentary biosphere.IMPORTANCEThe Japan Trench represents tectonically active hadal environments associated with Pacific plate subduction beneath the northeastern Japan arc. This study, for the first time, documented a large-scale single-cell and metagenomic survey along an approximately 500 km transect of the Japan Trench, obtaining high-quality genomic information on hadal sedimentary microbial communities. Single-cell genomics revealed the predominance of diverse JS1 lineages not recoverable through conventional metagenomic binning. Their metabolic potential includes genes related to the degradation of organic matter, which contributes to methanogenesis in the deeper layers. Our findings enhance understanding of sedimentary microbial communities at water depths exceeding 7,000 m and provide new insights into the ecological role of biogeochemical carbon cycling in the hadal sedimentary biosphere.
Collapse
Affiliation(s)
- Kana Jitsuno
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- CBBD-OIL, AIST-Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Yohei Nishikawa
- CBBD-OIL, AIST-Waseda University, Shinjuku-ku, Tokyo, Japan
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Masato Kogawa
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Katsuhiko Mineta
- CBBD-OIL, AIST-Waseda University, Shinjuku-ku, Tokyo, Japan
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
- Marine Open Innovation Institute, Shizuoka, Japan
| | - Michael Strasser
- Department of Geology, University of Innsbruck, Innsbruck, Austria
| | - Ken Ikehara
- Research Institute of Geology and Geoinformation, AIST Geological Survey of Japan, Tsukuba, Japan
| | | | - Lena Maeda
- Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), JAMSTEC, Yokohama, Japan
| | - Fumio Inagaki
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
- Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), JAMSTEC, Yokohama, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Haruko Takeyama
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- CBBD-OIL, AIST-Waseda University, Shinjuku-ku, Tokyo, Japan
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - IODP Expedition 386 ScientistsBellanovaPieroBrunetMorganeCaiZhirongCattaneoAntonioHochmuthKatharinaHsiungKanhsiIshizawaTakashiItakiTakuyaJitsunoKanaJohnsonJoelKanamatsuToshiyaKeepMyraKiokaArataMaerzChristianMcHughCeciliaMicallefAaronMinLuoPandeyDhananjaiProustJean NoelRasburyTroyRiedingerNataschaBaoRuiSatoguchiYasufumiSawyerDerekSeibertChloeSilverMaxwellStraubSusanneVirtasaloJoonasWangYonghongWuTing-WeiZellersSarahKöllingMartinHuangJyh-Jaan StevenNagahashiYoshitaka
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- CBBD-OIL, AIST-Waseda University, Shinjuku-ku, Tokyo, Japan
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
- Marine Open Innovation Institute, Shizuoka, Japan
- Department of Geology, University of Innsbruck, Innsbruck, Austria
- Research Institute of Geology and Geoinformation, AIST Geological Survey of Japan, Tsukuba, Japan
- British Geological Survey, Edinburgh, United Kingdom
- Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), JAMSTEC, Yokohama, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
3
|
Salehpoor L, VandenBoer TC. Suppressor and calibration standard limitations in cation chromatography of ammonium and 10 alkylamines in atmospheric samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3822-3842. [PMID: 37493049 DOI: 10.1039/d3ay01158e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Ammonia (NH3) and alkylamines are ubiquitous in the atmosphere and have been suggested to play important global roles through new particle formation and aerosol growth. In this work, we optimized an ion-chromatographic (IC) method to separate and quantify the ten most abundant atmospheric alkylamines with high selectivity and separation efficiency, using 4 μm packed columns and resin-based suppressors, alongside stabilizing amine standards. Modern resin suppressors operating on a gradient elution program affected the linear response of this IC technique. Calibration statistical analyses found a loss of analytes in these cation-exchange devices. Suppressor operational longevity was optimized by using a stepped current and an external water supply, which improved precision, accuracy, and LODs compared to other suppression modes. When this new method was applied to real samples, amines were found ubiquitously in size-resolved marine aerosol samples; monopropylamine, isomonopropylamine, and monobutylamine were detected and quantified, which have not been reported before. The molar ratio of the sum of aminium to ammonium ranged from 0.02 to 0.2, showcasing the application of the developed method towards studying the diversity and importance of alkylamines in coastal marine particle composition. The new analytical method also found NH3 present in a suite of new homes with a mean mixing ratio of 25 ± 15 ppbv; a common level reached between homes across the study during the first year of occupation which can then be transported outdoors.
Collapse
Affiliation(s)
- Leyla Salehpoor
- Department of Chemistry, York University, Toronto, ON, Canada.
| | | |
Collapse
|
4
|
Alowaifeer AM, Wang Q, Bothner B, Sibert RJ, Joye SB, McDermott TR. Aerobic methane synthesis and dynamics in a river water environment. LIMNOLOGY AND OCEANOGRAPHY 2023; 68:1762-1774. [PMID: 37928964 PMCID: PMC10624334 DOI: 10.1002/lno.12383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/21/2023] [Indexed: 11/07/2023]
Abstract
Reports of aerobic biogenic methane (CH 4 ) have generated new views about CH 4 sources in nature. We examine this phenomenon in the free-flowing Yellowstone river wherein CH 4 concentrations were tracked as a function of environmental conditions, phototrophic microorganisms (using chlorophyll a , Chl a , as proxy), as well as targeted methylated amines known to be associated with this process. CH 4 was positively correlated with temperature and Chl a , although diurnal measurements showed CH 4 concentrations were greatest during the night and lowest during maximal solar irradiation. CH 4 efflux from the river surface was greater in quiescent edge waters (71-94 μmol m-2 d) than from open flowing current (~ 57 μmol m-2 d). Attempts to increase flux by disturbing the benthic environment in the quiescent water directly below (~ 1.0 m deep) or at varying distances (0-5 m) upstream of the flux chamber failed to increase surface flux. Glycine betaine (GB), dimethylamine and methylamine (MMA) were observed throughout the summer-long study, increasing during a period coinciding with a marked decline in Chl a , suggesting a lytic event led to their release; however, this did not correspond to increased CH 4 concentrations. Spiking river water with GB or MMA yielded significantly greater CH 4 than nonspiked controls, illustrating the metabolic potential of the river microbiome. In summary, this study provides evidence that: (1) phototrophic microorganisms are involved in CH 4 synthesis in a river environment; (2) the river microbiome possesses the metabolic potential to convert methylated amines to CH 4 ; and (3) river CH 4 concentrations are dynamic diurnally as well as during the summer active months.
Collapse
Affiliation(s)
- Abdullah M. Alowaifeer
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Qian Wang
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Ryan J. Sibert
- Department of Marine Science, University of Georgia, Athens, Georgia, USA
| | - Samantha B. Joye
- Department of Marine Science, University of Georgia, Athens, Georgia, USA
| | - Timothy R. McDermott
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
5
|
Bueno de Mesquita CP, Wu D, Tringe SG. Methyl-Based Methanogenesis: an Ecological and Genomic Review. Microbiol Mol Biol Rev 2023; 87:e0002422. [PMID: 36692297 PMCID: PMC10029344 DOI: 10.1128/mmbr.00024-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Methyl-based methanogenesis is one of three broad categories of archaeal anaerobic methanogenesis, including both the methyl dismutation (methylotrophic) pathway and the methyl-reducing (also known as hydrogen-dependent methylotrophic) pathway. Methyl-based methanogenesis is increasingly recognized as an important source of methane in a variety of environments. Here, we provide an overview of methyl-based methanogenesis research, including the conditions under which methyl-based methanogenesis can be a dominant source of methane emissions, experimental methods for distinguishing different pathways of methane production, molecular details of the biochemical pathways involved, and the genes and organisms involved in these processes. We also identify the current gaps in knowledge and present a genomic and metagenomic survey of methyl-based methanogenesis genes, highlighting the diversity of methyl-based methanogens at multiple taxonomic levels and the widespread distribution of known methyl-based methanogenesis genes and families across different environments.
Collapse
Affiliation(s)
| | - Dongying Wu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Susannah G. Tringe
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
6
|
Fitzsimons MF, Tilley M, Cree CHL. The determination of volatile amines in aquatic marine systems: A review. Anal Chim Acta 2023; 1241:340707. [PMID: 36657869 DOI: 10.1016/j.aca.2022.340707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
This review provides a critical assessment of knowledge regarding the determination of volatile, low molecular weight amines, and particularly methylamines, in marine aquatic; systems. It provides context for the motivation to determine methylamines in the marine aquatic environment and the analytical challenges associated with their measurement.While sensitive analytical methods have been reported in recent decades, they have not been adopted by the oceanographic community to investigate methylamines' biogeochemistry and advance understanding of these analytes to the degree achieved for other marine volatiles. Gas chromatography, high performance liquid chromatography, ion chromatography and infusion-mass spectrometry techniques are discussed and critically determined, alongside offline and online preconcentration steps. Interest in the marine occurrence and cycling of methylamines has increased within the last 10-15 years, due to their potential role in climate regulation. As such, the need for robust, reproducible methods to elucidate biogeochemical cycles for nitrogen and populate marine models is apparent. Recommendations are made as to what equipment would be most suitable for future research in this area.
Collapse
Affiliation(s)
- Mark F Fitzsimons
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA, UK.
| | - Mia Tilley
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA, UK
| | - Charlotte H L Cree
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA, UK
| |
Collapse
|
7
|
Schorn S, Ahmerkamp S, Bullock E, Weber M, Lott C, Liebeke M, Lavik G, Kuypers MMM, Graf JS, Milucka J. Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows. Proc Natl Acad Sci U S A 2022; 119:e2106628119. [PMID: 35165204 PMCID: PMC8892325 DOI: 10.1073/pnas.2106628119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
Marine coastlines colonized by seagrasses are a net source of methane to the atmosphere. However, methane emissions from these environments are still poorly constrained, and the underlying processes and responsible microorganisms remain largely unknown. Here, we investigated methane turnover in seagrass meadows of Posidonia oceanica in the Mediterranean Sea. The underlying sediments exhibited median net fluxes of methane into the water column of ca. 106 µmol CH4 ⋅ m-2 ⋅ d-1 Our data show that this methane production was sustained by methylated compounds produced by the plant, rather than by fermentation of buried organic carbon. Interestingly, methane production was maintained long after the living plant died off, likely due to the persistence of methylated compounds, such as choline, betaines, and dimethylsulfoniopropionate, in detached plant leaves and rhizomes. We recovered multiple mcrA gene sequences, encoding for methyl-coenzyme M reductase (Mcr), the key methanogenic enzyme, from the seagrass sediments. Most retrieved mcrA gene sequences were affiliated with a clade of divergent Mcr and belonged to the uncultured Candidatus Helarchaeota of the Asgard superphylum, suggesting a possible involvement of these divergent Mcr in methane metabolism. Taken together, our findings identify the mechanisms controlling methane emissions from these important blue carbon ecosystems.
Collapse
Affiliation(s)
- Sina Schorn
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany;
| | - Soeren Ahmerkamp
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Emma Bullock
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | | | | | - Manuel Liebeke
- Symbiosis Department, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Gaute Lavik
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Jon S Graf
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Jana Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| |
Collapse
|
8
|
Abstract
Reports of biogenic methane (CH4) synthesis associated with a range of organisms have steadily accumulated in the literature. This has not happened without controversy and in most cases the process is poorly understood at the gene and enzyme levels. In marine and freshwater environments, CH4 supersaturation of oxic surface waters has been termed the "methane paradox" because biological CH4 synthesis is viewed to be a strictly anaerobic process carried out by O2-sensitive methanogens. Interest in this phenomenon has surged within the past decade because of the importance of understanding sources and sinks of this potent greenhouse gas. In our work on Yellowstone Lake in Yellowstone National Park, we demonstrate microbiological conversion of methylamine to CH4 and isolate and characterize an Acidovorax sp. capable of this activity. Furthermore, we identify and clone a gene critical to this process (encodes pyridoxylamine phosphate-dependent aspartate aminotransferase) and demonstrate that this property can be transferred to Escherichia coli with this gene and will occur as a purified enzyme. This previously unrecognized process sheds light on environmental cycling of CH4, suggesting that O2-insensitive, ecologically relevant aerobic CH4 synthesis is likely of widespread distribution in the environment and should be considered in CH4 modeling efforts.
Collapse
|
9
|
Holland SI, Ertan H, Montgomery K, Manefield MJ, Lee M. Novel dichloromethane-fermenting bacteria in the Peptococcaceae family. THE ISME JOURNAL 2021; 15:1709-1721. [PMID: 33452483 PMCID: PMC8163858 DOI: 10.1038/s41396-020-00881-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023]
Abstract
Dichloromethane (DCM; CH2Cl2) is a toxic groundwater pollutant that also has a detrimental effect on atmospheric ozone levels. As a dense non-aqueous phase liquid, DCM migrates vertically through groundwater to low redox zones, yet information on anaerobic microbial DCM transformation remains scarce due to a lack of cultured organisms. We report here the characterisation of DCMF, the dominant organism in an anaerobic enrichment culture (DFE) capable of fermenting DCM to the environmentally benign product acetate. Stable carbon isotope experiments demonstrated that the organism assimilated carbon from DCM and bicarbonate via the Wood-Ljungdahl pathway. DCMF is the first anaerobic DCM-degrading population also shown to metabolise non-chlorinated substrates. It appears to be a methylotroph utilising the Wood-Ljungdahl pathway for metabolism of methyl groups from methanol, choline, and glycine betaine. The flux of these substrates from subsurface environments may either directly (DCM, methanol) or indirectly (choline, glycine betaine) affect the climate. Community profiling and cultivation of cohabiting taxa in culture DFE without DCMF suggest that DCMF is the sole organism in this culture responsible for substrate metabolism, while the cohabitants persist via necromass recycling. Genomic and physiological evidence support placement of DCMF in a novel genus within the Peptococcaceae family, 'Candidatus Formimonas warabiya'.
Collapse
Affiliation(s)
- Sophie I Holland
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Haluk Ertan
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kate Montgomery
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael J Manefield
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Matthew Lee
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
10
|
García-Maldonado JQ, Escobar-Zepeda A, Raggi L, Bebout BM, Sanchez-Flores A, López-Cortés A. Bacterial and archaeal profiling of hypersaline microbial mats and endoevaporites, under natural conditions and methanogenic microcosm experiments. Extremophiles 2018; 22:903-916. [PMID: 30120599 DOI: 10.1007/s00792-018-1047-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/08/2018] [Indexed: 11/29/2022]
Abstract
Bacterial and archaeal community structure of five microbial communities, developing at different salinities in Baja California Sur, Mexico, were characterized by 16S rRNA sequencing. The response of the microbial community to artificial changes in salinity-sulfate concentrations and to addition of trimethylamine was also evaluated in microcosm experiments. Ordination analyses of the microbial community structure showed that microbial composition was distinctive for each hypersaline site. Members of bacteria were dominated by Bacteroidetes and Proteobacteria phyla, while Halobacteria of the Euryarchaeota phylum was the most represented class of archaea for all the environmental samples. At a higher phylogenetic resolution, methanogenic communities were dominated by members of the Methanosarcinales, Methanobacteriales and Methanococcales orders. Incubation experiments showed that putative hydrogenotrophic methanogens of the Methanomicrobiales increased in abundance only under lowest salinity and sulfate concentrations. Trimethylamine addition effectively increased the abundance of methylotrophic members from the Methanosarcinales, but also increased the relative abundance of the Thermoplasmata class, suggesting the potential capability of these microorganisms to use trimethylamine in hypersaline environments. These results contribute to the knowledge of microbial diversity in hypersaline environments from Baja California Sur, Mexico, and expand upon the available information for uncultured methanogenic archaea in these ecosystems.
Collapse
Affiliation(s)
- José Q García-Maldonado
- CONACYT - Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Antigua Carretera a Progreso Km. 6, Yucatán, 97310, Mexico.
| | - Alejandra Escobar-Zepeda
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Luciana Raggi
- CONACYT - Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Brad M Bebout
- Exobiology Branch, Ames Research Center, National Aeronautics and Space Administration, Moffett Field, CA, USA
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Alejandro López-Cortés
- Laboratorio de Geomicrobiología y Biotecnología, Instituto Politécnico Nacional 195, Centro de Investigaciones Biológicas del Noroeste, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, 23096, Mexico.
| |
Collapse
|
11
|
Cadena S, García-Maldonado JQ, López-Lozano NE, Cervantes FJ. Methanogenic and Sulfate-Reducing Activities in a Hypersaline Microbial Mat and Associated Microbial Diversity. MICROBIAL ECOLOGY 2018; 75:930-940. [PMID: 29116347 DOI: 10.1007/s00248-017-1104-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Methanogenesis and sulfate reduction are important microbial processes in hypersaline environments. However, key aspects determining substrate competition between these microbial processes have not been well documented. We evaluated competitive and non-competitive substrates for stimulation of both processes through microcosm experiments of hypersaline microbial mat samples from Guerrero Negro, Baja California Sur, Mexico, and we assessed the effect of these substrates on the microbial community composition. Methylotrophic methanogenesis evidenced by sequences belonging to methanogens of the family Methanosarcinaceae was found as the dominant methanogenic pathway in the studied hypersaline microbial mat. Nevertheless, our results showed that incubations supplemented with acetate and lactate, performed in absence of sulfate, also produced methane after 40 days of incubation, apparently driven by hydrogenotrophic methanogens affiliated to the family Methanomicrobiaceae. Sulfate reduction was mainly stimulated by addition of acetate and lactate; however, after 40 days of incubation, an increase of the H2S concentrations in microcosms amended with trimethylamine and methanol was also observed, suggesting that these substrates are putatively used for sulfate reduction. Moreover, 16S rRNA gene sequencing analysis showed remarkable differences in the microbial community composition among experimental treatments. In the analyzed sample amended with acetate, sulfate-reducing bacteria (SRB) belonging to the family Desulfobacteraceae were dominant, while members of Desulfohalobiaceae, Desulfomicrobiaceae, and Desulfovibrionaceae were found in the incubation with lactate. Additionally, we detected an unexpected high abundance of unclassified Hydrogenedentes (near 25%) in almost all the experimental treatments. This study contributes to better understand methanogenic and sulfate-reducing activities, which play an important role in the functioning of hypersaline environments.
Collapse
Affiliation(s)
- Santiago Cadena
- Instituto Potosino de Investigación Científica y Tecnológica, IPICYT, División de Ciencias Ambientales, San Luis Potosí, Mexico
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, Mexico
| | - José Q García-Maldonado
- CONACYT-Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Mérida, Yucatán, Mexico
| | - Nguyen E López-Lozano
- CONACYT-Instituto Potosino de Investigación Científica y Tecnológica, IPICYT, División de Ciencias Ambientales, San Luis Potosí, Mexico.
| | - Francisco J Cervantes
- Instituto Potosino de Investigación Científica y Tecnológica, IPICYT, División de Ciencias Ambientales, San Luis Potosí, Mexico.
| |
Collapse
|
12
|
Wong HL, Visscher PT, White RA, Smith DL, Patterson MM, Burns BP. Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes. Sci Rep 2017; 7:46160. [PMID: 28397816 PMCID: PMC5387419 DOI: 10.1038/srep46160] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/09/2017] [Indexed: 01/07/2023] Open
Abstract
The role of archaea in microbial mats is poorly understood. Delineating the spatial distribution of archaea with mat depth will enable resolution of putative niches in these systems. In the present study, high throughput amplicon sequencing was undertaken in conjunction with analysis of key biogeochemical properties of two mats (smooth and pustular) from Shark Bay, Australia. One-way analysis of similarity tests indicated the archaeal community structures of smooth and pustular mats were significantly different (global R = 1, p = 0.1%). Smooth mats possessed higher archaeal diversity, dominated by Parvarchaeota. The methanogenic community in smooth mats was dominated by hydrogenotrophic Methanomicrobiales, as well as methylotrophic Methanosarcinales, Methanococcales, Methanobacteriales and Methanomassiliicoccaceae. Pustular mats were enriched with Halobacteria and Parvarchaeota. Key metabolisms (bacterial and archaeal) were measured, and the rates of oxygen production/consumption and sulfate reduction were up to four times higher in smooth than in pustular mats. Methane production peaked in the oxic layers and was up to seven-fold higher in smooth than pustular mats. The finding of an abundance of anaerobic methanogens enriched at the surface where oxygen levels were highest, coupled with peak methane production in the oxic zone, suggests putative surface anoxic niches in these microbial mats.
Collapse
Affiliation(s)
- Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| | - Pieter T Visscher
- Department of Marine Sciences, University of Connecticut, USA.,Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| | - Richard Allen White
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Daniela-Lee Smith
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | | | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| |
Collapse
|
13
|
Wu WL, Lai SJ, Yang JT, Chern J, Liang SY, Chou CC, Kuo CH, Lai MC, Wu SH. Phosphoproteomic analysis of Methanohalophilus portucalensis FDF1(T) identified the role of protein phosphorylation in methanogenesis and osmoregulation. Sci Rep 2016; 6:29013. [PMID: 27357474 PMCID: PMC4928046 DOI: 10.1038/srep29013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/10/2016] [Indexed: 02/02/2023] Open
Abstract
Methanogens have gained much attention for their metabolic product, methane, which could be an energy substitute but also contributes to the greenhouse effect. One factor that controls methane emission, reversible protein phosphorylation, is a crucial signaling switch, and phosphoproteomics has become a powerful tool for large-scale surveying. Here, we conducted the first phosphorylation-mediated regulation study in halophilic Methanohalophilus portucalensis FDF1(T), a model strain for studying stress response mechanisms in osmoadaptation. A shotgun approach and MS-based analysis identified 149 unique phosphoproteins. Among them, 26% participated in methanogenesis and osmolytes biosynthesis pathways. Of note, we uncovered that protein phosphorylation might be a crucial factor to modulate the pyrrolysine (Pyl) incorporation and Pyl-mediated methylotrophic methanogenesis. Furthermore, heterologous expression of glycine sarcosine N-methyltransferase (GSMT) mutant derivatives in the osmosensitive Escherichia coli MKH13 revealed that the nonphosphorylated T68A mutant resulted in increased salt tolerance. In contrast, mimic phosphorylated mutant T68D proved defective in both enzymatic activity and salinity tolerance for growth. Our study provides new insights into phosphorylation modification as a crucial role of both methanogenesis and osmoadaptation in methanoarchaea, promoting biogas production or reducing future methane emission in response to global warming and climate change.
Collapse
Affiliation(s)
- Wan-Ling Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Jung Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jhih-Tian Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Ph.D program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Jeffy Chern
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Suh-Yuen Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Core Facilities for Protein Structural Analysis, Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Core Facilities for Protein Structural Analysis, Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Mei-Chin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
14
|
A Three-Component Microbial Consortium from Deep-Sea Salt-Saturated Anoxic Lake Thetis Links Anaerobic Glycine Betaine Degradation with Methanogenesis. Microorganisms 2015; 3:500-17. [PMID: 27682102 PMCID: PMC5023251 DOI: 10.3390/microorganisms3030500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/27/2015] [Accepted: 09/01/2015] [Indexed: 11/17/2022] Open
Abstract
Microbial communities inhabiting the deep-sea salt-saturated anoxic lakes of the Eastern Mediterranean operate under harsh physical-chemical conditions that are incompatible with the lifestyle of common marine microorganisms. Here, we investigated a stable three-component microbial consortium obtained from the brine of the recently discovered deep-sea salt-saturated Lake Thetis. The trophic network of this consortium, established at salinities up to 240, relies on fermentative decomposition of common osmoprotectant glycine betaine (GB). Similarly to known extreme halophilic anaerobic GB-degrading enrichments, the initial step of GB degradation starts with its reductive cleavage to trimethylamine and acetate, carried out by the fermenting member of the Thetis enrichment, Halobacteroides lacunaris TB21. In contrast to acetate, which cannot be easily oxidized in salt-saturated anoxic environments, trimethylamine represents an advantageous C₁-substrate for methylotrophic methanogenic member of the Thetis enrichment, Methanohalophilus sp. TA21. This second member of the consortium likely produces hydrogen via methylotrophic modification of reductive acetyl-CoA pathway because the initial anaerobic GB cleavage reaction requires the consumption of reducing equivalents. Ecophysiological role of the third member of the Thetis consortium, Halanaerobium sp. TB24, which lacks the capability of either GB or trimethylamine degradation, remains yet to be elucidated. As it is true for cultivated members of family Halanaerobiaceae, the isolate TB24 can obtain energy primarily by fermenting simple sugars and producing hydrogen as one of the end products. Hence, by consuming of TB21 and TA21 metabolites, Halanaerobium sp. TB24 can be an additional provider of reducing equivalents required for reductive degradation of GB. Description of the Thetis GB-degrading consortium indicated that anaerobic degradation of osmoregulatory molecules may play important role in the overall turnover of organic carbon in anoxic hypersaline biotopes.
Collapse
|
15
|
Baranov PV, Atkins JF, Yordanova MM. Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning. Nat Rev Genet 2015; 16:517-29. [PMID: 26260261 DOI: 10.1038/nrg3963] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The non-universality of the genetic code is now widely appreciated. Codes differ between organisms, and certain genes are known to alter the decoding rules in a site-specific manner. Recently discovered examples of decoding plasticity are particularly spectacular. These examples include organisms and organelles with disruptions of triplet continuity during the translation of many genes, viruses that alter the entire genetic code of their hosts and organisms that adjust their genetic code in response to changing environments. In this Review, we outline various modes of alternative genetic decoding and expand existing terminology to accommodate recently discovered manifestations of this seemingly sophisticated phenomenon.
Collapse
Affiliation(s)
- Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Ireland
| | - John F Atkins
- 1] School of Biochemistry and Cell Biology, University College Cork, Ireland. [2] Department of Human Genetics, University of Utah, 15 N 2030 E Rm. 7410, Salt Lake City, Utah 84112-5330, USA
| | | |
Collapse
|
16
|
García-Maldonado JQ, Bebout BM, Everroad RC, López-Cortés A. Evidence of novel phylogenetic lineages of methanogenic archaea from hypersaline microbial mats. MICROBIAL ECOLOGY 2015; 69:106-117. [PMID: 25108574 DOI: 10.1007/s00248-014-0473-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Methanogenesis in hypersaline and high-sulfate environments is typically dominated by methylotrophic methanogens because sulfate reduction is thermodynamically favored over hydrogenotrophic methanogenesis in these environments. We characterized the community composition of methanogenic archaea in both unmanipulated and incubated microbial mats from different hypersaline environments in Baja California Sur, Mexico. Clone libraries of methyl coenzyme-M reductase (mcrA) sequences and DGGE band patterns of 16S rRNA and mcrA sequences showed that the methanogen community in these microbial mats is dominated by methylotrophic methanogens of the genus Methanohalophilus. However, phylogenetic analyses of mcrA sequences from these mats also revealed two new lineages corresponding to putative hydrogenotrophic methanogens related with the strictly hydrogenotrophic order Methanomicrobiales. Stimulated methane production under decreased salinity and sulfate concentrations also suggested the presence of hydrogenotrophic methanogens in these samples. The relative abundance of mcrA gene and transcripts, estimated by SYBR green I qPCR assays, suggested the activity of different phylogenetic groups of methanogens, including the two novel clusters, in unmanipulated samples of hypersaline microbial mats. Using geochemical and molecular approaches, we show that substrate limitation and values of salinity and sulfate higher than 3 % and 25 mM (respectively) are potential environmental constraints for methanogenesis in these environments. Microcosm experiments with modifications of salinity and sulfate concentrations and TMA addition showed that upper salt and sulfate concentrations for occurrence of methylotrophic methanogenesis were 28 % and 263 mM, respectively. This study provides phylogenetic information about uncultivated and undescribed methanogenic archaea from hypersaline environments.
Collapse
Affiliation(s)
- José Q García-Maldonado
- Laboratorio de Geomicrobiología y Biotecnología, Centro de Investigaciones Biológicas del Noroeste, La Paz, BCS, Mexico
| | | | | | | |
Collapse
|
17
|
Trimethylamine and Organic Matter Additions Reverse Substrate Limitation Effects on the δ13C Values of Methane Produced in Hypersaline Microbial Mats. Appl Environ Microbiol 2014; 80:7316-23. [PMID: 25239903 DOI: 10.1128/aem.02641-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/12/2014] [Indexed: 11/20/2022] Open
Abstract
Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of noncompetitive substrates, such as the methylamines, dimethylsulfide and methanol. Stable isotope measurements of the produced methane have also suggested that the methanogens are operating under conditions of substrate limitation. Here, substrate limitation in gypsum-hosted endoevaporite and soft-mat hypersaline environments was investigated by the addition of trimethylamine, a noncompetitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ(13)C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ(13)C values of the methane produced in the amended vials were statistically lower (by 10 to 71‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more (13)C-depleted methane. Trimethylamine-amended samples produced lower methane δ(13)C values than the mat-amended samples. This difference in the δ(13)C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. It is hypothesized that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis.
Collapse
|
18
|
Watkins AJ, Roussel EG, Parkes RJ, Sass H. Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.). Appl Environ Microbiol 2014; 80:289-93. [PMID: 24162571 PMCID: PMC3911008 DOI: 10.1128/aem.03076-13] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/18/2013] [Indexed: 11/20/2022] Open
Abstract
Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii, and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of substrate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol). However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trimethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners.
Collapse
Affiliation(s)
- Andrew J Watkins
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
19
|
Yakimov MM, La Cono V, Slepak VZ, La Spada G, Arcadi E, Messina E, Borghini M, Monticelli LS, Rojo D, Barbas C, Golyshina OV, Ferrer M, Golyshin PN, Giuliano L. Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation. Sci Rep 2013; 3:3554. [PMID: 24352146 PMCID: PMC3867751 DOI: 10.1038/srep03554] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 12/03/2013] [Indexed: 11/25/2022] Open
Abstract
Deep-sea hypersaline anoxic lakes (DHALs) of the Eastern Mediterranean represent some of the most hostile environments on our planet. We investigated microbial life in the recently discovered Lake Medee, the largest DHAL found to-date. Medee has two unique features: a complex geobiochemical stratification and an absence of chemolithoautotrophic Epsilonproteobacteria, which usually play the primary role in dark bicarbonate assimilation in DHALs interfaces. Presumably because of these features, Medee is less productive and exhibits reduced diversity of autochthonous prokaryotes in its interior. Indeed, the brine community almost exclusively consists of the members of euryarchaeal MSBL1 and bacterial KB1 candidate divisions. Our experiments utilizing cultivation and [14C]-assimilation, showed that these organisms at least partially rely on reductive cleavage of osmoprotectant glycine betaine and are engaged in trophic cooperation. These findings provide novel insights into how prokaryotic communities can adapt to salt-saturated conditions and sustain active metabolism at the thermodynamic edge of life.
Collapse
Affiliation(s)
- Michail M Yakimov
- 1] Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy [2]
| | - Violetta La Cono
- 1] Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy [2]
| | - Vladlen Z Slepak
- 1] Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136 [2]
| | - Gina La Spada
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - Erika Arcadi
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - Enzo Messina
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - Mireno Borghini
- Institute for Marine Sciences, ISMAR-CNR, Forte S.Teresa, 19136 Pozzuolo di Lerici, La Spezia, Italy
| | - Luis S Monticelli
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - David Rojo
- Center for Metabolomics and Bioanalysis, University CEU San Pablo, Boadilla del Monte, 28668 Madrid, Spain
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis, University CEU San Pablo, Boadilla del Monte, 28668 Madrid, Spain
| | - Olga V Golyshina
- School of Biological Sciences, Bangor University, ECW Bldg Deiniol Rd, Bangor, Gwynedd LL57 2UW, UK
| | - Manuel Ferrer
- 1] Institute of Catalysis, CSIC, Marie Curie 2, 28049 Madrid, Spain [2]
| | - Peter N Golyshin
- 1] School of Biological Sciences, Bangor University, ECW Bldg Deiniol Rd, Bangor, Gwynedd LL57 2UW, UK [2]
| | - Laura Giuliano
- 1] Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy [2] Mediterranean Science Commission (CIESM), 16 bd de Suisse, MC 98000, Monaco
| |
Collapse
|
20
|
Wargo MJ. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:2112-20. [PMID: 23354714 PMCID: PMC3623244 DOI: 10.1128/aem.03565-12] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most sequenced bacteria possess mechanisms to import choline and glycine betaine (GB) into the cytoplasm. The primary role of choline in bacteria appears to be as the precursor to GB, and GB is thought to primarily act as a potent osmoprotectant. Choline and GB may play accessory roles in shaping microbial communities, based on their limited availability and ability to enhance survival under stress conditions. Choline and GB enrichment near eukaryotes suggests a role in the chemical relationships between these two kingdoms, and some of these interactions have been experimentally demonstrated. While many bacteria can convert choline to GB for osmoprotection, a variety of soil- and water-dwelling bacteria have catabolic pathways for the multistep conversion of choline, via GB, to glycine and can thereby use choline and GB as sole sources of carbon and nitrogen. In these choline catabolizers, the GB intermediate represents a metabolic decision point to determine whether GB is catabolized or stored as an osmo- and stress protectant. This minireview focuses on this decision point in Pseudomonas aeruginosa, which aerobically catabolizes choline and can use GB as an osmoprotectant and a nutrient source. P. aeruginosa is an experimentally tractable and ecologically relevant model to study the regulatory pathways controlling choline and GB homeostasis in choline-catabolizing bacteria. The study of P. aeruginosa associations with eukaryotes and other bacteria also makes this a powerful model to study the impact of choline and GB, and their associated regulatory and catabolic pathways, on host-microbe and microbe-microbe relationships.
Collapse
Affiliation(s)
- Matthew J Wargo
- Department of Microbiology and Molecular Genetics and The Vermont Lung Center, University of Vermont College of Medicine, Burlington, Vermont, USA.
| |
Collapse
|
21
|
Abstract
Despite the fact that the genetic code is known to vary between organisms in rare cases, it is believed that in the lifetime of a single cell the code is stable. We found Acetohalobium arabaticum cells grown on pyruvate genetically encode 20 amino acids, but in the presence of trimethylamine (TMA), A. arabaticum dynamically expands its genetic code to 21 amino acids including pyrrolysine (Pyl). A. arabaticum is the only known organism that modulates the size of its genetic code in response to its environment and energy source. The gene cassette pylTSBCD, required to biosynthesize and genetically encode UAG codons as Pyl, is present in the genomes of 24 anaerobic archaea and bacteria. Unlike archaeal Pyl-decoding organisms that constitutively encode Pyl, we observed that A. arabaticum controls Pyl encoding by down-regulating transcription of the entire Pyl operon under growth conditions lacking TMA, to the point where no detectable Pyl-tRNA(Pyl) is made in vivo. Pyl-decoding archaea adapted to an expanded genetic code by minimizing TAG codon frequency to typically ~5% of ORFs, whereas Pyl-decoding bacteria (~20% of ORFs contain in-frame TAGs) regulate Pyl-tRNA(Pyl) formation and translation of UAG by transcriptional deactivation of genes in the Pyl operon. We further demonstrate that Pyl encoding occurs in a bacterium that naturally encodes the Pyl operon, and identified Pyl residues by mass spectrometry in A. arabaticum proteins including two methylamine methyltransferases.
Collapse
|
22
|
Nolla-Ardèvol V, Strous M, Sorokin DY, Merkel AY, Tegetmeyer HE. Activity and diversity of haloalkaliphilic methanogens in Central Asian soda lakes. J Biotechnol 2012; 161:167-73. [DOI: 10.1016/j.jbiotec.2012.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 01/04/2023]
|
23
|
Identification and regulation of novel compatible solutes from hypersaline stromatolite-associated cyanobacteria. Arch Microbiol 2010; 192:1031-8. [DOI: 10.1007/s00203-010-0634-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/20/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
|
24
|
Biofilm growth kinetics of a monomethylamine producing Alphaproteobacteria strain isolated from an anaerobic reactor. Anaerobe 2010; 16:19-26. [DOI: 10.1016/j.anaerobe.2009.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 04/23/2009] [Accepted: 04/29/2009] [Indexed: 11/17/2022]
|
25
|
Visscher PT, Dupraz C, Braissant O, Gallagher KL, Glunk C, Casillas L, Reed RES. Biogeochemistry of Carbon Cycling in Hypersaline Mats: Linking the Present to the Past through Biosignatures. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-3799-2_23] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Bühring SI, Smittenberg RH, Sachse D, Lipp JS, Golubic S, Sachs JP, Hinrichs KU, Summons RE. A hypersaline microbial mat from the Pacific Atoll Kiritimati: insights into composition and carbon fixation using biomarker analyses and a 13C-labeling approach. GEOBIOLOGY 2009; 7:308-323. [PMID: 19476506 DOI: 10.1111/j.1472-4669.2009.00198.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Modern microbial mats are widely recognized as useful analogs for the study of biogeochemical processes relevant to paleoenvironmental reconstruction in the Precambrian. We combined microscopic observations and investigations of biomarker composition to investigate community structure and function in the upper layers of a thick phototrophic microbial mat system from a hypersaline lake on Kiritimati (Christmas Island) in the Northern Line Islands, Republic of Kiribati. In particular, an exploratory incubation experiment with (13)C-labeled bicarbonate was conducted to pinpoint biomarkers from organisms actively fixing carbon. A high relative abundance of the cyanobacterial taxa Aphanocapsa and Aphanothece was revealed by microscopic observation, and cyanobacterial fatty acids and hydrocarbons showed (13)C-uptake in the labeling experiment. Microscopic observations also revealed purple sulfur bacteria (PSB) in the deeper layers. A cyclic C(19:0) fatty acid and farnesol were attributed to this group that was also actively fixing carbon. Background isotopic values indicate Calvin-Benson cycle-based autotrophy for cycC(19:0) and farnesol-producing PSBs. Biomarkers from sulfate-reducing bacteria (SRB) in the top layer of the mat and their (13)C-uptake patterns indicated a close coupling between SRBs and cyanobacteria. Archaeol, possibly from methanogens, was detected in all layers and was especially abundant near the surface where it contained substantial amounts of (13)C-label. Intact glycosidic tetraether lipids detected in the deepest layer indicated other archaea. Large amounts of ornithine and betaine bearing intact polar lipids could be an indicator of a phosphate-limited ecosystem, where organisms that are able to substitute these for phospholipids may have a competitive advantage.
Collapse
Affiliation(s)
- S I Bühring
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci U S A 2009; 106:9151-6. [PMID: 19470485 DOI: 10.1073/pnas.0811984106] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Urania basin in the deep Mediterranean Sea houses a lake that is >100 m deep, devoid of oxygen, 6 times more saline than seawater, and has very high levels of methane and particularly sulfide (up to 16 mM), making it among the most sulfidic water bodies on Earth. Along the depth profile there are 2 chemoclines, a steep one with the overlying oxic seawater, and another between anoxic brines of different density, where gradients of salinity, electron donors and acceptors occur. To identify and differentiate the microbes and processes contributing to the turnover of organic matter and sulfide along the water column, these chemoclines were sampled at a high resolution. Bacterial cell numbers increased up to a hundredfold in the chemoclines as a consequence of elevated nutrient availability, with higher numbers in the upper interface where redox gradient was steeper. Bacterial and archaeal communities, analyzed by DNA fingerprinting, 16S rRNA gene libraries, activity measurements, and cultivation, were highly stratified and metabolically more active along the chemoclines compared with seawater or the uniformly hypersaline brines. Detailed analysis of 16S rRNA gene sequences revealed that in both chemoclines delta- and epsilon-Proteobacteria, predominantly sulfate reducers and sulfur oxidizers, respectively, were the dominant bacteria. In the deepest layers of the basin MSBL1, putatively responsible for methanogenesis, dominated among archaea. The data suggest that the complex microbial community is adapted to the basin's extreme chemistry, and the elevated biomass is driven largely by sulfur cycling and methanogenesis.
Collapse
|
28
|
Potter EG, Bebout BM, Kelley CA. Isotopic composition of methane and inferred methanogenic substrates along a salinity gradient in a hypersaline microbial mat system. ASTROBIOLOGY 2009; 9:383-390. [PMID: 19400733 DOI: 10.1089/ast.2008.0260] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC delta(13)C values ranged from -6.7 to -13.5 per thousand, and DIC delta(13)C values ranged from -1.4 to -9.6 per thousand. These values were similar to previously reported values. The delta(13)C values of methane ranged from -49.6 to -74.1 per thousand; the methane most enriched in (13)C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.
Collapse
Affiliation(s)
- Elyn G Potter
- Department of Geological Sciences, University of Missouri , Columbia, MO 65211, USA
| | | | | |
Collapse
|
29
|
Orphan VJ, Jahnke LL, Embaye T, Turk KA, Pernthaler A, Summons RE, DES Marais DJ. Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California. GEOBIOLOGY 2008; 6:376-393. [PMID: 18564187 DOI: 10.1111/j.1472-4669.2008.00166.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Well-developed hypersaline cyanobacterial mats from Guerrero Negro, Baja California Sur, sustain active methanogenesis in the presence of high rates of sulfate reduction. Very little is known about the diversity and distribution of the microorganisms responsible for methane production in these unique ecosystems. Applying a combination of 16S rRNA and metabolic gene surveys, fluorescence in situ hybridization, and lipid biomarker analysis, we characterized the diversity and spatial relationships of methanogens and other archaea in the mat incubation experiments stimulated with methanogenic substrates. The phylogenetic and chemotaxonomic diversity established within mat microcosms was compared with the archaeal diversity and lipid biomarker profiles associated with different depth horizons in the in situ mat. Both archaeal 16S rRNA and methyl coenzyme M reductase gene (mcrA) analysis revealed an enrichment of diverse methanogens belonging to the Methanosarcinales in response to trimethylamine addition. Corresponding with DNA-based detection methods, an increase in lipid biomarkers commonly synthesized by methanogenic archaea was observed, including archaeol and sn-2-hydroxyarchaeol polar lipids, and the free, irregular acyclic isoprenoids, 2,6,10,15,19-pentamethylicosene (PMI) and 2,6,11,15-tetramethylhexadecane (crocetane). Hydrogen enrichment of a novel putative archaeal polar C(30) isoprenoid, a dehydrosqualane, was also documented. Both DNA and lipid biomarker evidence indicate a shift in the dominant methanogenic genera corresponding with depth in the mat. Specifically, incubations of surface layers near the photic zone predominantly supported Methanolobus spp. and PMI, while Methanococcoides and hydroxyarchaeol were preferentially recovered from microcosms of unconsolidated sediments underlying the mat. Together, this work supports the existence of small but robust methylotrophic methanogen assemblages that are vertically stratified within the benthic hypersaline mat and can be distinguished by both their DNA signatures and unique isoprenoid biomarkers.
Collapse
Affiliation(s)
- V J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Buckley DH, Baumgartner LK, Visscher PT. Vertical distribution of methane metabolism in microbial mats of the Great Sippewissett Salt Marsh. Environ Microbiol 2008; 10:967-77. [DOI: 10.1111/j.1462-2920.2007.01517.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Smith JM, Green SJ, Kelley CA, Prufert-Bebout L, Bebout BM. Shifts in methanogen community structure and function associated with long-term manipulation of sulfate and salinity in a hypersaline microbial mat. Environ Microbiol 2007; 10:386-94. [PMID: 18177370 DOI: 10.1111/j.1462-2920.2007.01459.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Methanogenesis was characterized in hypersaline microbial mats from Guerrero Negro, Baja California Sur, Mexico both in situ and after long-term manipulation in a greenhouse environment. Substrate addition experiments indicate methanogenesis to occur primarily through the catabolic demethylation of non-competitive substrates, under field conditions. However, evidence for the coexistence of other metabolic guilds of methanogens was obtained during a previous manipulation of sulfate concentrations. To fully characterize methanogenesis in these mats, in the absence of competition for reducing equivalents with sulfate-reducing microorganisms, we maintained microbial mats for longer than 1 year under conditions of lowered sulfate and salinity levels. The goal of this study was to assess whether observed differences in methane production during sulfate and salinity manipulation were accompanied by shifts in the composition of methanogen communities. Culture-independent techniques targeting methyl coenzyme M reductase genes (mcrA) were used to assess the dynamics of methanogen assemblages. Clone libraries from mats sampled in situ or maintained at field-like conditions in the greenhouse were exclusively composed of sequences related to methylotrophic members of the Methanosarcinales. Increases in pore water methane concentrations under conditions of low sulfate correlated with an observed increase in the abundance of putatively hydrogenotrophic mcrA, related to Methanomicrobiales. Geochemical and molecular data provide evidence of a significant shift in the metabolic pathway of methanogenesis from a methylotroph-dominated system in high-sulfate environments to a mixed community of methylotrophic and hydrogenotrophic methanogens under low sulfate conditions.
Collapse
Affiliation(s)
- Jason M Smith
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| | | | | | | | | |
Collapse
|
32
|
Hirschler-Réa A, Matheron R, Riffaud C, Mouné S, Eatock C, Herbert RA, Willison JC, Caumette P. Isolation and characterization of spirilloid purple phototrophic bacteria forming red layers in microbial mats of Mediterranean salterns: description of Halorhodospira neutriphila sp. nov. and emendation of the genus Halorhodospira. Int J Syst Evol Microbiol 2003; 53:153-163. [PMID: 12656167 DOI: 10.1099/ijs.0.02226-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial mats developing in the hypersaline lagoons of a commercial saltern in the Salin-de-Giraud (Rhône delta) were found to contain a red layer fully dominated by spirilloid phototrophic purple bacteria underlying a cyanobacterial layer. From this layer four strains of spirilloid purple bacteria were isolated, all of which were extremely halophilic. All strains were isolated by using the same medium under halophilic photolithoheterotrophic conditions. One of them, strain SG 3105 was a purple non-sulfur bacterial strain closely related to Rhodovibrio sodomensis with a 16S rDNA sequence similarity of 98.8%. The three other isolated strains, SG 3301T, SG 3302 and SG 3304, were purple sulfur bacteria and were found to be very similar. The cells were motile by a polar tuft of flagella. Photosynthetic intracytoplasmic membranes of the lamellar stack type contained BChl a and spirilloxanthin as the major carotenoid. Phototrophic growth with sulfide as electron donor was poor; globules of elemental sulfur were present outside the cells. In the presence of sulfide and CO2 good growth occurred with organic substrates. Optimum growth occurred in the presence of 9-12% (w/v) NaCl at neutral pH (optimal pH 6.8-7) and at 30-35 degrees C. The DNA base composition of strains SG 3301T and SG 3304 were 74.5 and 74.1 mol% G + C, respectively. According to the 16S rDNA sequences, strains SG 3301T and SG 3304 belonged to the genus Halorhodospira, but they were sufficiently separated morphologically, physiologically and genetically from other recognized Halorhodospira species to be described as a new species of the genus. They are, therefore, described as Halorhodospira neutriphila sp. nov. with strain SG 3301T as the type strain (=DSM 15116T).
Collapse
Affiliation(s)
- Agnès Hirschler-Réa
- Laboratoire de Microbiologie, IMEP, Faculté des Sciences et Techniques de Saint Jérôme, 13397 Marseille cedex 20, France
| | - Robert Matheron
- Laboratoire de Microbiologie, IMEP, Faculté des Sciences et Techniques de Saint Jérôme, 13397 Marseille cedex 20, France
| | - Christine Riffaud
- Laboratoire de Microbiologie, IMEP, Faculté des Sciences et Techniques de Saint Jérôme, 13397 Marseille cedex 20, France
| | - Sophie Mouné
- Laboratoire d'Ecologie Moléculaire-Microbiologie, IBEAS, BP 1155, Université de Pau, F 64013 Pau cedex, France
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, DBMS/BBSI, CEA Grenoble, 38054 Grenoble, France
| | - Claire Eatock
- Division of Environmental and Applied Biology, Biological Sciences Institute, University of Dundee, Dundee DD1 4HN, UK
| | - Rodney A Herbert
- Division of Environmental and Applied Biology, Biological Sciences Institute, University of Dundee, Dundee DD1 4HN, UK
| | - John C Willison
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, DBMS/BBSI, CEA Grenoble, 38054 Grenoble, France
| | - Pierre Caumette
- Laboratoire d'Ecologie Moléculaire-Microbiologie, IBEAS, BP 1155, Université de Pau, F 64013 Pau cedex, France
| |
Collapse
|
33
|
Frenzel P, Bosse U. Methyl fluoride, an inhibitor of methane oxidation and methane production. FEMS Microbiol Ecol 1996. [DOI: 10.1111/j.1574-6941.1996.tb00330.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Diaz MR, Taylor BF. Metabolism of methylated osmolytes by aerobic bacteria from Mono Lake, a moderately hypersaline, alkaline environment. FEMS Microbiol Ecol 1996. [DOI: 10.1111/j.1574-6941.1996.tb00216.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
35
|
Lowe SE, Jain MK, Zeikus JG. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol Rev 1993; 57:451-509. [PMID: 8336675 PMCID: PMC372919 DOI: 10.1128/mr.57.2.451-509.1993] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Anaerobic bacteria include diverse species that can grow at environmental extremes of temperature, pH, salinity, substrate toxicity, or available free energy. The first evolved archaebacterial and eubacterial species appear to have been anaerobes adapted to high temperatures. Thermoanaerobes and their stable enzymes have served as model systems for basic and applied studies of microbial cellulose and starch degradation, methanogenesis, ethanologenesis, acetogenesis, autotrophic CO2 fixation, saccharidases, hydrogenases, and alcohol dehydrogenases. Anaerobes, unlike aerobes, appear to have evolved more energy-conserving mechanisms for physiological adaptation to environmental stresses such as novel enzyme activities and stabilities and novel membrane lipid compositions and functions. Anaerobic syntrophs do not have similar aerobic bacterial counterparts. The metabolic end products of syntrophs are potent thermodynamic inhibitors of energy conservation mechanisms, and they require coordinated consumption by a second partner organism for species growth. Anaerobes adapted to environmental stresses and their enzymes have biotechnological applications in organic waste treatment systems and chemical and fuel production systems based on biomass-derived substrates or syngas. These kinds of anaerobes have only recently been examined by biologists, and considerably more study is required before they are fully appreciated by science and technology.
Collapse
Affiliation(s)
- S E Lowe
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
36
|
Pease TK, Van Vleet ES, Barre JS. Diphytanyl glycerol ether distributions in sediments of the Orca Basin. GEOCHIMICA ET COSMOCHIMICA ACTA 1992; 56:3469-3479. [PMID: 11540108 DOI: 10.1016/0016-7037(92)90391-u] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Archaebacterially produced diphytanyl glycerol ether (DPGE) was examined in core sediments from the Orca Basin, an anoxic hypersaline basin in the northwestern Gulf of Mexico, to observe its spatial variability and potential origin. A differential extraction protocol was employed to quantify the isopranyl glycerol ethers associated with unbound, intermediate-bound, and kerogen-bound lipid fractions. Archaebacterial lipids were evident at all depths for the unbound and intermediate-bound fractions. Concentrations of DPGE ranged from 0.51 to 2.91 micrograms/g dry sediment at the surface and showed secondary maxima deeper in basin sediments. Intermediate-bound DPGE concentrations exhibited an inverse relationship to unbound DPGE concentrations. Kerogen-bound DPGE concentrations were normally below detection limits. Earlier studies describing the general homogeneity of lipid components within the overlying brine and at the brine/seawater interface suggest that the large-scale sedimentary DPGE variations observed in this study result from spatial and temporal variations in in situ production by methanogenic or extremely halophilic archaebacteria.
Collapse
Affiliation(s)
- T K Pease
- Department of Marine Science, University of South Florida, St. Petersburg 33701, USA
| | | | | |
Collapse
|
37
|
Enrichment and characterization of a methanogenic bacterium from the oxic upper layer of the ocean. Curr Microbiol 1991. [DOI: 10.1007/bf02092256] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
|
39
|
|
40
|
Oren A. Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments. Antonie Van Leeuwenhoek 1990; 58:291-8. [PMID: 2082817 DOI: 10.1007/bf00399342] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycine betaine is accumulated as a compatible solute in many photosynthetic and non-photosynthetic bacteria--the last being unable to synthesize the compound--and thus large pools of betaine can be expected to be present in hypersaline environments. A variety of aerobic and anaerobic microorganisms degrade betaine to among other products trimethylamine and methylamine, in a number of different pathways. Curiously, very few of these betaine breakdown processes have yet been identified in hypersaline environments. Trimethylamine can also be formed by bacterial reduction of trimethylamine N-oxide (also by extremely halophilic archaeobacteria). Degradation of trimethylamine in hypersaline environments by halophilic methanogenic bacteria is relatively well documented, and leads to the formation of methane, carbon dioxide and ammonia.
Collapse
Affiliation(s)
- A Oren
- Division of Microbial and Molecular Ecology, Hebrew University of Jerusalem, Israel
| |
Collapse
|
41
|
Evidence that Escherichia coli accumulates glycine betaine from marine sediments. Appl Environ Microbiol 1990; 56:551-4. [PMID: 2407188 PMCID: PMC183376 DOI: 10.1128/aem.56.2.551-554.1990] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli grew faster in autoclaved marine sediment than in seawater alone. When E. coli was cultivated in sediment diluted with minimal medium M63 at 0.6 M NaCl, supplemented or not supplemented with glucose or with seawater, the osmoprotector glycine betaine was accumulated in the cells. The best growth occurred on glucose. Accumulation of glycine betaine was not observed with E. coli was grown in sterile seawater alone. The fact that E. coli grew better in the sediments than in seawater is attributed somewhat to the high content of organic matter in the sediment but mainly to the accumulation of glycine betaine. Thus, osmoprotection should be considered to be an additional factor in bacterial survival in estuarine sediments.
Collapse
|
42
|
|
43
|
Giani D, Jannsen D, Schostak V, Krumbein WE. Methanogenesis in a saltern in the Bretagne (France). FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03688.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|