1
|
Zhang Y, Lynd LR. Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures. Anal Chem 2003; 75:219-27. [PMID: 12553755 DOI: 10.1021/ac020271n] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A methodology was developed to determine the mass concentrations of cellulase and cells applicable to studies of microbial cellulose utilization in systems for which a substantial fraction of cellulase is cell-associated. Antibodies raised against a 14-amino acid synthetic peptide with sequence taken from the cohesin domain of the scaffoldin protein of Clostridium thermocellum ATCC 27405 were used to develop an indirect ELISA protocol. Six cellulase calibration standards were prepared using affinity digestion (Morag, E.; Bayer, E. A.; Lamed, R. Enzyme Microb. Technol. 1992, 14, 289-292.). These included supernatant and pellet samples from an Avicelgrown culture with fractional cellulose conversion (X) = 0.98, as well as supernatant, pellet, cell-associated, and cellulose-associated samples from an Avicel-grown culture with X = 0.8. All six standards displayed a very similar absorbance versus concentration relationship when subjected to ELISA, essentially identical SDS-PAGE banding patterns, and similar cellulase specific activity in relation to both other purified cellulase preparations and crude samples. Coefficients of variation for cellulase concentration measurements were 5.2% for supernatant samples and 5.9% for pellet samples. The ELISA method was applied to batch cultures of C. thermocellum grown on Avicel. Cell concentration was calculated from the pellet protein concentration and the cell protein fraction of a cellobiose-grown control. Two alternative methods appeared to overpredict the cell concentration and were not capable of quantifying cells as distinct from cellulase. Cellulase protein production by Avicel-grown batch cultures represented approximately 20% of cell mass exclusive of cellulase. It is concluded that the reported protocols establish a reasonable methodological basis for quantitative determination of the mass concentration of cellulase protein produced by C. thermocellum and for calculation of cell mass concentration as distinct from cellulase concentration.
Collapse
Affiliation(s)
- Yiheng Zhang
- Thayer School of Engineering and Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
2
|
Walia S, Shi L, Khan AA, Joshi B, Chaudry GR. Sequence analysis and molecular characterization of a nitrocatechol dioxygenase gene from Pseudomonas putida. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2002; 37:379-391. [PMID: 12081029 DOI: 10.1081/pfc-120004478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A Pseudomonas putida capable of degrading polychlorinated biphenyl was also found to transform 4-nitrocatechol to 3-nitro-2-hydroxy-6-oxohexa-2,4-dienoic acid (NHODA). Crude cell extract of this bacterium exhibited an enzyme (nitrocatechol dioxygenase, Ndo) activity catalyzing this transformation. The gene encoding Ndo was cloned in E. coli. The cloned gene (ndo) expressed in E. coli had enzyme activity that degraded not only 4-nitrocatechol but also 4-chlorocatechol, 4-methylcatechol, 2,3-dihydroxybiphenyl, and 4'-chloro-2,3-dihydroxybiphenyl. Nucleotide sequence analysis of the cloned ndo exhibited an open reading frame of 939 base pairs. This sequence can encode a 313 amino acids protein of approximately molecular weight of 35 kd, which was confirmed by in vitro transcription and translation assay and SDS-PAGE analysis. A putative ribosomal binding site (GAGGAGA) was present 7 base pairs upstream from the AUG start codon and a promotor site homologous to E. coli '-10' and '-35' regulatory region was located at '-123' and '-174' area of our clone with sequences of TTGAAG and GTGACA, respectively. The deduced amino acid sequence showed 69% homology with Cdo from Burkholderia cepacia AAI. A unique insertion of 21 amino acids was found towards the N-terminal of the Ndo. Expression of ndo in strain OU83 was repressed in presence of 3-chlorobenzoic acid as judged by the decrease in the expression of ndo specific transcript.
Collapse
Affiliation(s)
- Satish Walia
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | | | | | | | | |
Collapse
|
3
|
Khan AA, Kim E, Cerniglia CE. Molecular cloning, nucleotide sequence, and expression in Escherichia coli of a hemolytic toxin (aerolysin) gene from Aeromonas trota. Appl Environ Microbiol 1998; 64:2473-8. [PMID: 9647817 PMCID: PMC106413 DOI: 10.1128/aem.64.7.2473-2478.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/1998] [Accepted: 04/16/1998] [Indexed: 02/08/2023] Open
Abstract
Aeromonas trota AK2, which was derived from ATCC 49659 and produces the extracellular pore-forming hemolytic toxin aerolysin, was mutagenized with the transposon mini-Tn5Km1 to generate a hemolysin-deficient mutant, designated strain AK253. Southern blotting data indicated that an 8.7-kb NotI fragment of the genomic DNA of strain AK253 contained the kanamycin resistance gene of mini-Tn5Km1. The 8.7-kb NotI DNA fragment was cloned into the vector pGEM5Zf(-) by selecting for kanamycin resistance, and the resultant clone, pAK71, showed aerolysin activity in Escherichia coli JM109. The nucleotide sequence of the aerA gene, located on the 1.8-kb ApaI-EcoRI fragment, was determined to consist of 1,479 bp and to have an ATG initiation codon and a TAA termination codon. An in vitro coupled transcription-translation analysis of the 1.8-kb region suggested that the aerA gene codes for a 54-kDa protein, in agreement with nucleotide sequence data. The deduced amino acid sequence of the aerA gene product of A. trota exhibited 99% homology with the amino acid sequence of the aerA product of Aeromonas sobria AB3 and 57% homology with the amino acid sequences of the products of the aerA genes of Aeromonas salmonicida 17-2 and A. sobria 33.
Collapse
Affiliation(s)
- A A Khan
- Division of Microbiology, Food and Drug Administration, Jefferson, Arkansas 72079, USA.
| | | | | |
Collapse
|
4
|
Schmid A, Rothe B, Altenbuchner J, Ludwig W, Engesser KH. Characterization of three distinct extradiol dioxygenases involved in mineralization of dibenzofuran by Terrabacter sp. strain DPO360. J Bacteriol 1997; 179:53-62. [PMID: 8981980 PMCID: PMC178661 DOI: 10.1128/jb.179.1.53-62.1997] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The dibenzofuran-degrading bacterial strain DPO360 represents a new species of the genus Terrabacter together with the previously described dibenzofuran-mineralizing bacterial strain DPO1361 (K.-H. Engesser, V. Strubel, K. Christoglou, P. Fischer, and H. G. Rast, FEMS Microbiol. Lett. 65:205-210, 1989; V. Strubel, Ph.D. thesis, University of Stuttgart, Stuttgart, Germany, 1991; V. Strubel, H. G. Rast, W. Fietz, H.-J. Knackmuss, and K.-H. Engesser, FEMS Microbiol. Lett. 58:233-238, 1989). Two 2,3-dihydroxybiphenyl-1,2-dioxygenases (BphC1 and BphC2) and one catechol-2,3-dioxygenase (C23O) were shown to be expressed in Terrabacter sp. strain DPO360 growing with dibenzofuran as a sole source of carbon and energy. These enzymes exhibited strong sensitivity to oxygen. They were purified to apparent homogeneity as homodimers (BphC and BphC2) and as a homotetrameric catechol-2,3-dioxygenase (C23O). According to their specificity constants kcat/Km, both BphC1 and BphC2 were shown to be responsible for the cleavage of 2,2',3-trihydroxybiphenyl, the first metabolite in dibenzofuran mineralization along the angular dioxygenation pathway. With this substrate, BphC2 exhibited a considerably higher kcat/Km, value (183 microM/min) than BphC1 (29 microM/min). Catechol-2,3-dioxygenase was recognized to be not involved in the ring cleavage of 2,2',3-trihydroxybiphenyl (kcat/Km, 1 microM/min). Analysis of deduced amino acid sequence data of bphC1 revealed 36% sequence identity to nahC from Pseudomonas putida PpG7 (S. Harayama and M. Rekik, J. Biol. Chem. 264:15328-15333, 1989) and about 40% sequence identity to various bphC genes from different Pseudomonas and Rhodococcus strains. In addition, another 2,3-dihydroxybiphenyl-1,2-dioxygenase gene (bphC3) was cloned from the genome of Terrabacter sp. strain DPO360. Expression of this gene, however, could not be detected in Terrabacter sp. strain DPO360 after growth with dibenzofuran.
Collapse
Affiliation(s)
- A Schmid
- Institut für Mikrobiologie, Universität Stuttgart, Germany
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Khan AA, Wang RF, Nawaz MS, Cao WW, Cerniglia CE. Purification of 2,3-dihydroxybiphenyl 1,2-dioxygenase from Pseudomonas putida OU83 and characterization of the gene (bphC). Appl Environ Microbiol 1996; 62:1825-30. [PMID: 8633883 PMCID: PMC167959 DOI: 10.1128/aem.62.5.1825-1830.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The 2,3-dihydroxybiphenyl 1,2-dioxygenase (2,3-DBPD) of Pseudomonas putida OU83 was constitutively expressed and purified to apparent homogeneity. The apparent molecular mass of the native enzyme was 256 kDa, and the subunit molecular mass was 32 kDa. The data suggested that 2,3-DBPD was an octamer of identical subunits. The nucleotide sequence of a DNA fragment containing the bphC region was determined. The deduced protein sequence for 2,3-DBPD consisted of 292 amino acid residues, with a calculated molecular mass of 31.9 kDa, which was in agreement with data for the purified 2,3-DBPD. Nucleotide and amino acid sequence analyses of the bphC gene and its product, respectively, revealed that there was a high degree of homology between the OU83 bphC gene and the bphC genes of Pseudomonas cepacia LB400 and Pseudomonas pseudoalcaligenes KF707.
Collapse
Affiliation(s)
- A A Khan
- Microbiology Division, Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | | | | | | | | |
Collapse
|
7
|
Lal R, Lal S, Dhanaraj PS, Saxena DM. Manipulations of catabolic genes for the degradation and detoxification of xenobiotics. ADVANCES IN APPLIED MICROBIOLOGY 1995; 41:55-95. [PMID: 7572336 DOI: 10.1016/s0065-2164(08)70308-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- R Lal
- Department of Zoology, University of Delhi, India
| | | | | | | |
Collapse
|
8
|
Lee J, Kyung Sung T, Moon J, Rak Min K, Kim CK, Kim Y. Comparison of enzymatic and immunochemical properties of 2,3-dihydroxybiphenyl-1,2-dioxygenases from fourPseudomonasstrains. FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb07058.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Asturias JA, Timmis KN. Three different 2,3-dihydroxybiphenyl-1,2-dioxygenase genes in the gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J Bacteriol 1993; 175:4631-40. [PMID: 8335622 PMCID: PMC204914 DOI: 10.1128/jb.175.15.4631-4640.1993] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rhodococcus globerulus P6 (previously designated Acinetobacter sp. strain P6, Arthrobacter sp. strain M5, and Corynebacterium sp. strain MB1) is able to degrade a wide range of polychlorinated biphenyl (PCB) congeners. The genetic and biochemical analyses of the PCB catabolic pathway reported here have revealed the existence of a PCB gene cluster--bphBC1D--and two further bphC genes--bphC2 and bphC3--that encode three narrow-substrate-specificity enzymes (2,3-dihydroxybiphenyl dioxygenases) that meta cleave the first aromatic ring. None of the bphC genes show by hybridization homology to each other or to bphC genes in other bacteria, and the three bphC gene products have different kinetic parameters and sensitivities to inactivation by 3-chlorocatechol. This suggests that there exists a wide diversity in PCB meta cleavage enzymes.
Collapse
Affiliation(s)
- J A Asturias
- Department of Microbiology, National Research Center for Biotechnology, Braunschweig, Germany
| | | |
Collapse
|
10
|
Andreyeva AL, Slepenkyn AV, Starovoytov II. Increased expression of the plasmid-determined 2,3-dihydroxybiphenyl dioxygenase gene in strains of Escherichia coli, Pseudomonas putida and Pseudomonas aeruginosa. FEMS Microbiol Lett 1993; 106:211-6. [PMID: 8454186 DOI: 10.1111/j.1574-6968.1993.tb05961.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A 6.5-kb EcoRI fragment containing the gene encoding 2,3-dihydroxybiphenyl dioxygenase from the plasmid pBS312 was cloned into broad host range plasmid RSF1010 and expressed in Escherichia coli, Pseudomonas putida and Pseudomonas aeruginosa strains. The increased expression of the gene was orientation-dependent and probably due to the transcription read through from the streptomycin promoter of the vector. Subcloning experiments of the PstI fragments of pBS312 plasmid using vector pBR322 revealed that the bphC gene encoding 2,3-dihydroxybiphenyl dioxygenase is localized on the 2.1-kb fragment. In Escherichia coli JM109, transformed by the plasmid pBS314 carrying the 2.1-kb insert in orientation which allowed expression of the bphC gene from the ampicillin promoter of pBR322, the enzyme activity of 2,3-dihydroxybiphenyl dioxygenase was ten times higher than that in parental strain Pseudomonas putida SU83. The results presented show the first case of the increased expression of Pseudomonas degradative gene in Escherichia coli.
Collapse
Affiliation(s)
- A L Andreyeva
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region
| | | | | |
Collapse
|
11
|
Khan AA, Walia SK. Use of a genetically engineered Escherichia coli strain to produce 1,2-dihydroxy-4'-chlorobiphenyl. Appl Environ Microbiol 1992; 58:1388-91. [PMID: 1599259 PMCID: PMC195607 DOI: 10.1128/aem.58.4.1388-1391.1992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Genetically engineered kanamycin-resistant Escherichia coli HB101 containing the mutant chimeric plasmid pAW6194-T17 specifying biphenyl dioxygenase and dihydrodiol dehydrogenase and lacking the ability to produce active 3-phenylcatechol dioxygenase was used to produce 1,2-dihydroxy-4'-chlorobiphenyl (DHCB) from 4-chlorobiphenyl. Resting-cell suspensions of genetically engineered E. coli in mineral salts medium (pH 7.0) containing 880 microM 4-chlorobiphenyl produced 110 microM DHCB. The Km for 4-chlorobiphenyl was 3.3 mM. Biotransformation of DHCB from 4-chlorobiphenyl was maximum when cells (2.5 mg of protein per ml) were incubated with shaking (150 rpm) at pH 7.0 and 30 degrees C for 6 h. The enzymatically produced DHCB was a suitable substrate for assaying 3-phenylcatechol dioxygenase activity. Biologically produced DHCB showed UV and mass spectra similar to those of chemically synthesized DHCB. The bioconversion rate of ortho-substituted chlorobiphenyl was slower than that of the para- or meta-substituted chlorobiphenyl.
Collapse
Affiliation(s)
- A A Khan
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309-4401
| | | |
Collapse
|
12
|
Higson FK. Microbial degradation of biphenyl and its derivatives. ADVANCES IN APPLIED MICROBIOLOGY 1992; 37:135-64. [PMID: 1642156 DOI: 10.1016/s0065-2164(08)70254-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- F K Higson
- Department of Soil and Environmental Sciences, University of California, Riverside 92521
| |
Collapse
|
13
|
Khan AA, Walia SK. Expression, localization, and functional analysis of polychlorinated biphenyl degradation genes cbpABCD of Pseudomonas putida. Appl Environ Microbiol 1991; 57:1325-32. [PMID: 1649578 PMCID: PMC182950 DOI: 10.1128/aem.57.5.1325-1332.1991] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genes of Pseudomonas putida strains that are capable of degrading polychlorinated biphenyls were cloned in the plasmid vector pUC19. The resultant hybrid plasmid, pAW6194, contained cbpABCD genes on a 9.0-kb DNA fragment that was necessary for the catabolism of polychlorinated biphenyls. These genes were further subcloned on an 8.0-kb HindIII fragment of pAW540. Degradation of 3-chlorobiphenyl, 2,4-dichlorobiphenyl, and 2,4,5-trichlorobiphenyl into a chloro derivative of benzoic acid was found in Escherichia coli harboring chimeric plasmid pAW540. Expression of cbpA (biphenyl dioxygenase, 6.2 U/mg of protein) and cbpC (3-phenylcatechol dioxygenase, 611.00 U/mg of protein) genes was also found in E. coli containing the hybrid plasmid pAW540. These enzyme activities were up to 10-fold higher than those found in P. putida OU83. These results led us to conclude that cbpABCD genes of P. putida OU83 were encoded on cloned DNA and expressed in E. coli. Whether the expression of cbpABCD genes of P. putida OU83 was driven by its own promoters located on the cloned DNA or by the lacZ promoter of pUC19 was examined by subcloning a 8.0-kb DNA fragment encoding the cbpABCD genes, in both orientations, in the HindIII site of the promoter probe vector pKK232-8. The resulting recombinant plasmids, pAW560 and pAW561, expressed cbpABCD genes and conferred chloramphenicol resistance only in E. coli harboring pAW560, indicating that the expression of chloramphenicol acetyltransferase is independent of cbpABCD gene expression.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A A Khan
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309-4401
| | | |
Collapse
|
14
|
Abstract
In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant compounds. Recent developments in designing recombinant microorganisms and hybrid metabolic pathways are discussed.
Collapse
Affiliation(s)
- G R Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309
| | | |
Collapse
|
15
|
Khan AA, Walia SK. Identification and localization of 3-phenylcatechol dioxygenase and 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase genes of Pseudomonas putida and expression in Escherichia coli. Appl Environ Microbiol 1990; 56:956-62. [PMID: 2160220 PMCID: PMC184328 DOI: 10.1128/aem.56.4.956-962.1990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The bphC and bphD genes of Pseudomonas putida involved in the catabolism of polychlorinated biphenyls or biphenyl were identified, localized, and studied for expression in Escherichia coli. This was achieved by cloning a 2.4-kilobase (kb) DNA fragment of recombinant cosmid pOH101 into HindIII site of pUC plasmids downstream of a lacZ promoter and measuring the enzyme activities of 3-phenylcatechol dioxygenase (3-PDase; a product of bphC) and the meta-cleavage product 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (a product of bphD). The amount of 3-PDase produced in E. coli was about 20 times higher than that of the enzyme produced by the parent, P. putida. Determination of expression of the bphC and bphD genes through their own promoter sequences or by using the lacZ promoter of pUC plasmids was done by cloning the DNA that encodes bphC and bphD genes in a HindIII site of a promoter selection vector (pKK232-8) upstream of the gene for chloramphenicol acetyltransferase (CAT). The recombinant plasmid (pAW787) constructed by inserting the 2.4-kb DNA in pKK232-8 expressed both 3-PDase and CAT activities. Another hybrid construct (pAW786) in which the DNA insert was cloned in the opposite orientation lacked CAT activity but produced normal amounts of 3-PDase activity. On the basis of these results, we suggest that the bphC and bphD genes were expressed by using promoter sequences that are independent of the promoter that expresses CAT activity in E. coli. The locations of the bphC and bphD genes were determined by insertional inactivation of the open reading frames of structural genes bphC and bphD by Tn5 mutagenesis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A A Khan
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309-4401
| | | |
Collapse
|
16
|
Ahmad D, Massé R, Sylvestre M. Cloning and expression of genes involved in 4-chlorobiphenyl transformation by Pseudomonas testosteroni: homology to polychlorobiphenyl-degrading genes in other bacteria. Gene 1990; 86:53-61. [PMID: 2311936 DOI: 10.1016/0378-1119(90)90113-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The genes of Pseudomonas testosteroni strain B-356, specifying the transformation of 4-chlorobiphenyl (4-CB) into 4-chlorobenzoic acid (4-CBA) were cloned into Pseudomonas putida KT2440 using a broad-host-range cosmid, pPSA842. Of 10,000 clones tested, four were able to transform 4-CB. Gas chromatographic and mass spectrometric analysis of the catabolic products from two of the 4-CB-transforming clones carrying the hybrid plasmids, pDA1 and pDA2, demonstrated that pDA1 carried a complete set of structural genes involved in the transformation of 4-CB into 4-CBA, while pDA2 contained part of the pathway genes leading up to the meta-cleavage compound. Restriction endonuclease mapping and subcloning of pDA1 and pDA2 showed that the clones contained a common stretch of DNA of about 9.1 kb and that pDA2 carried gene(s) involved in regulation. Probing blots of genomic DNA from 13 different polychlorinated biphenyl(PCB)-degrading bacteria with radio-labelled pDA1 and pDA2, suggested that many PCB-degrading pathways have a common phylogenetic origin.
Collapse
Affiliation(s)
- D Ahmad
- Centre de Recherche en Microbiologie Appliquée, Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | | | |
Collapse
|
17
|
Walia S, Khan A, Rosenthal N. Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments. Appl Environ Microbiol 1990; 56:254-9. [PMID: 2106826 PMCID: PMC183298 DOI: 10.1128/aem.56.1.254-259.1990] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several DNA probes for polychlorinated biphenyl (PCB)-degrading genotypes were constructed from PCB-degrading bacteria. These laboratory-engineered DNA probes were used for the detection, enumeration, and isolation of specific bacteria degrading PCBs. Dot blot analysis of purified DNA from toxic organic chemical-contaminated soil bacterial communities showed positive DNA-DNA hybridization with a 32P-labeled DNA probe (pAW6194, cbpABCD). Less than 1% of bacterial colonies isolated from garden topsoil and greater than 80% of bacteria isolated from PCB-contaminated soils showed DNA homologies with 32P-labeled DNA probes. Some of the PCB-degrading bacterial isolates detected by the DNA probe method did not show biphenyl clearance. The DNA probe method was found to detect additional organisms with greater genetic potential to degrade PCBs than the biphenyl clearance method did. Results from this study demonstrate the usefulness of DNA probes in detecting specific PCB-degrading bacteria, abundance of PCB-degrading genotypes, and genotypic diversity among PCB-degrading bacteria in toxic chemical-polluted soil environments. We suggest that the DNA probe should be used with caution for accurate assessment of PCB-degradative capacity within soils and further recommend that a combination of DNA probe and biodegradation assay be used to determine the abundance of PCB-degrading bacteria in the soil bacterial community.
Collapse
Affiliation(s)
- S Walia
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309-4411
| | | | | |
Collapse
|
18
|
Khan A, Walia S. Cloning of bacterial genes specifying degradation of 4-chlorobiphenyl from Pseudomonas putida OU83. Appl Environ Microbiol 1989; 55:798-805. [PMID: 2729981 PMCID: PMC184205 DOI: 10.1128/aem.55.4.798-805.1989] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Genes capable of 4-chlorobiphenyl (4-CBP) degradation were cloned from 4-CBP-degrading Pseudomonas putida OU83 by using a genomic library which was constructed in the broad-host-range cosmid vector pCP13. P. putida AC812 containing chimeric cosmid-expressing enzymes involved in the 4-CBP degradation pathway were identified by detecting 3-phenylcatechol dioxygenase activity (3-PDA). Chimeric cosmid clones pOH83, pOH84, pOH85, pOH87, and pOH88 positive for 3-PDA grew in synthetic basal medium containing 4-CBP (5 mM) as a carbon source. Restriction digestion analysis of recombinant cosmids showed DNA inserts ranging from 6 to 30 kilobase pairs. Southern hybridization data revealed that the cloned DNA inserts originated from strain OU83. Gas chromatography-mass spectrometry analysis of the metabolites of P. putida AC812(pOH88) incubated with 4-CBP and 4'-chloro-3-phenylcatechol showed the formation of 4-chlorobenzoic acid and benzoic acid. These results demonstrate that the cloned DNA fragments contain genes encoding for chlorobiphenyl dioxygenase (cbpA), dihydrodiol dehydrogenase (cbpB), 4'-chloro-3-phenylcatechol dioxygenase (cbpC), a meta-cleavage compound (a chloro derivative of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate) hydrolase (cbpD), and a new dechlorinating activity (dcpE). The location of the cbpC gene specifying 3-PDA was determined by subcloning an EcoRI DNA fragment (9.8 kilobase pairs) of pOH88 in plasmid vector pUC19. The cloned gene encoding 3-PDA was expressed in Escherichia coli HB101 and had substrate specificity only for 3-phenylcatechol and 4'-chloro-3-phenylcatechol.
Collapse
Affiliation(s)
- A Khan
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309-4401
| | | |
Collapse
|