1
|
Metabolic Analyses of Nitrogen Fixation in the Soybean Microsymbiont Sinorhizobium fredii Using Constraint-Based Modeling. mSystems 2020; 5:5/1/e00516-19. [PMID: 32071157 PMCID: PMC7029217 DOI: 10.1128/msystems.00516-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitrogen is the most limiting macronutrient for plant growth, and rhizobia are important bacteria for agriculture because they can fix atmospheric nitrogen and make it available to legumes through the establishment of a symbiotic relationship with their host plants. In this work, we studied the nitrogen fixation process in the microsymbiont Sinorhizobium fredii at the genome level. A metabolic model was built using genome annotation and literature to reconstruct the symbiotic form of S. fredii. Genes controlling the nitrogen fixation process were identified by simulating gene knockouts. Additionally, the nitrogen-fixing capacities of S. fredii CCBAU45436 in symbiosis with cultivated and wild soybeans were evaluated. The predictions suggested an outperformance of S. fredii with cultivated soybean, consistent with published experimental evidence. The reconstruction presented here will help to understand and improve nitrogen fixation capabilities of S. fredii and will be beneficial for agriculture by reducing the reliance on fertilizer applications. Rhizobia are soil bacteria able to establish symbiosis with diverse host plants. Specifically, Sinorhizobium fredii is a soil bacterium that forms nitrogen-fixing root nodules in diverse legumes, including soybean. The strain S. fredii CCBAU45436 is a dominant sublineage of S. fredii that nodulates soybeans in alkaline-saline soils in the Huang-Huai-Hai Plain region of China. Here, we present a manually curated metabolic model of the symbiotic form of Sinorhizobium fredii CCBAU45436. A symbiosis reaction was defined to describe the specific soybean-microsymbiont association. The performance and quality of the reconstruction had a 70% score when assessed using a standardized genome-scale metabolic model test suite. The model was used to evaluate in silico single-gene knockouts to determine the genes controlling the nitrogen fixation process. One hundred forty-one of 541 genes (26%) were found to influence the symbiotic process, wherein 121 genes were predicted as essential and 20 others as having a partial effect. Transcriptomic profiles of CCBAU45436 were used to evaluate the nitrogen fixation capacity in cultivated versus in wild soybean inoculated with the microsymbiont. The model quantified the nitrogen fixation activities of the strain in these two hosts and predicted a higher nitrogen fixation capacity in cultivated soybean. Our results are consistent with published data demonstrating larger amounts of ureides and total nitrogen in cultivated soybean than in wild soybean. This work presents the first metabolic network reconstruction of S. fredii as an example of a useful tool for exploring the potential benefits of microsymbionts to sustainable agriculture and the ecosystem. IMPORTANCE Nitrogen is the most limiting macronutrient for plant growth, and rhizobia are important bacteria for agriculture because they can fix atmospheric nitrogen and make it available to legumes through the establishment of a symbiotic relationship with their host plants. In this work, we studied the nitrogen fixation process in the microsymbiont Sinorhizobium fredii at the genome level. A metabolic model was built using genome annotation and literature to reconstruct the symbiotic form of S. fredii. Genes controlling the nitrogen fixation process were identified by simulating gene knockouts. Additionally, the nitrogen-fixing capacities of S. fredii CCBAU45436 in symbiosis with cultivated and wild soybeans were evaluated. The predictions suggested an outperformance of S. fredii with cultivated soybean, consistent with published experimental evidence. The reconstruction presented here will help to understand and improve nitrogen fixation capabilities of S. fredii and will be beneficial for agriculture by reducing the reliance on fertilizer applications.
Collapse
|
2
|
Abstract
Rhizobia are bacteria in the α-proteobacterial genera Rhizobium, Sinorhizobium, Mesorhizobium, Azorhizobium and Bradyrhizobium that reduce (fix) atmospheric nitrogen in symbiotic association with a compatible host plant. In free-living and/or symbiotically associated rhizobia, amino acids may, in addition to their incorporation into proteins, serve as carbon, nitrogen or sulfur sources, signals of cellular nitrogen status and precursors of important metabolites. Depending on the rhizobia-host plant combination, microsymbiont amino acid metabolism (biosynthesis, transport and/or degradation) is often crucial to the establishment and maintenance of an effective nitrogen-fixing symbiosis and is intimately interconnected with the metabolism of the plant. This review summarizes past findings and current research directions in rhizobial amino acid metabolism and evaluates the genetic, biochemical and genome expression studies from which these are derived. Specific sections deal with the regulation of rhizobial amino acid metabolism, amino acid transport, and finally the symbiotic roles of individual amino acids in different plant-rhizobia combinations.
Collapse
|
3
|
Lohrke SM, Orf JH, Martinez-Romero E, Sadowsky MJ. Host-Controlled Restriction of Nodulation by Bradyrhizobium japonicum Strains in Serogroup 110. Appl Environ Microbiol 2010; 61:2378-83. [PMID: 16535054 PMCID: PMC1388472 DOI: 10.1128/aem.61.6.2378-2383.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported the identification of a soybean plant introduction (PI) genotype, PI 417566, which restricts nodulation by Bradyrhizobium japonicum MN1-1c (USDA 430), strains in serogroup 129, and USDA 110 (P. B. Cregan, H. H. Keyser, and M. J. Sadowsky, Appl. Environ. Microbiol. 55:2532-2536, 1989, and Crop Sci. 29:307-312, 1989). In this study, we further characterized nodulation restriction by PI 417566. Twenty-four serogroup 110 isolates were tested for restricted nodulation on PI 417566. Of the 24 strains examined, 62.5% were restricted in nodulation by the PI genotype. The remainder of the serogroup 110 strains tested (37.5%), however, formed significant numbers of nodules on PI 417566, suggesting that host-controlled restriction of nodulation by members of serogroup 110 is strain dependent. Analysis of allelic variation at seven enzyme-encoding loci by multilocus enzyme electrophoresis indicated that the serogroup 110 isolates can be divided into two major groups. The majority of serogroup 110 isolates which nodulated PI 417566 belonged to the same multilocus enzyme electrophoresis group. B. japonicum USDA 110 and USDA 123 were used as coinoculants in competition-for-nodulation studies using PI 417566. Over 98% of the nodules formed on PI 417566 contained USDA 123, whereas less than 2% contained USDA 110. We also report the isolation of a Tn5 mutant of USDA 110 which has overcome nodulation restriction conditioned by PI 417566. This mutant, D4.2-5, contained a single Tn5 insertion and nodulated PI 417566 to an extent equal to that seen with the unrestricted strain USDA 123. The host range of D4.2-5 on soybean plants and other legumes was unchanged relative to that of USDA 110, except that the mutant nodulated Glycine max cv. Hill more efficiently. While strain USDA 110 has the ability to block nodulation by D4.2-5 on PI 417566, the nodulation-blocking phenomenon was not seen unless strain USDA 110 was inoculated at a 100-fold greater concentration than the mutant strain.
Collapse
|
4
|
An orphan LuxR homolog of Sinorhizobium meliloti affects stress adaptation and competition for nodulation. Appl Environ Microbiol 2008; 75:946-55. [PMID: 19088317 DOI: 10.1128/aem.01692-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sin/ExpR quorum-sensing system of Sinorhizobium meliloti plays an important role in the symbiotic association with its host plant, Medicago sativa. The LuxR-type response regulators of the Sin system include the synthase (SinI)-associated SinR and the orphan regulator ExpR. Interestingly, the S. meliloti Rm1021 genome codes for four additional putative orphan LuxR homologs whose regulatory roles remain to be identified. These response regulators contain the characteristic domains of the LuxR family of proteins, which include an N-terminal autoinducer/response regulatory domain and a C-terminal helix-turn-helix domain. This study elucidates the regulatory role of one of the orphan LuxR-type response regulators, NesR. Through expression and phenotypic analyses, nesR was determined to affect the active methyl cycle of S. meliloti. Moreover, nesR was shown to influence nutritional and stress response activities in S. meliloti. Finally, the nesR mutant was deficient in competing with the wild-type strain for plant nodulation. Taken together, these results suggest that NesR potentially contributes to the adaptability of S. meliloti when it encounters challenges such as high osmolarity, nutrient starvation, and/or competition for nodulation, thus increasing its chances for survival in the stressful rhizosphere.
Collapse
|
5
|
Appunu C, Dhar B. Isolation and symbiotic characteristics of two Tn5-derived phage-resistant Bradyrhizobium japonicum strains that nodulate soybean. Curr Microbiol 2008; 57:212-7. [PMID: 18626694 DOI: 10.1007/s00284-008-9176-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 04/25/2008] [Indexed: 10/21/2022]
Abstract
Using transponson Tn5 mutagenesis, two transconjugants of Bradyrhizobium japonicum with the properties of both phage resistance and ability to induce nodulation were isolated at the frequency of 0.02%. These transconjugants were tested for their symbiotic performance on soybean cv. JS335 under greenhouse and field conditions. Both phage-resistant mutants induced nodules (nod (+)), but the transconjugant B. japonicum E13 was ineffective in nitrogen fixation (fix (-)). Rhizobiophage presence in the inoculum of phage-resistant mutants did not influence the symbiotic effectiveness. The mixture of wild strain and phage in the inoculum caused reduced symbiotic performance under controlled conditions, while under a field environment phage (100 and 500 mul of approximately 10(8) particles ml(-1)) presence did not have any recognizable effect on increased nodule dry weight, nitrogenase activity, or foliar N(2) content. On the basis of restriction fragment length polymorphism analysis, phage-sensitive, less effective, homologous bradyrhizobia belonging to B. japonicum were detected in root nodules of both inoculated and uninoculated plants. Inoculation of a higher concentration of phage in the inoculum significantly reduced the symbiotic performance, while the lower concentration of phage did not show any effect on phage-susceptible, less effective, homologous bradyrhizobia or, thus, symbiotic efficiency under field conditions. The phage-resistant mutant B. japonicum A49 showed effective symbiosis as efficient as that of the wild strain. Inoculation of phage-resistant mutants with lytic phage may reduce the occupancy of phage-susceptible, ineffective/less effective/mediocre homologous bradyrhizobia strains under natural complex soil conditions.
Collapse
Affiliation(s)
- C Appunu
- Microbial Genetics Laboratory, Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| | | |
Collapse
|
6
|
Pobigaylo N, Szymczak S, Nattkemper TW, Becker A. Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:219-31. [PMID: 18184066 DOI: 10.1094/mpmi-21-2-0219] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sinorhizobium meliloti enters an endosymbiosis with alfalfa plants through the formation of nitrogen-fixing nodules. In order to identify S. meliloti genes required for symbiosis and competitiveness, a method of signature-tagged mutagenesis was used. Two sets, each consisting of 378 signature-tagged mutants with a known transposon insertion site, were used in an experiment in planta. As a result, 67 mutants showing attenuated symbiotic phenotypes were identified, including most of the exo, fix, and nif mutants in the sets. For 38 mutants in genes previously not described to be involved in competitiveness or symbiosis in S. meliloti, attenuated competitiveness phenotypes were tested individually. A large part of these phenotypes was confirmed. Moreover, additional symbiotic defects were observed for mutants in several novel genes such as infection deficiency phenotypes (ilvI and ilvD2 mutants) or delayed nodulation (pyrE, metA, thiC, thiO, and thiD mutants).
Collapse
Affiliation(s)
- Nataliya Pobigaylo
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany
| | | | | | | |
Collapse
|
7
|
Yadav AS. Auxotrophy in rhizobia revisited. Indian J Microbiol 2008; 47:279-88. [PMID: 23100679 DOI: 10.1007/s12088-007-0053-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/06/2007] [Accepted: 08/20/2007] [Indexed: 11/24/2022] Open
Abstract
Among the various types of mutations studied in rhizobia, the auxotrophic mutations (which confer on the mutants the inability to synthesize certain essential substances such as amino acids, vitamins and nucleic acids), are the most favoured ones as these can be used as suitable markers for genetic analysis. An important property of rhizobia is their effectiveness i.e. their ability to fix atmospheric nitrogen into ammonia within the nodule. Special interest in this category of mutations by rhizobial geneticists is due to the fact that there is a strong correlation between the metabolic defects and the ineffectiveness (Nod(-) and/or Fix(-)) of the rhizobial strains. Auxotrophic mutants of various species of rhizobia with defects in the synthesis of nucleic bases, vitamins and amino acids have been obtained by mutagenising with physical, chemical and Tn5 mutagens. These mutants have been used in mapping studies as well as in establishing a correlation between its metabolic requirement and symbiotic relationship with the host plant. The present review deals with the isolation of auxotrophs, and their genetic, biochemical and symbiotic characterization. The review also encompasses the studies on the elucidation of biosynthetic pathways of nutritional substances in rhizobia.
Collapse
Affiliation(s)
- Attar S Yadav
- Department of Genetics, CCS Haryana Agricultural University, Hisar, 125 004 Haryana India
| |
Collapse
|
8
|
Sarma AD, Emerich DW. A comparative proteomic evaluation of culture grownvs nodule isolatedBradyrhizobium japonicum. Proteomics 2006; 6:3008-28. [PMID: 16688787 DOI: 10.1002/pmic.200500783] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Total protein extract of Bradyrhizobium japonicum cultivated in HM media were resolved by 2-D PAGE using narrow range IPG strips. More than 1200 proteins were detected, of which nearly 500 proteins were analysed by MALDI-TOF and 310 spots were tentatively identified. The present study describes at the proteome level a significant number of metabolic pathways related to important cellular events in free-living B. japonicum. A comparative analysis of proteomes of free-living and nodule residing bacteria revealed major differences and similarities between the two states. Proteins related to fatty acid, nucleic acid and cell surface synthesis were significantly higher in cultured cells. Nitrogen metabolism was more pronounced in bacteroids whereas carbon metabolism was similar in both states. Relative percentage of proteins related to global functions like protein synthesis, maturation & degradation and membrane transporters were similar in both forms, however, different proteins provided these functions in the two states.
Collapse
Affiliation(s)
- Annamraju D Sarma
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
9
|
Soberón M, Morera C, Kondorosi A, Lopez O, Miranda J. A purine-related metabolite negatively regulates fixNOQP expression in Sinorhizobium meliloti by modulation of fixK expression. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:572-576. [PMID: 11310745 DOI: 10.1094/mpmi.2001.14.4.572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
5-aminoimidazole-4-carboxamide nucleotide (AICAR) is a negative effector of cytochrome terminal oxidase cbb3 production in Rhizobium etli. In this work, the effect of AICAriboside (AICAr), the precursor of AICAR on the expression of the Sinorhizobium meliloti fixNOQP operon encoding the symbiotic terminal oxidase cbb3, was analyzed. AICAr reduced the microaerobic induction levels of fixN-lacZ and fixT-lacZ gene fusions 18- and seven-fold respectively, and both genes were activated by the transcriptional activator FixK. A fixK-lacZ fusion presented 14-fold-reduced induction levels in microaerobic cell cultures in the presence of AICAr. AICAr also reduced three-fold the microaerobic expression levels of the nifA-lacZ fusion, whose expression as well as that of fixK is controlled by the two-component system FixL-FixJ. In contrast, AICAr had no effect on the expression levels of a hemA-lacZ fusion. These data suggest that AICAr prevents fixNOQP induction by the inhibition of fixK transcription.
Collapse
Affiliation(s)
- M Soberón
- Instituto de Biotecnología, Departamento de Biología Molecular de Plantas, UNAM, Cuernavaca, México.
| | | | | | | | | |
Collapse
|
10
|
Riccillo PM, Collavino MM, Grasso DH, England R, de Bruijn FJ, Aguilar OM. A guaB mutant strain of Rhizobium tropici CIAT899 pleiotropically defective in thermal tolerance and symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:1228-1236. [PMID: 11059489 DOI: 10.1094/mpmi.2000.13.11.1228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rhizobium tropici strain CIAT899 displays a high intrinsic thermal tolerance, and had been used in this work to study the molecular basis of bacterial responses to high temperature. We generated a collection of R. tropici CIAT899 mutants affected in thermal tolerance using TnS-luxAB mutagenesis and described the characterization of a mutant strain, CIAT899-10T, that fails to grow under conditions of high temperature. Strain CIAT899-10T carries a single transposon insertion in a gene showing a high degree of similarity with the guaB gene of Escherichia coli and other organisms, encoding the enzyme inosine monophosphate dehydrogenase. The guaB strain CIAT899-10T does not require guanine for growth due to an alternative pathway via xanthine dehydrogenase and, phenotypically, in addition to the thermal sensitivity, the mutant is also defective in symbiosis with beans, forming nodules that lack rhizobial content. Guanine and its precursors restore wild-type tolerance to grow at high temperature. Our data show that, in R. tropici, the production of guanine via inosine monophosphate dehydrogenase is essential for growth at extreme temperatures and for effective nodulation.
Collapse
Affiliation(s)
- P M Riccillo
- Instituto de Bioquímica y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | | | | | | | | | | |
Collapse
|
11
|
Lohrke SM, Day B, Kolli VS, Hancock R, Yuen JP, de Souza ML, Stacey G, Carlson R, Tong Z, Hur HG, Orf JH, Sadowsky MJ. The Bradyrhizobium japonicum noeD gene: a negatively acting, genotype-specific nodulation gene for soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:476-88. [PMID: 9612946 DOI: 10.1094/mpmi.1998.11.6.476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bradyrhizobium japonicum strain USDA 110 is restricted for nodulation by soybean genotype PI 417566. We previously reported the identification of a USDA 110 Tn5 mutant, strain D4.2-5, that had the ability to overcome nodulation restriction conditioned by PI 417566 (S. M. Lohrke, J. H. Orf, E. Martínez-Romero, and M. J. Sadowsky, Appl. Environ. Microbiol. 61:2378-2383, 1995). In this study, we report the cloning and characterization of the negatively acting DNA region mutated in strain D4.2-5 that is involved in the genotype-specific nodulation of soybean. The Tn5 integration site was localized to a 5.2-kb EcoRI fragment isolated from wild-type USDA 110 genomic DNA. Saturation Tn5 mutagenesis of this 5.2-kb region and DNA homogenitization studies indicated that a 0.9-kb DNA region was involved in the genotype-specific nodulation of PI 417566. A single open reading frame (ORF) of 474 nucleotides, encoding a predicted protein of 158 amino acids, was identified within this region by DNA sequencing. This ORF was named noeD. Computer comparisons with available data bases revealed no significant similarities between the noeD DNA or predicted amino acid sequence and any known genes or their products. However, comparisons done with the region upstream of noeD revealed a high degree of similarity (about 76% similarity and 62% identity) to the N-terminal regions of the Rhizobium leguminosarum bv. viciae and R. meliloti nodM genes, which have been postulated to encode a glucosamine synthase. Southern hybridization analysis indicated that noeD is not closely linked to the main or auxiliary nodulation gene clusters in B. japonicum and that both nodulation-restricted and -unrestricted B. japonicum serogroup 110 strains contain a noeD homolog. High-performance liquid chromatography and fast atom bombardment-mass spectrometry analyses of the lipo-chitin oligosaccharide (LCO) nodulation signals produced by an noeD mutant showed a higher level of acetylation than that found with wild-type USDA 110. These results suggest that specific LCO signal molecules may be one of the factors influencing nodulation specificity in this symbiotic system.
Collapse
Affiliation(s)
- S M Lohrke
- Department of Soil, Water, and Climate, Biological Process Technology Institute, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Newman JD, Diebold RJ, Schultz BW, Noel KD. Infection of soybean and pea nodules by Rhizobium spp. purine auxotrophs in the presence of 5-aminoimidazole-4-carboxamide riboside. J Bacteriol 1994; 176:3286-94. [PMID: 8195084 PMCID: PMC205499 DOI: 10.1128/jb.176.11.3286-3294.1994] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purine auxotrophs of various Rhizobium species are symbiotically defective, usually unable to initiate or complete the infection process. Earlier studies demonstrated that, in the Rhizobium etli-bean symbiosis, infection by purine auxotrophs is partially restored by supplementation of the plant medium with 5-amino-imidazole-4-carboxamide (AICA) riboside, the unphosphorylated form of the purine biosynthetic intermediate AICAR. The addition of purine to the root environment does not have this effect. In this study, purine auxotrophs of Rhizobium fredii HH303 and Rhizobium leguminosarum 128C56 (bv. viciae) were examined. Nutritional and genetic characterization indicated that each mutant was blocked in purine biosynthesis prior to the production of AICAR. R. fredii HH303 and R. leguminosarum 128C56 appeared to be deficient in AICA riboside transport and/or conversion into AICAR, and the auxotrophs derived from them grew very poorly with AICA riboside as a purine source. All of the auxotrophs elicited poorly developed, uninfected nodules on their appropriate hosts. On peas, addition of AICA riboside or purine to the root environment led to enhanced nodulation; however, infection threads were observed only in the presence of AICA riboside. On soybeans, only AICA riboside was effective in enhancing nodulation and promoting infection. Although AICA riboside supplementation of the auxotrophs led to infection thread development on both hosts, the numbers of bacteria recovered from the nodules were still 2 or more orders of magnitude lower than in fully developed nodules populated by wild-type bacteria. The ability to AICA riboside to promote infection by purine auxotrophs, despite serving as a very poor purine source for these strains, supports the hypothesis that AICAR plays a role in infection other than merely promoting bacterial growth.
Collapse
Affiliation(s)
- J D Newman
- Department of Biology, Marquette University, Milwaukee, Wisconsin 53233, USA
| | | | | | | |
Collapse
|
13
|
Judd AK, Sadowsky MJ, Bhagwat AA, Cregan PB, Liu RL. Isolation of aBradyrhizobium japonicumserogroup 123 mutant which has an extended host range for nodulation-restricting soybean genotypes. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb05960.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Newman JD, Schultz BW, Noel KD. Dissection of Nodule Development by Supplementation of Rhizobium leguminosarum biovar phaseoli Purine Auxotrophs with 4-Aminoimidazole-5-Carboxamide Riboside. PLANT PHYSIOLOGY 1992; 99:401-8. [PMID: 16668898 PMCID: PMC1080475 DOI: 10.1104/pp.99.2.401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Purine auxotrophs of Rhizobium leguminosarum biovar phaseoli CFN42 elicit uninfected pseudonodules on bean (Phaseolus vulgaris L.). Addition of 4-aminoimidazole-5-carboxamide (AICA) riboside to the root medium during incubation of the plant with these mutants leads to enhanced nodule development, although nitrogenase activity is not detected. Nodules elicited in this manner had infection threads and anatomical features characteristic of normal nodules, such as peripheral vasculature rather than the central vasculature of the pseudonodules that were elicited without AICA riboside supplementation. Although 10(5) to 10(6) bacteria could be recovered from these nodules after full development, bacteria were not observed in the interior nodule cells. Instead, large cells with extensive internal membranes were present. Approximately 5% of the normal amount of leghemoglobin and 10% of the normal amount of uricase were detected in these nodules. To promote the development of true nodules rather than pseudonodules, AICA riboside was required no later than the second day through no more than the sixth day following inoculation. After this period, removal of AICA riboside from the root medium did not prevent the formation of true nodules. This observation suggests that there is a critical stage of infection, reached before nodule emergence, at which development becomes committed to forming a true nodule rather than a pseudonodule.
Collapse
Affiliation(s)
- J D Newman
- Department of Biology, Marquette University, Milwaukee, Wisconsin 53233
| | | | | |
Collapse
|
15
|
Rodriguez-Quiñones F, Judd AK, Sadowsky MJ, Liu RL, Cregan PB. Hyperreiterated DNA regions are conserved among Bradyrhizobium japonicum serocluster 123 strains. Appl Environ Microbiol 1992; 58:1878-85. [PMID: 1622264 PMCID: PMC195699 DOI: 10.1128/aem.58.6.1878-1885.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have identified and cloned two DNA regions which are highly reiterated in Bradyrhizobium japonicum serocluster 123 strains. While one of the reiterated DNA regions, pFR2503, is closely linked to the B. japonicum common and genotype-specific nodulation genes in strain USDA 424, the other, pMAP9, is located next to a Tn5 insertion site in a host-range extension mutant of B. japonicum USDA 438. The DNA cloned in pFR2503 and pMAP9 are reiterated 18 to 21 times, respectively, in the genomes of B. japonicum serocluster 123 strains. Gene probes from the reiterated regions share sequence homology, failed to hybridize (or hybridized poorly) to genomic DNA from other B. japonicum and Bradyrhizobium spp. strains, and did not hybridize to DNA from Rhizobium meliloti, Rhizobium fredii, Rhizobium leguminosarum biovars trifolii, phaseoli, and viceae, or Agrobacterium tumefacians. The restriction fragment length polymorphism hybridization profiles obtained by using these gene probes are useful for discriminating among serologically related B. japonicum serocluster 123 strains.
Collapse
Affiliation(s)
- F Rodriguez-Quiñones
- Soybean and Alfalfa Research Laboratory, U.S. Department of Agriculture, BARC-West, Beltsville, Maryland 20705
| | | | | | | | | |
Collapse
|
16
|
Bhagwat AA, Tully RE, Keister DL. Isolation and Characterization of a Competition-Defective
Bradyrhizobium japonicum
Mutant. Appl Environ Microbiol 1991; 57:3496-501. [PMID: 16348601 PMCID: PMC184002 DOI: 10.1128/aem.57.12.3496-3501.1991] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tn
5
mutagenesis was coupled with a competition assay to isolate mutants of
Bradyrhizobium japonicum
defective in competitive nodulation. A double selection procedure was used, screening first for altered extracellular polysaccharide production (nonmucoid colony morphology) and then for decreased competitive ability. One mutant, which was examined in detail, was deficient in acidic polysaccharide and lipopolysaccharide production. The wild-type DNA region corresponding to the Tn
5
insertion was isolated, mapped, and cloned. A 3.6-kb region, not identified previously as functioning in symbiosis, contained the gene(s) necessary for complementation of the mutation. The mutant was motile, grew normally on minimal medium, and formed nodules on soybean plants which fixed almost as much nitrogen as the wild type during symbiosis.
Collapse
Affiliation(s)
- A A Bhagwat
- Soybean and Alfalfa Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Bldg. 011, HH-19, BARC-W, Beltsville, Maryland 20705-2350
| | | | | |
Collapse
|
17
|
Rossbach S, Hennecke H. Identification of glyA as a symbiotically essential gene in Bradyrhizobium japonicum. Mol Microbiol 1991; 5:39-47. [PMID: 2014004 DOI: 10.1111/j.1365-2958.1991.tb01824.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A Bradyrhizobium japonicum Tn5 mutant (strain 3160) induced numerous, tiny, white nodules which were dispersed over the whole root system of its natural host plant, soybean (Glycine max). These ineffective, nitrogen non-fixing pseudonodules were disturbed at a very early step of bacteroid and nodule development. Subsequent cloning and sequencing of the DNA region mutated in strain 3160 revealed that the Tn5 insertion mapped in a gene that had 60% homology to the Escherichia coli glyA gene coding for serine hydroxymethyltransferase (SHMT; E.C.2.1.2.1.). SHMT catalyses the biosynthesis of glycine from serine and the transfer of a one-carbon unit to tetrahydrofolate. The B. japonicum glyA region was able to fully complement the glycine auxotrophy of an E. coli glyA deletion strain. Although the Tn5 insertion in B. japonicum mutant 3160 disrupted the glyA coding sequence, this strain was only a bradytroph (i.e. a leaky auxotroph). Thus, B. japonicum may have an additional pathway for glycine biosynthesis. Nevertheless, the glyA mutation was responsible for the drastic symbiotic phenotype visible on plants. It may be possible, therefore, that a sufficient supply with glycine and/or a functioning C1-metabolism are indispensable for the establishment of a fully effective, nitrogen-fixing root nodule symbiosis.
Collapse
Affiliation(s)
- S Rossbach
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | |
Collapse
|
18
|
R-prime plasmids from Bradyrhizobium japonicum and Rhizobium fredii. Arch Microbiol 1989. [DOI: 10.1007/bf00425485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Kim CH, Tully RE, Keister DL. Exopolysaccharide-Deficient Mutants of
Rhizobium fredii
HH303 Which Are Symbiotically Effective. Appl Environ Microbiol 1989; 55:1852-4. [PMID: 16347980 PMCID: PMC202962 DOI: 10.1128/aem.55.7.1852-1854.1989] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nineteen Tn
5
-induced mutants of
Rhizobium fredii
HH303 defective in acidic exopolysaccharide synthesis were isolated by screening for lack of Calcofluor fluorescence. They were grouped by complementation analysis by using
Rhizobium meliloti
cosmids carrying
exo
genes. All of the 19 mutants were symbiotically effective or partially effective, indicating that the major bacterial acidic exopolysaccharide of this strain of
R. fredii
may not be required for symbiotic development in the soybean.
Collapse
Affiliation(s)
- C H Kim
- Nitrogen Fixation and Soybean Genetics Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Bldg. 011, HH-19, BARC-W, Beltsville, Maryland 20705
| | | | | |
Collapse
|