1
|
Zhang C, Han Y, Gui Y, Wa Y, Chen D, Huang Y, Yin B, Gu R. Influence of nitrogen sources on the tolerance of Lacticaseibacillus rhamnosus to heat stress and oxidative stress. J Ind Microbiol Biotechnol 2022; 49:6693999. [PMID: 36073749 PMCID: PMC9559300 DOI: 10.1093/jimb/kuac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/02/2022] [Indexed: 11/14/2022]
Abstract
It has been found that 32 genes related to nitrogen source metabolism in Lacticaseibacillus rhamnosus are downregulated under both heat stress and oxidative stress. In this study, the influence of different nitrogen sources within the growth medium on the tolerance of L. rhamnosus to heat stress and oxidative stress was investigated. Tryptone-free MRS was found to enhance the tolerance of L. rhamnosus hsryfm 1301 to heat stress and oxidative stress during the whole growth period, and this result was universal for all L. rhamnosus species analyzed. The strongest strengthening effect occurred when the OD600 value reached 2.0, at which the survival rates under heat stress and oxidative stress increased 130-fold and 40-fold, respectively. After supplementing phenylalanine, isoleucine, glutamate, valine, histidine, or tryptophan into the tryptone-free MRS, the tolerance of L. rhamnosus to heat stress and oxidative stress exhibited a sharp drop. The spray drying survival rate of L. rhamnosus hsryfm 1301 cultured in the tryptone-free MRS rose to 75% (from 30%), and the spray dried powder also performed better in the experimentally simulated gastrointestinal digestion. These results showed that decreasing the intake of amino acids is an important mechanism for L. rhamnosus to tolerate heat stress and oxidative stress. When L. rhamnosus is cultured for spray drying, the concentration of the nitrogen source's components should be an important consideration.
Collapse
Affiliation(s)
- Chenchen Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China.,Jiangsu Dairy Biotechnology Engineering Research Center, Kang Yuan Dairy Co. Ltd., Yangzhou University, Yangzhou, P.R. China.,College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, P.R. China
| | - Yuemei Han
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| | - Ya Gui
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| | - Yunchao Wa
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| | - Dawei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| | - Yujun Huang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| | - Boxing Yin
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China.,Jiangsu Dairy Biotechnology Engineering Research Center, Kang Yuan Dairy Co. Ltd., Yangzhou University, Yangzhou, P.R. China
| | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| |
Collapse
|
2
|
|
3
|
Ai Z, Lv X, Huang S, Liu G, Sun X, Chen H, Sun J, Feng Z. The effect of controlled and uncontrolled pH cultures on the growth of Lactobacillus delbrueckii subsp. bulgaricus. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Shokri Z, Fazeli MR, Ardjmand M, Mousavi SM, Gilani K. Factors affecting viability of Bifidobacterium bifidum during spray drying. ACTA ACUST UNITED AC 2015; 23:7. [PMID: 25618319 PMCID: PMC4334592 DOI: 10.1186/s40199-014-0088-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 12/28/2014] [Indexed: 11/23/2022]
Abstract
Background There is substantial clinical data supporting the role of Bifidobacterium bifidum in human health particularly in benefiting the immune system and suppressing intestinal infections. Compared to the traditional lyophilization, spray-drying is an economical process for preparing large quantities of viable microorganisms. The technique offers high production rates and low operating costs but is not usually used for drying of substances prone to high temperature. The aim of this study was to establish the optimized environmental factors in spray drying of cultured bifidobacteria to obtain a viable and stable powder. Methods The experiments were designed to test variables such as inlet air temperature, air pressure and also maltodextrin content. The combined effect of these variables on survival rateand moisture content of bacterial powder was studied using a central composite design (CCD). Sub-lethal heat-adaptation of a B. bifidum strain which was previously adapted to acid-bile-NaCl led to much more resistance to high outlet temperature during spray drying. The resistant B. bifidum was supplemented with cost friendly permeate, sucrose, yeast extract and different amount of maltodextrin before it was fed into a Buchi B-191 mini spray-dryer. Results Second-order polynomials were established to identify the relationship between the responses andthe three variables. Results of verification experiments and predicted values from fitted correlations were in close agreement at 95% confidence interval. The optimal values of the variables for maximum survival and minimum moisture content of B. bifidum powder were as follows: inlet air temperature of 111.15°C, air pressure of 4.5 bar and maltodextrin concentration of 6%. Under optimum conditions, the maximum survival of 28.38% was achieved while moisture was maintained at 4.05%. Conclusion Viable and cost effective spray drying of Bifidobacterium bifidum could be achieved by cultivating heat and acid adapted strain into the culture media containing nutritional protective agents.
Collapse
Affiliation(s)
- Zahra Shokri
- Department of Chemical Engineering, Islamic Azad University-Tehran South Branch, Tehran, Iran.
| | - Mohammad Reza Fazeli
- Probiotic Research Laboratory, Department of Drug and Food Control, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Ardjmand
- Department of Chemical Engineering, Islamic Azad University-Tehran South Branch, Tehran, Iran.
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran.
| | - Kambiz Gilani
- Aerosol Research Laboratory, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Yoo EJH, Feketeová L, Khairallah GN, White JM, O'Hair RAJ. Structure and unimolecular chemistry of protonated sulfur betaines, (CH3)2S+(CH2)nCO2H (n = 1 and 2). Org Biomol Chem 2011; 9:2751-9. [DOI: 10.1039/c0ob00770f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Abstract
Lactic acid bacteria (LAB) constitute a diverse group of Gram positive obligately fermentative microorganisms which include both beneficial and pathogenic strains. LAB generally have complex nutritional requirements and therefore they are usually associated with nutrient-rich environments such as animal bodies, plants and foodstuffs. Amino acids represent an important resource for LAB and their utilization serves a number of physiological roles such as intracellular pH control, generation of metabolic energy or redox power, and resistance to stress. As a consequence, the regulation of amino acid catabolism involves a wide set of both general and specific regulators and shows significant differences among LAB. Moreover, due to their fermentative metabolism, LAB amino acid catabolic pathways in some cases differ significantly from those described in best studied prokaryotic model organisms such as Escherichia coli or Bacillus subtilis. Thus, LAB amino acid catabolism constitutes an interesting case for the study of metabolic pathways. Furthermore, LAB are involved in the production of a great variety of fermented products so that the products of amino acid catabolism are also relevant for the safety and the quality of fermented products.
Collapse
Affiliation(s)
- María Fernández
- Instituto de Productos Lácteos de Asturias CSIC, Crta de Infiesto s/n, Villaviciosa, Asturias, Spain
| | | |
Collapse
|
7
|
Santivarangkna C, Higl B, Foerst P. Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures. Food Microbiol 2008; 25:429-41. [DOI: 10.1016/j.fm.2007.12.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/16/2007] [Accepted: 12/30/2007] [Indexed: 11/29/2022]
|
8
|
Beales N. Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review. Compr Rev Food Sci Food Saf 2004; 3:1-20. [DOI: 10.1111/j.1541-4337.2004.tb00057.x] [Citation(s) in RCA: 459] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Metabolism of amino acids by resting cells of non-starter lactobacilli in relation to flavour development in cheese. Int Dairy J 2001. [DOI: 10.1016/s0958-6946(01)00051-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Chervaux C, Ehrlich SD, Maguin E. Physiological study of Lactobacillus delbrueckii subsp. bulgaricus strains in a novel chemically defined medium. Appl Environ Microbiol 2000; 66:5306-11. [PMID: 11097906 PMCID: PMC92460 DOI: 10.1128/aem.66.12.5306-5311.2000] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a chemically defined medium called milieu proche du lait (MPL), in which 22 Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) strains exhibited growth rates ranging from 0.55 to 1 h(-1). MPL can also be used for cultivation of other lactobacilli and Streptococcus thermophilus. The growth characteristics of L. bulgaricus in MPL containing different carbon sources were determined, including an initial characterization of the phosphotransferase system transporters involved. For the 22 tested strains, growth on lactose was faster than on glucose, mannose, and fructose. Lactose concentrations below 0.4% were limiting for growth. We isolated 2-deoxyglucose-resistant mutants from strains CNRZ397 and ATCC 11842. CNRZ397-derived mutants were all deficient for glucose, fructose, and mannose utilization, indicating that these three sugars are probably transported via a unique mannose-specific-enzyme-II-like transporter. In contrast, mutants of ATCC 11842 exhibited diverse phenotypes, suggesting that multiple transporters may exist in that strain. We also developed a protein labeling method and verified that exopolysaccharide production and phage infection can occur in MPL. The MPL medium should thus be useful in conducting physiological studies of L. bulgaricus and other lactic acid bacteria under well controlled nutritional conditions.
Collapse
Affiliation(s)
- C Chervaux
- Laboratoire de Génétique Microbienne, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | | | | |
Collapse
|
11
|
Obis D, Guillot A, Gripon JC, Renault P, Bolotin A, Mistou MY. Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters. J Bacteriol 1999; 181:6238-46. [PMID: 10515910 PMCID: PMC103755 DOI: 10.1128/jb.181.20.6238-6246.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic accumulation of exogenous betaine stimulates the growth of Lactococcus lactis cultivated under hyperosmotic conditions. We report that L. lactis possesses a single betaine transport system that belongs to the ATP-binding cassette (ABC) superfamily of transporters. Through transposon mutagenesis, a mutant deficient in betaine transport was isolated. We identified two genes, busAA and busAB, grouped in an operon, busA (betaine uptake system). The transcription of busA is strongly regulated by the external osmolality of the medium. The busAA gene codes for the ATP-binding protein. busAB encodes a 573-residue polypeptide which presents two striking features: (i) a fusion between the regions encoding the transmembrane domain (TMD) and the substrate-binding domain (SBD) and (ii) a swapping of the SBD subdomains when compared to the Bacillus subtilis betaine-binding protein, OpuAC. BusA of L. lactis displays a high affinity towards betaine (K(m) = 1.7 microM) and is an osmosensor whose activity is tightly regulated by external osmolality, leading the betaine uptake capacity of L. lactis to be under dual control at the biochemical and genetic levels. A protein presenting the characteristics predicted for BusAB was detected in the membrane fraction of L. lactis. The fusion between the TMD and the SBD is the first example of a new organization within prokaryotic ABC transporters.
Collapse
Affiliation(s)
- D Obis
- Unité de Biochimie et Structure des Protéines, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France
| | | | | | | | | | | |
Collapse
|
12
|
Nau-Wagner G, Boch J, Le Good JA, Bremer E. High-affinity transport of choline-O-sulfate and its use as a compatible solute in Bacillus subtilis. Appl Environ Microbiol 1999; 65:560-8. [PMID: 9925583 PMCID: PMC91062 DOI: 10.1128/aem.65.2.560-568.1999] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/1998] [Accepted: 11/10/1998] [Indexed: 11/20/2022] Open
Abstract
We report here that the naturally occurring choline ester choline-O-sulfate serves as an effective compatible solute for Bacillus subtilis, and we have identified a high-affinity ATP-binding cassette (ABC) transport system responsible for its uptake. The osmoprotective effect of this trimethylammonium compound closely matches that of the potent and widely employed osmoprotectant glycine betaine. Growth experiments with a set of B. subtilis strains carrying defined mutations in the glycine betaine uptake systems OpuA, OpuC, and OpuD and in the high-affinity choline transporter OpuB revealed that choline-O-sulfate was specifically acquired from the environment via OpuC. Competition experiments demonstrated that choline-O-sulfate functioned as an effective competitive inhibitor for OpuC-mediated glycine betaine uptake, with a Ki of approximately 4 microM. Uptake studies with [1, 2-dimethyl-14C]choline-O-sulfate showed that its transport was stimulated by high osmolality, and kinetic analysis revealed that OpuC has high affinity for choline-O-sulfate, with a Km value of 4 +/- 1 microM and a maximum rate of transport (Vmax) of 54 +/- 3 nmol/min. mg of protein in cells grown in minimal medium with 0.4 M NaCl. Growth studies utilizing a B. subtilis mutant defective in the choline to glycine betaine synthesis pathway and natural abundance 13C nuclear magnetic resonance spectroscopy of whole-cell extracts from the wild-type strain demonstrated that choline-O-sulfate was accumulated in the cytoplasm and was not hydrolyzed to choline by B. subtilis. In contrast, the osmoprotective effect of acetylcholine for B. subtilis is dependent on its biotransformation into glycine betaine. Choline-O-sulfate was not used as the sole carbon, nitrogen, or sulfur source, and our findings thus characterize this choline ester as an effective compatible solute and metabolically inert stress compound for B. subtilis. OpuC mediates the efficient transport not only of glycine betaine and choline-O-sulfate but also of carnitine, crotonobetaine, and gamma-butyrobetaine (R. Kappes and E. Bremer, Microbiology 144:83-90, 1998). Thus, our data underscore its crucial role in the acquisition of a variety of osmoprotectants from the environment by B. subtilis.
Collapse
Affiliation(s)
- G Nau-Wagner
- Philipps University Marburg, Department of Biology, D-35032 Marburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
13
|
|
14
|
Osmotic adaptation in Brevibacterium linens: differential effect of proline and glycine betaine on cytoplasmic osmolyte pool. Arch Microbiol 1995. [DOI: 10.1007/bf00404212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Patchett RA, Kelly AF, Kroll RG. Transport of glycine-betaine by Listeria monocytogenes. Arch Microbiol 1994; 162:205-10. [PMID: 7979875 DOI: 10.1007/bf00314476] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Uptake of [14C]glycine-betaine by Listeria monocytogenes was stimulated by NaCl with optimal stimulation at 0.4-0.5 M. The glycine-betaine transport system had a Km of 22 microM and a Vmax of 11.7 nmol-1 min-1 mg-1 protein when grown in the absence of NaCl. When grown in the presence of 0.8 M NaCl the Vmax increased to 27.0 nmol-1 min-1 mg-1 protein in 0.8 M NaCl. At NaCl concentrations above 0.5 M the uptake rate of glycine-betaine was reduced. Measurement of intracellular K+ concentrations and fluorescent dye quenching indicated that higher NaCl concentrations also led to a decrease in the electrochemical potential difference across the cytoplasmic membrane. Uptake of glycine was also observed, but this was not stimulated by NaCl.
Collapse
Affiliation(s)
- R A Patchett
- Institute of Food Research, Reading, United Kingdom
| | | | | |
Collapse
|
16
|
Beumer RR, Te Giffel MC, Cox LJ, Rombouts FM, Abee T. Effect of exogenous proline, betaine, and carnitine on growth of Listeria monocytogenes in a minimal medium. Appl Environ Microbiol 1994; 60:1359-63. [PMID: 8017923 PMCID: PMC201482 DOI: 10.1128/aem.60.4.1359-1363.1994] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Three Listeria monocytogenes strains isolated from food or food-processing environments were used to assess the response of this species to salinity in a chemically defined minimal medium. Growth in a minimal medium containing five essential amino acids and glucose as a carbon and energy source was comparable to growth in a rich medium (brain heart infusion broth). In the absence and presence of 3% NaCl the final cell numbers reached in minimal medium were 10(9) and 10(7) CFU/ml, respectively. Growth under the latter conditions could not be detected by spectrophotometry by measuring A660. Apparently, this technique was not suitable for these experiments since the detection level was > 10(7) CFU/ml. Exogenously added proline (10 mM), trimethylglycine (betaine) (1 mM), and beta-hydroxy-gamma-N-trimethyl aminobutyrate (carnitine) (1 mM) significantly stimulated growth under osmotic stress conditions in minimal medium at both 37 and 10 degrees C. Betaine and carnitine are present in foods derived from plants and animals, respectively. Therefore, these compounds can contribute significantly to growth of L. monocytogenes in various foods at high osmolarities.
Collapse
Affiliation(s)
- R R Beumer
- Laboratory of Food Microbiology, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Molenaar D, Hagting A, Alkema H, Driessen AJ, Konings WN. Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis. J Bacteriol 1993; 175:5438-44. [PMID: 8366030 PMCID: PMC206599 DOI: 10.1128/jb.175.17.5438-5444.1993] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Lactococcus lactis subsp. lactis ML3 contains high pools of proline or betaine when grown under conditions of high osmotic strength. These pools are created by specific transport systems. A high-affinity uptake system for glycine betaine (betaine) with a Km of 1.5 microM is expressed constitutively. The activity of this system is not stimulated by high osmolarities of the growth or assay medium but varies strongly with the medium pH. A low-affinity proline uptake system (Km, > 5 mM) is expressed at high levels only in chemically defined medium (CDM) with high osmolarity. This transport system is also stimulated by high osmolarity. The expression of this proline uptake system is repressed in rich broth with low or high osmolarity and in CDM with low osmolarity. The accumulated proline can be exchanged for betaine. Proline uptake is also effectively inhibited by betaine (Ki of between 50 and 100 microM). The proline transport system therefore probably also transports betaine. The inhibition of proline transport by betaine results in low proline pools in cells grown in high-osmotic-strength, betaine-containing CDM. The energy and pH dependency and the influence of ionophores on the activity of both transport systems suggest that these systems are not proton motive force driven. At low osmolarities, proline uptake is low but significant. This low proline uptake is also inhibited by betaine, although to a lesser extent than in cells grown in high-osmotic-strength CDM. These data indicate that proline uptake in L. lactis is enzyme mediated and is not dependent on passive diffusion, as was previously believed.
Collapse
Affiliation(s)
- D Molenaar
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Bae JH, Miller KJ. Identification of two proline transport systems in Staphylococcus aureus and their possible roles in osmoregulation. Appl Environ Microbiol 1992; 58:471-5. [PMID: 1610171 PMCID: PMC195271 DOI: 10.1128/aem.58.2.471-475.1992] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The food-borne pathogen Staphylococcus aureus is distinguished from other food-borne pathogens by its ability to grow at water activity values below 0.90. Previous studies have indicated that proline accumulation mediated by transport represents a primary osmoregulatory strategy utilized by this bacterium (C. B. Anderson and L. D. Witter, Appl. Environ, Microbiol. 43:1501-1503, 1982; I. Koujima, H. Hayashi, K. Tomochika, A. Okabe, and Y. Kanemasa, Appl. Environ. Microbiol. 35:467-470, 1978; K. J. Miller, S. C. Zelt, and J.-H. Bae, Curr. Microbiol. 23:131-137, 1991). In this study, we demonstrate the presence of two proline transport systems within whole cells of S. aureus, a high-affinity transport system (Km, 7 microM) and a low-affinity transport system (Km, 420 microM). Our results indicate that the low-affinity proline transport system is osmotically activated and is the primary system responsible for the accumulation of proline by this pathogen during growth at low water activity.
Collapse
Affiliation(s)
- J H Bae
- Department of Food Science, Pennsylvania State University, University Park 16802
| | | |
Collapse
|