Reeves AR, Cernota WH, Brikun IA, Wesley RK, Weber JM. Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum.
Metab Eng 2005;
6:300-12. [PMID:
15491860 DOI:
10.1016/j.ymben.2004.03.003]
[Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Accepted: 03/30/2004] [Indexed: 11/22/2022]
Abstract
Metabolic engineering technology for industrial microorganisms is under development to create rational, more reliable, and more cost-effective approaches to strain improvement. Strain improvement is a critical component of the drug development process, yet the genetic basis for high production by industrial microorganisms is still a mystery. In this study, a search was begun for genetic modifications critical for high-level antibiotic production. The model system used was erythromycin production studied in the unicellular actinomycete, Aeromicrobium erythreum. A tagged-mutagenesis approach allowed reverse engineering of improved strains, revealing two genes, mutB and cobA, in the primary metabolic branch for methylmalonyl-CoA utilization. Knockouts in these genes created a permanent metabolic switch in the flow of methylmalonyl-CoA, from the primary branch into a secondary metabolic branch, driving erythromycin overproduction. The model provides insights into the regulation and evolution of secondary metabolism.
Collapse