1
|
Fallah Ziarani M, Tohidfar M, Mirjalili MH. Evaluation of antibacterial properties of nisin peptide expressed in carrots. Sci Rep 2023; 13:22123. [PMID: 38092901 PMCID: PMC10719254 DOI: 10.1038/s41598-023-49466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Nisin, derived from Lactococcus lactis, is a well-known natural food preservative. In the present study, the gene of nisin was transformed to carrot by Agrobacterium tumefaciens strain LBA4404 harboring the recombinant binary vector pBI121 containing neomycin phosphotransferase II (nptII) gene, peptide signal KDEL, and Kozak sequence. The integration of nisin and nptII transgenes into the plant genome was confirmed by polymerase chain reaction (PCR) and dot blot analysis. The gene expression was also performed by RT-PCR and Enzyme-Linked Immunosorbent Assay. The level of nisin expressed in one gram of transgenic plant ranged from 0.05 to 0.08 μg/ml. The stability of nisin varied in orange and peach juices depending on the temperature on the 70th day. The leaf protein extracted from the transgenic plant showed a significant preservative effect of nisin in peach and orange juice. A complete inhibition activity against Staphylococcus aureus and Escherichia coli in orange juice was observed within 24 h. After 24 h, log 1 and log 2 were obtained in a peach juice containing Staphylococcus aureus and Escherichia coli, respectively. Results of HPLC indicated that Chlorogenic and Chicoric acid compounds were increased in transgenic plants, but this increase was not significant. The study of determining the genetic stability of transgenic plants in comparison with non-transgenic plants showed high genetic stability between non-transgenic plants and transgenic plants. This study confirmed the significant inhibitory effect of nisin protein on gram-positive and gram-negative bacteria.
Collapse
Affiliation(s)
- Masoumeh Fallah Ziarani
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Masoud Tohidfar
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
2
|
Qu A, Zhang Y, Shi H, Wang H, Ding K, Pan ZH, Zhao G, Hadiatullah H. Investigation of gas-producing bacteria in sufu and its effective method to control their growth. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Analysis of cross-functionality within LanBTC synthetase complexes from different bacterial sources with respect to production of fully modified lanthipeptides. Appl Environ Microbiol 2021; 88:e0161821. [PMID: 34788067 DOI: 10.1128/aem.01618-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lanthipeptides belong to a family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) containing (methyl)lanthionine residues. Commonly, class I lanthipeptides are synthesized by a gene cluster encoding a precursor peptide (LanA), a biosynthetic machinery (LanBTC), a protease (LanP), a two-component regulatory system (LanRK), and an immunity system (LanI and LanFEG). Although nisin and subtilin are highly similar class I lanthipeptides, the cross-regulation by LanRK and the cross-immunity by LanI and LanFEG between the nisin and subtilin systems have been proven very low. Here, the possibility of the cross-functionality by LanBTC to modify and transport nisin precursor (NisA) and subtilin precursor (SpaS) was evaluated in Bacillus subtilis and Lactococcus lactis. Interestingly, we found that a promiscuous NisBC-SpaT complex is able to synthesize and export nisin precursor, as efficiently as the native nisin biosynthetic machinery NisBTC, in L. lactis, but not in B. subtilis. The assembly of the NisBC-SpaT complex at a single microdomain, close to the old cell pole, was observed by fluorescence microscopy in L. lactis. In contrast, such a complex was not formed in B. subtilis. Furthermore, the isolation of the NisBC-SpaT complex and its subcomplexes from the cytoplasmic membrane of L. lactis by pull-down assays was successfully conducted. Our work demonstrates that the association of LanBC with LanT is critical for the efficient biosynthesis and secretion of the lanthipeptide precursor with complete modifications, and suggests a cooperative mechanism between LanBC and LanT in the modification and transport processes. IMPORTANCE A multimeric synthetase LanBTC complex has been proposed for the in vivo production of class I lanthipeptides. However, it has been demonstrated that LanB, LanC, and LanT can perform their functionality in vivo and in vitro, independently of other Lan proteins. The role of protein-protein interactions, especially between the modification complex LanBC and the transport system LanT, in the biosynthesis process of lanthipeptides is still unclear. In this study, the importance of the presence of a well-installed LanBTC complex in the cell membrane for lanthipeptide biosynthesis and transport was reinforced. In L. lactis, the recruitment of SpaT from the peripheral cell membrane to the cell poles by the NisBC complex was observed, which may explain the mechanism by which secretion of premature peptide is prevented.
Collapse
|
4
|
Isolation and Analysis of the Nisin Biosynthesis Complex NisBTC: further Insights into Their Cooperative Action. mBio 2021; 12:e0258521. [PMID: 34607454 PMCID: PMC8546558 DOI: 10.1128/mbio.02585-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nisin is synthesized by a putative membrane-associated lantibiotic synthetase complex composed of the dehydratase NisB, the cyclase NisC, and the ABC transporter NisT in Lactococcus lactis. Earlier work has demonstrated that NisB and NisT are linked via NisC to form such a complex. Here, we conducted for the first time the isolation of the intact NisBTC complex and NisT-associated subcomplexes from the cytoplasmic membrane by affinity purification. A specific interaction of NisT, not only with NisC but also with NisB, was detected. The cellular presence of NisB and/or NisC in complex with precursor nisin (NisA) was determined, which shows a highly dynamic and transient assembly of the NisABC complex via an alternating binding mechanism during nisin dehydration and cyclization. Mutational analyses, with cysteine-to-alanine mutations in NisA, suggest a tendency for NisA to lose affinity to NisC concomitant with an increasing number of completed lanthionine rings. Split NisBs were able to catalyze glutamylation and elimination reactions in an alternating way as efficiently as full-length NisB, with no significant influence on the following cyclization and transport. Notably, the harvest of the leader peptide in complex with the independent elimination domain of NisB points to a second leader peptide binding motif that is located in the C-terminal region of NisB, giving rise to a model where the leader peptide binds to different sites in NisB for glutamylation and elimination. Overall, these combined studies provide new insights into the cooperative biosynthesis mechanism of nisin and thereby lay a foundation for further structural and functional characterization of the NisBTC complex.
Collapse
|
5
|
Visualization and Analysis of the Dynamic Assembly of a Heterologous Lantibiotic Biosynthesis Complex in Bacillus subtilis. mBio 2021; 12:e0121921. [PMID: 34281399 PMCID: PMC8406302 DOI: 10.1128/mbio.01219-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A membrane-associated lanthipeptide synthetase complex, consisting of the dehydratase NisB, the cyclase NisC, and the ABC transporter NisT, has been described for nisin biosynthesis in the coccoid bacterium Lactococcus lactis. Here, we used advanced fluorescence microscopy to visualize the functional nisin biosynthesis machinery in rod-shaped cells and analyzed its spatial distribution and dynamics employing a platform we developed for heterologous production of nisin in Bacillus subtilis. We observed that NisT, as well as NisB and NisC, were all distributed in a punctate pattern along the cell periphery, opposed to the situation in coccoid cells. NisBTC proteins were found to be highly colocalized, being visualized at the same spots by dual fluorescence microscopy. In conjunction with the successful isolation of the biosynthetic complex NisBTC from the cell membrane, this corroborated that the visual bright foci were the sites for nisin maturation and transportation. A strategy of differential timing of expression was employed to demonstrate the in vivo dynamic assembly of NisBTC, revealing the recruitment by NisT of NisBC to the membrane. Additionally, by use of mutated proteins, the nucleotide binding domain (NBD) of NisT was found to function as a membrane anchor for NisB and/or NisC. We also show that the nisin biosynthesis sites are static and likely associated with proteins residing in lipid rafts. Based on these data, we propose a model for a three-phase production of modified precursor nisin in rod-shaped bacteria, presenting the assembly dynamics of NisBTC and emphasizing the crucial role of NisBC, next to NisT, in the process of precursor nisin translocation.
Collapse
|
6
|
van Staden ADP, van Zyl WF, Trindade M, Dicks LMT, Smith C. Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings. Appl Environ Microbiol 2021; 87:e0018621. [PMID: 33962984 PMCID: PMC8231447 DOI: 10.1128/aem.00186-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides, with modifications that are incorporated during biosynthesis by dedicated enzymes. Various modifications of the peptides are possible, resulting in a highly diverse group of bioactive peptides that offer a potential reservoir for use in the fight against a plethora of diseases. Their activities range from the antimicrobial properties of lantibiotics, especially against antibiotic-resistant strains, to antiviral activity, immunomodulatory properties, antiallodynic effects, and the potential to alleviate cystic fibrosis symptoms. Lanthipeptide biosynthetic genes are widespread within bacterial genomes, providing a substantial repository for novel bioactive peptides. Using genome mining tools, novel bioactive lanthipeptides can be identified, and coupled with rapid screening and heterologous expression technologies, the lanthipeptide drug discovery pipeline can be significantly sped up. Lanthipeptides represent a group of bioactive peptides that hold great potential as biotherapeutics, especially at a time when novel and more effective therapies are required. With this review, we provide insight into the latest developments made toward the therapeutic applications and production of lanthipeptides, specifically looking at heterologous expression systems.
Collapse
Affiliation(s)
- Anton Du Preez van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
7
|
Uggowitzer KA, Habibi Y, Wei W, Moitessier N, Thibodeaux CJ. Mutations in Dynamic Structural Elements Alter the Kinetics and Fidelity of the Multifunctional Class II Lanthipeptide Synthetase, HalM2. Biochemistry 2021; 60:412-430. [PMID: 33507068 DOI: 10.1021/acs.biochem.0c00919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Class II lanthipeptide synthetases (LanM enzymes) catalyze the multistep post-translational modification of genetically encoded precursor peptides into macrocyclic (often antimicrobial) lanthipeptides. The reaction sequence involves dehydration of serine/threonine residues, followed by intramolecular addition of cysteine thiols onto the nascent dehydration sites to construct thioether bridges. LanMs utilize two separate active sites in an iterative yet highly coordinated manner to maintain a remarkable level of regio- and stereochemical control over the multistep maturation. The mechanisms underlying this biosynthetic fidelity remain enigmatic. We recently demonstrated that proper function of the haloduracin β synthetase (HalM2) requires dynamic structural elements scattered across the surface of the enzyme. Here, we perform kinetic simulations, structural analysis of reaction intermediates, hydrogen-deuterium exchange mass spectrometry studies, and molecular dynamics simulations to investigate the contributions of these dynamic HalM2 structural elements to biosynthetic efficiency and fidelity. Our studies demonstrate that a large, conserved loop (HalM2 residues P349-P405) plays essential roles in defining the precursor peptide binding site, facilitating efficient peptide dehydration, and guiding the order of thioether ring formation. Moreover, mutations near the interface of the HalM2 dehydratase and cyclase domains perturb cyclization fidelity and result in aberrant thioether topologies that cannot be corrected by the wild type enzyme, suggesting an element of kinetic control in the normal cyclization sequence. Overall, this work provides the most comprehensive correlation of the structural and functional properties of a LanM enzyme reported to date and should inform mechanistic studies of the biosynthesis of other ribosomally synthesized and post-translationally modified peptide natural products.
Collapse
|
8
|
Subcellular Localization and Assembly Process of the Nisin Biosynthesis Machinery in Lactococcus lactis. mBio 2020; 11:mBio.02825-20. [PMID: 33173006 PMCID: PMC7667030 DOI: 10.1128/mbio.02825-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nisin is the model peptide for LanBC-modified lantibiotics that are commonly modified and exported by a putative synthetase complex. Although the mechanism of maturation, transport, immunity, and regulation is relatively well understood, and structural information is available for some of the proteins involved (B. Li, J. P. J. Yu, J. S. Brunzelle, G. N. Moll, et al., Science 311:1464–1467, 2006, https://doi.org/10.1126/science.1121422; M. A. Ortega, Y. Hao, Q. Zhang, M. C. Walker, et al., Nature 517:509–512, 2015, https://doi.org/10.1038/nature13888; C. Hacker, N. A. Christ, E. Duchardt-Ferner, S. Korn, et al., J Biol Chem 290:28869–28886, 2015, https://doi.org/10.1074/jbc.M115.679969; Y. Y. Xu, X. Li, R. Q. Li, S. S. Li, et al., Acta Crystallogr D Biol Crystallogr 70:1499–1505, 2014, https://doi.org/10.1107/S1399004714004234), the subcellular localization and assembly process of the biosynthesis complex remain to be elucidated. In this study, we determined the spatial distribution of nisin synthesis-related enzymes and the transporter, revealing that the modification and secretion of the precursor nisin mainly occur at the old cell poles of L. lactis and that the transporter NisT is probably recruited later to this spot after the completion of the modification reactions by NisB and NisC. Fluorescently labeled nisin biosynthesis machinery was visualized directly by fluorescence microscopy. To our knowledge, this is the first study to provide direct evidence of the existence of such a complex in vivo. Importantly, the elucidation of the “order of assembly” of the complex will facilitate future endeavors in the investigation of the nisin secretion mechanism and even the isolation and structural characterization of the complete complex. Nisin, a class I lantibiotic, is synthesized as a precursor peptide by a putative membrane-associated lanthionine synthetase complex consisting of the dehydratase NisB, the cyclase NisC, and the ABC transporter NisT. Here, we characterize the subcellular localization and the assembly process of the nisin biosynthesis machinery in Lactococcus lactis by mutational analyses and fluorescence microscopy. Precursor nisin, NisB, and NisC were found to be mainly localized at the cell poles, with a preference for the old poles. They were found to be colocalized at the same spots in these old pole regions, functioning as a nisin modification complex. In contrast, the transporter NisT was found to be distributed uniformly and circumferentially in the membrane. When nisin secretion was blocked by mutagenesis of NisT, the nisin biosynthesis machinery was also visualized directly at a polar position using fluorescence microscopy. The interactions between NisB and other components of the machinery were further studied in vivo, and therefore, the “order of assembly” of the complex was revealed, indicating that NisB directly or indirectly plays the role of a polar “recruiter” in the initial assembly process. Additionally, a potential domain that is located at the surface of the elimination domain of NisB was identified to be crucial for the polar localization of NisB. Based on these data, we propose a model wherein precursor nisin is first completely modified by the nisin biosynthesis machinery, preventing the premature secretion of partially modified peptides, and subsequently secreted by recruited NisT, preferentially at the old pole regions.
Collapse
|
9
|
Shan C, Wu H, Zhou J, Yan W, Zhang J, Liu X. Synergistic Effects of Bacteriocin from Lactobacillus panis C-M2 Combined with Dielectric Barrier Discharged Non-Thermal Plasma (DBD-NTP) on Morganella sp. in Aquatic Foods. Antibiotics (Basel) 2020; 9:antibiotics9090593. [PMID: 32927848 PMCID: PMC7557774 DOI: 10.3390/antibiotics9090593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
In this paper, Lactocin C-M2(C-M2) was used together with a new non-thermal technology, non-thermal plasma sterilization (NTPS), to inactive the putrefactive bacteria Morganella sp. wf-1 isolated from aquatic foods. The mechanism underlining the action mode of C-M2 and NTPS was investigated, revealing that the bacteriocin and NTPS had synergistic effects on the disinfection of Morganella sp. wf-1. Compared with the bacteria cells treated by only C-M2 or NTPS, the plasmolysis of cells treated by C-M2 and NTPS was to a larger extent. Moreover, the cell permeability and the contents of UV-absorbing compounds and K+ released from the intra-cells was significantly higher for the C-M2 + NTPS treated cells than the others (p < 0.05), and conversely was the SFA/UFA ratio (p < 0.05). The results on DNA damage showed that, 8-hydroxy-2'-deoxyguanosine(8-OHdG) content in C-M2 + NTPS treated cells was approximately 7 -fold and 2.5-fold greater than those in the C-M2- and NTPS-treated cells, respectively, indicating furthermore the eventual rupture of Morganella sp. wf-1 cells. The results showed the potential of the application of the bacteriocin and NTPS in the food industry.
Collapse
Affiliation(s)
- Chengjun Shan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (W.Y.)
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.W.); (J.Z.)
| | - Han Wu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.W.); (J.Z.)
| | - Jianzhong Zhou
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.W.); (J.Z.)
| | - Wenjing Yan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (W.Y.)
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (W.Y.)
- Correspondence: (J.Z.); (X.L.)
| | - Xiaoli Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (W.Y.)
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.W.); (J.Z.)
- Correspondence: (J.Z.); (X.L.)
| |
Collapse
|
10
|
Huang L, Zeng X, Sun Z, Wu A, He J, Dang Y, Pan D. Production of a safe cured meat with low residual nitrite using nitrite substitutes. Meat Sci 2020; 162:108027. [DOI: 10.1016/j.meatsci.2019.108027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
|
11
|
Niu C, Xue Y, Liu C, Zheng F, Wang J, Li Q. Identification of gas-forming spoilage bacteria in chili sauce and its control using nisin and salt. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Habibi Y, Uggowitzer KA, Issak H, Thibodeaux CJ. Insights into the Dynamic Structural Properties of a Lanthipeptide Synthetase using Hydrogen-Deuterium Exchange Mass Spectrometry. J Am Chem Soc 2019; 141:14661-14672. [PMID: 31449409 DOI: 10.1021/jacs.9b06020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs) proceeds via the multistep maturation of genetically encoded precursor peptides, often catalyzed by enzymes with multiple functions and iterative activities. Recent studies have suggested that, among other factors, conformational sampling of enzyme:peptide complexes likely plays a critical role in defining the kinetics and, ultimately, the set of post-translational modifications in these systems. However, detailed characterizations of these putative conformational sampling mechanisms have not yet been possible on many RiPP biosynthetic systems. In this study, we report the first comprehensive application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) to study the biophysical properties of a RiPP biosynthetic enzyme. Using the well-characterized class II lanthipeptide synthetase HalM2 as a model system, we have employed HDX-MS to demonstrate that HalM2 is indeed a highly structurally dynamic enzyme. Using this HDX-MS approach, we have identified novel precursor peptide binding elements, have uncovered long-range structural communication across the enzyme that is triggered by ligand binding and ATP hydrolysis, and have detected specific interactions between the HalM2 synthetase and the leader- and core-peptide subdomains of the modular HalA2 precursor peptide substrate. The functional relevance of the dynamic HalM2 elements discovered in this study are validated with biochemical assays and kinetic analysis of a panel of HDX-MS guided variant enzymes. Overall, the data have provided a wealth of fundamentally new information on LanM systems that will inform the rational manipulation and engineering of these impressive multifunctional catalysts. Moreover, this work highlights the broad utility of the HDX-MS platform for revealing important biophysical properties and enzyme structural dynamics that likely play a widespread role in RiPP biosynthesis.
Collapse
Affiliation(s)
- Yeganeh Habibi
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| | - Kevin A Uggowitzer
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| | - Hassan Issak
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| | - Christopher J Thibodeaux
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| |
Collapse
|
13
|
Miljkovic M, Lozo J, Mirkovic N, O'Connor PM, Malesevic M, Jovcic B, Cotter PD, Kojic M. Functional Characterization of the Lactolisterin BU Gene Cluster of Lactococcus lactis subsp. lactis BGBU1-4. Front Microbiol 2018; 9:2774. [PMID: 30498487 PMCID: PMC6249370 DOI: 10.3389/fmicb.2018.02774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/29/2018] [Indexed: 11/13/2022] Open
Abstract
The gene cluster responsible for the production of the aureocin A53-like bacteriocin, lactolisterin BU, is located on plasmid pBU6 in Lactococcus lactis subsp. lactis BGBU1-4. Heterologous expression of pBU6 confirmed that production and limited immunity to lactolisterin BU were provided by the plasmid. Comparative analysis of aureocin A53-like operons revealed that the structural genes shared a low level of identity, while other genes were without homology, indicating a different origin. Subcloning and expression of genes located downstream of the structural gene, lliBU, revealed that the lactolisterin BU cluster consists of four genes: the structural gene lliBU, the abcT gene encoding an ABC transporter, the accL gene encoding an accessory protein and the immL gene which provides limited immunity to lactolisterin BU. Reverse transcription analysis revealed that all genes were transcribed as one polycistronic mRNA. Attempts to split the lactolisterin BU operon, even when both parts were under control of the PlliBU promoter, were unsuccessful indicating that expression of lactolisterin BU is probably precisely regulated at the translational level by translational coupling and is possible only when all genes of the operon are in cis constellation. Two ρ-independent transcription terminators were detected in the lactolisterin BU operon: the first in the intergenic region of the lliBU and abcT genes and the second at the end of operon. Deletion of the second transcription terminator did not influence production of the bacteriocin in lactococci.
Collapse
Affiliation(s)
- Marija Miljkovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Lozo
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nemanja Mirkovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Paula M O'Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Milka Malesevic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branko Jovcic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Milan Kojic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Modifying the Lantibiotic Mutacin 1140 for Increased Yield, Activity, and Stability. Appl Environ Microbiol 2018; 84:AEM.00830-18. [PMID: 29776930 DOI: 10.1128/aem.00830-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/15/2018] [Indexed: 01/31/2023] Open
Abstract
Mutacin 1140 belongs to the epidermin family of type AI lantibiotics. This family has a broad spectrum of activity against Gram-positive bacteria. The binding of mutacin 1140 to lipid II leads to the inhibition of cell wall synthesis. Pharmacokinetic experiments with type AI lantibiotics are generally discouraging for clinical applications due to the short half-life of these compounds. The unprotected dehydrated and protease-susceptible residues outside the lanthionine rings may play a role in the short half-life in physiological settings. Previous mutagenesis work on mutacin 1140 has been limited to the lanthionine-forming residues, the C-terminally decarboxylated residue, and single amino acid substitutions at residues Phe1, Trp4, Dha5, and Arg13. To study the importance of the dehydrated (Dha5 and Dhb14) and protease-susceptible (Lys2 and Arg13) residues within mutacin 1140 for stability and bioactivity, each of these residues was evaluated for its impact on production and inhibitory activity. More than 15 analogs were purified, enabling direct comparison of the activities against a select panel of Gram-positive bacteria. The efficiency of the posttranslational modification (PTM) machinery of mutacin 1140 is highly restricted on its substrate. Analogs in the various intermediate stages of PTMs were observed as minor products following single point mutations at the 2nd, 5th, 13th, and 14th positions. The combination of alanine substitutions at the Dha5 and Dhb14 positions abolished mutacin 1140 production, while the production was restored by substitution of a Gly residue at one of these positions. Analogs with improved activity, productivity, and proteolytic stability were identified.IMPORTANCE Our findings show that the efficiency of mutacin 1140 PTMs is highly dependent on the core peptide sequence. Analogs in various intermediate stages of PTMs can be transported by the bacterium, which indicates that PTMs and transport are finely tuned for the native mutacin 1140 core peptide. Only certain combinations of amino acid substitutions at the Dha5 and Dhb14 dehydrated residue positions were tolerated. Observation of glutamylated core peptide analogs shows that dehydrations occur in a glutamate-dependent manner. Interestingly, mutations at positions outside rings A and B, the lipid II binding domain, would interfere with lipid II binding. Purified mutacin 1140 analogs have various activities and selectivities against different genera of bacteria, supporting the effort to generate analogs with higher specificity against pathogenic bacteria. The discovery of analogs with improved inhibitory activity against pathogenic bacteria, increased stability in the presence of protease, and higher product yields may promote the clinical development of this unique antimicrobial compound.
Collapse
|
15
|
Innovative approaches to nisin production. Appl Microbiol Biotechnol 2018; 102:6299-6307. [PMID: 29850958 DOI: 10.1007/s00253-018-9098-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 09/29/2022]
Abstract
Nisin is a bacteriocin produced by Lactococcus lactis that has been approved by the Food Drug Administration for utilization as a GRAS status food additive. Nisin can inhibit spore germination and demonstrates antimicrobial activity against Listeria, Clostridium, Staphylococcus, and Bacillus species. Under some circumstances, it plays an immune modulator role and has a selective cytotoxic effect against cancer cells, although it is notable that the high production cost of nisin-a result of the low nisin production yield of producer strains-is an important factor restricting intensive use. In recent years, production of nisin has been significantly improved through genetic modifications to nisin producer strains and through innovative applications in the fermentation process. Recently, 15,400 IU ml-1 nisin production has been achieved in L. lactis cells following genetic modifications by eliminating the factors that negatively affect nisin biosynthesis or by increasing the cell density of the producing strains in the fermentation medium. In this review, innovative approaches related to cell and fermentation systems aimed at increasing nisin production are discussed and interpreted, with a view to increasing industrial nisin production.
Collapse
|
16
|
Nickling JH, Baumann T, Schmitt FJ, Bartholomae M, Kuipers OP, Friedrich T, Budisa N. Antimicrobial Peptides Produced by Selective Pressure Incorporation of Non-canonical Amino Acids. J Vis Exp 2018:57551. [PMID: 29781997 PMCID: PMC6101111 DOI: 10.3791/57551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nature has a variety of possibilities to create new protein functions by modifying the sequence of the individual amino acid building blocks. However, all variations are based on the 20 canonical amino acids (cAAs). As a way to introduce additional physicochemical properties into polypeptides, the incorporation of non-canonical amino acids (ncAAs) is increasingly used in protein engineering. Due to their relatively short length, the modification of ribosomally synthesized and post-translationally modified peptides by ncAAs is particularly attractive. New functionalities and chemical handles can be generated by specific modifications of individual residues. The selective pressure incorporation (SPI) method utilizes auxotrophic host strains that are deprived of an essential amino acid in chemically defined growth media. Several structurally and chemically similar amino acid analogs can then be activated by the corresponding aminoacyl-tRNA synthetase and provide residue-specific cAA(s) → ncAA(s) substitutions in the target peptide or protein sequence. Although, in the context of the SPI method, ncAAs are also incorporated into the host proteome during the phase of recombinant gene expression, the majority of the cell's resources are assigned to the expression of the target gene. This enables efficient residue-specific incorporation of ncAAs often accompanied with high amounts of modified target. The presented work describes the in vivo incorporation of six proline analogs into the antimicrobial peptide nisin, a lantibiotic naturally produced by Lactococcus lactis. Antimicrobial properties of nisin can be changed and further expanded during its fermentation and expression in auxotrophic Escherichia coli strains in defined growth media. Thereby, the effects of residue-specific replacement of cAAs with ncAAs can deliver changes in antimicrobial activity and specificity. Antimicrobial activity assays and fluorescence microscopy are used to test the new nisin variants for growth inhibition of a Gram-positive Lactococcus lactis indicator strain. Mass spectroscopy is used to confirm ncAA incorporation in bioactive nisin variants.
Collapse
Affiliation(s)
- Jessica H Nickling
- Department of Biocatalysis, Institute of Chemistry, Technische Universität Berlin
| | - Tobias Baumann
- Department of Biocatalysis, Institute of Chemistry, Technische Universität Berlin;
| | - Franz-Josef Schmitt
- Department of Bioenergetics, Institute of Chemistry, Technische Universität Berlin
| | - Maike Bartholomae
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, University of Groningen
| | - Oscar P Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, University of Groningen
| | - Thomas Friedrich
- Department of Bioenergetics, Institute of Chemistry, Technische Universität Berlin
| | - Nediljko Budisa
- Department of Biocatalysis, Institute of Chemistry, Technische Universität Berlin
| |
Collapse
|
17
|
Diversified transporters and pathways for bacteriocin secretion in gram-positive bacteria. Appl Microbiol Biotechnol 2018; 102:4243-4253. [DOI: 10.1007/s00253-018-8917-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
|
18
|
Niu C, Fan Z, Zheng F, Li Y, Liu C, Wang J, Li Q. Isolation and identification of gas-producing spoilage microbes in fermented broad bean paste. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Johnson EM, Jung DYG, Jin DYY, Jayabalan DR, Yang DSH, Suh JW. Bacteriocins as food preservatives: Challenges and emerging horizons. Crit Rev Food Sci Nutr 2017; 58:2743-2767. [PMID: 28880573 DOI: 10.1080/10408398.2017.1340870] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The increasing demand for fresh-like food products and the potential health hazards of chemically preserved and processed food products have led to the advent of alternative technologies for the preservation and maintenance of the freshness of the food products. One such preservation strategy is the usage of bacteriocins or bacteriocins producing starter cultures for the preservation of the intended food matrixes. Bacteriocins are ribosomally synthesized smaller polypeptide molecules that exert antagonistic activity against closely related and unrelated group of bacteria. This review is aimed at bringing to lime light the various class of bacteriocins mainly from gram positive bacteria. The desirable characteristics of the bacteriocins which earn them a place in food preservation technology, the success story of the same in various food systems, the various challenges and the strategies employed to put them to work efficiently in various food systems has been discussed in this review. From the industrial point of view various aspects like the improvement of the producer strains, downstream processing and purification of the bacteriocins and recent trends in engineered bacteriocins has also been briefly discussed in this review.
Collapse
Affiliation(s)
- Eldin Maliyakkal Johnson
- a Centre for Nutraceutical and Pharmaceutical Materials , College of Natural Science , Myongji University , Yongin , Korea.,b Food Microbiology and Bioprocess Laboratory , Department of Life Science, National Institute of Technology , Rourkela, Odisha , India
| | - Dr Yong-Gyun Jung
- c Interdisciplinary Program of Biomodulation , College of Natural Science , Myongji University , Yongin , Korea
| | - Dr Ying-Yu Jin
- d Myongji University Bioefficiency Research Centre , College of Natural Science , Myongji University , Yongin , Korea
| | - Dr Rasu Jayabalan
- b Food Microbiology and Bioprocess Laboratory , Department of Life Science, National Institute of Technology , Rourkela, Odisha , India
| | - Dr Seung Hwan Yang
- e Department of Biotechnology , Chonnam National University-Yeosu Campus , Yeosu , Korea
| | - Joo Won Suh
- a Centre for Nutraceutical and Pharmaceutical Materials , College of Natural Science , Myongji University , Yongin , Korea.,f Division of Bioscience and Bioinformatics , College of Natural Science, Myongji University , Yongin , Korea
| |
Collapse
|
20
|
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 2017; 117:5457-5520. [PMID: 28135077 PMCID: PMC5408752 DOI: 10.1021/acs.chemrev.6b00591] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Lanthipeptides
are ribosomally synthesized and post-translationally
modified peptides (RiPPs) that display a wide variety of biological
activities, from antimicrobial to antiallodynic. Lanthipeptides that
display antimicrobial activity are called lantibiotics. The post-translational
modification reactions of lanthipeptides include dehydration of Ser
and Thr residues to dehydroalanine and dehydrobutyrine, a transformation
that is carried out in three unique ways in different classes of lanthipeptides.
In a cyclization process, Cys residues then attack the dehydrated
residues to generate the lanthionine and methyllanthionine thioether
cross-linked amino acids from which lanthipeptides derive their name.
The resulting polycyclic peptides have constrained conformations that
confer their biological activities. After installation of the characteristic
thioether cross-links, tailoring enzymes introduce additional post-translational
modifications that are unique to each lanthipeptide and that fine-tune
their activities and/or stability. This review focuses on studies
published over the past decade that have provided much insight into
the mechanisms of the enzymes that carry out the post-translational
modifications.
Collapse
Affiliation(s)
- Lindsay M Repka
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R Chekan
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Satish K Nair
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Two-Component Systems Involved in Susceptibility to Nisin A in Streptococcus pyogenes. Appl Environ Microbiol 2016; 82:5930-9. [PMID: 27474716 DOI: 10.1128/aem.01897-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/13/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Two-component systems (TCSs) are regulatory systems in bacteria that play important roles in sensing and adapting to the environment. In this study, we systematically evaluated the roles of TCSs in the susceptibility of the group A Streptococcus (GAS; Streptococcus pyogenes) SF370 strain to several types of lantibiotics. Using individual TCS deletion mutants, we found that the deletion of srtRK (spy_1081-spy_1082) in SF370 increased the susceptibility to nisin A, which is produced by Lactococcus lactis ATCC 11454, but susceptibility to other types of lantibiotics (nukacin ISK-1, produced by Staphylococcus warneri, and staphylococcin C55, produced by Staphylococcus aureus) was not altered in the TCS mutants tested. The expression of srtFEG (spy_1085 to spy_1087), which is located downstream of srtRK and is homologous to ABC transporters, was increased in response to nisin A. However, srtEFG expression was not induced by nisin A in the srtRK mutant. The inactivation of srtFEG increased the susceptibility to nisin A. These results suggest that SrtRK controls SrtFEG expression to alter the susceptibility to nisin A. Further experiments showed that SrtRK is required for coexistence with L. lactis ATCC 11454, which produces nisin A. Our results elucidate the important roles of S. pyogenes TCSs in the interactions between different bacterial species, including bacteriocin-producing bacteria. IMPORTANCE In this study, we focused on the association of TCSs with susceptibility to bacteriocins in S. pyogenes SF370, which has no ability to produce bacteriocins, and reported two major new findings. We demonstrated that the SrtRK TCS is related to susceptibility to nisin A by controlling the ABC transporter SrtFEG. We also showed that S. pyogenes SrtRK is important for survival when the bacteria are cocultured with nisin A-producing Lactococcus lactis This report highlights the roles of TCSs in the colocalization of bacteriocin-producing bacteria and non-bacteriocin-producing bacteria. Our findings provide new insights into the function of TCSs in S. pyogenes.
Collapse
|
22
|
Bacteriocin-Producing Lactic Acid Bacteria Isolated from Mangrove Forests in Southern Thailand as Potential Bio-Control Agents: Purification and Characterization of Bacteriocin Produced by Lactococcus lactis subsp. lactis KT2W2L. Probiotics Antimicrob Proteins 2016; 5:264-78. [PMID: 26783072 DOI: 10.1007/s12602-013-9150-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of this work was to purify and characterize the bacteriocin produced by Lactococcus lactis subsp. lactis KT2W2L previously isolated from mangrove forests in southern Thailand, in order to evaluate its potential as new food protective agent. The active peptide from the cell-free supernatant of this strain was purified in 4 steps: (1) precipitation with 70 % saturated ammonium sulfate, (2) elution on a reversed-phase cartridge using different concentrations of acetonitrile, (3) cation-exchange chromatography and (4) final purification by reversed-phase HPLC on a C8 column. The molecular mass of 3,329.5254 Da of the purified bacteriocin, determined by mass spectrometry, is nearly identical to that of peptide nisin Z. The activity of the purified bacteriocin was unaffected by pH (2.0-10.0), thermostable but was sensitive to proteolytic enzymes. The bacteriocin activity was stable after 8 weeks of storage at -20 °C and 7 weeks of storage at 4 °C, but decreased after 3 weeks of storage at 37 °C. It was stable when incubated for 1 month at 4 °C in 0-30 % NaCl. Inhibitory spectrum of this bacteriocin showed a wide range of activity against similar bacterial strains, food-spoilage and food-borne pathogens. L. lactis subsp. lactis KT2W2L was sensitive to kanamycin, penicillin and tetracycline but resistant to ampicillin, gentamicin and vancomycin. The fragment obtained after amplification of genomic DNA from L. lactis subsp. lactis KT2W2L, with specific primers for bacteriocin genes, presented 99 % homology to the nisin Z gene. PCR amplification demonstrated that L. lactis subsp. lactis KT2W2L does not harbor virulence genes cylA, cylB, efaAfs and esp. The bacteriocin and its producing strain may find application as bio-preservatives for reduction in food-spoilage and food-borne pathogens in food products.
Collapse
|
23
|
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Walter F, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Pühler A. Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster. J Proteomics 2015; 125:1-16. [DOI: 10.1016/j.jprot.2015.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/02/2015] [Accepted: 04/12/2015] [Indexed: 01/05/2023]
|
24
|
Streptomyces lavendulaeProtease Inhibitor: Purification, Gene Overexpression, and 3-Dimensional Structure. J CHEM-NY 2015. [DOI: 10.1155/2015/963041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protease inhibitorstrypsin (STI1, Streptomyces trypsin inhibitor 1) has been identified, purified by ammonium sulfate precipitation and Sephadex G-100 gel filtration. SDS-PAGE of protease inhibitor showed molecular weight of approximately 10 KDa. PCR product (~1615 bp) ofsti1gene was cloned in expression vectorpACYC177/ET3dand transformed inEscherichia coliJM109.Protease inhibitorstrypsin was purified and used as antivirus against Coxsackievirus B3 (CVB3). CVB3 is one of the major causative agents of chronic, subacute, acute, and fulminant myocarditis as well as pancreatitis and aseptic meningitis. It has been reported that more than 50% of human myocarditis is associated with CVB3 infection.
Collapse
|
25
|
Synthesis and succinylation of subtilin-like lantibiotics are strongly influenced by glucose and transition state regulator AbrB. Appl Environ Microbiol 2014; 81:614-22. [PMID: 25381239 DOI: 10.1128/aem.02579-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subtilin and the closely related entianin are class I lantibiotics produced by different subspecies of Bacillus subtilis. Both molecules are ribosomally synthesized peptide antibiotics with unusual ring structures. Subtilin-like lantibiotics develop strong antibiotic activities against various Gram-positive organisms with an efficiency similar to that of nisin from Lactococcus lactis. In contrast to nisin, subtilin-like lantibiotics partially undergo an additional posttranslational modification, where the N-terminal tryptophan residue becomes succinylated, resulting in drastically reduced antibiotic activities. A highly sensitive high-performance liquid chromatography (HPLC)-based quantification method enabled us to determine entianin and succinylated entianin (S-entianin) concentrations in the supernatant during growth. We show that entianin synthesis and the degree of succinylation drastically change with culture conditions. In particular, increasing glucose concentrations resulted in higher entianin amounts and lower proportions of S-entianin in Landy-based media. In contrast, no succinylation was observed in medium A with 10% glucose. Interestingly, glucose retarded the expression of entianin biosynthesis genes. Furthermore, deletion of the transition state regulator AbrB resulted in a 6-fold increased entianin production in medium A with 10% glucose. This shows that entianin biosynthesis in B. subtilis is strongly influenced by glucose, in addition to its regulation by the transition state regulator AbrB. Our results suggest that the mechanism underlying the succinylation of subtilin-like lantibiotics is enzymatically catalyzed and occurs in the extracellular space or at the cellular membrane.
Collapse
|
26
|
|
27
|
Molecular characterization of a recombinant manganese superoxide dismutase from Lactococcus lactis M4. BIOMED RESEARCH INTERNATIONAL 2014; 2014:469298. [PMID: 24592392 PMCID: PMC3921932 DOI: 10.1155/2014/469298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 10/12/2013] [Accepted: 11/03/2013] [Indexed: 11/18/2022]
Abstract
A superoxide dismutase (SOD) gene of Lactococcus lactis M4 was cloned and expressed in a prokaryotic system. Sequence analysis revealed an open reading frame of 621 bp which codes for 206 amino acid residues. Expression of sodA under T7 promoter exhibited a specific activity of 4967 U/mg when induced with 1 mM of isopropyl-β-D-thiogalactopyranoside. The recombinant SOD was purified to homogeneity by immobilised metal affinity chromatography and Superose 12 gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analyses of the recombinant SOD detected a molecular mass of approximately 27 kDa. However, the SOD was in dimer form as revealed by gel filtration chromatography. The purified recombinant enzyme had a pI of 4.5 and exhibited maximal activity at 25°C and pH 7.2. It was stable up to 45°C. The insensitivity of this lactococcal SOD to cyanide and hydrogen peroxide established that it was a MnSOD. Although it has 98% homology to SOD of L. lactis IL1403, this is the first elucidated structure of lactococcal SOD revealing active sites containing the catalytic manganese coordinated by four ligands (H-27, H-82, D-168, and H-172).
Collapse
|
28
|
Snyder AB, Worobo RW. Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:28-44. [PMID: 23818338 DOI: 10.1002/jsfa.6293] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 05/16/2023]
Abstract
Antimicrobial peptides are produced across all domains of life. Among these diverse compounds, those produced by bacteria have been most successfully applied as agents of biocontrol in food and agriculture. Bacteriocins are ribosomally synthesized, proteinaceous compounds that inhibit the growth of closely related bacteria. Even within the subcategory of bacteriocins, the peptides vary significantly in terms of the gene cluster responsible for expression, and chemical and structural composition. The polycistronic gene cluster generally includes a structural gene and various combinations of immunity, secretion, and regulatory genes and modifying enzymes. Chemical variation can exist in amino acid identity, chain length, secondary and tertiary structural features, as well as specificity of active sites. This diversity posits bacteriocins as potential antimicrobial agents with a range of functions and applications. Those produced by food-grade bacteria and applied in normally occurring concentrations can be used as GRAS-status food additives. However, successful application requires thorough characterization.
Collapse
Affiliation(s)
- Abigail B Snyder
- Department of Food Science, Cornell University, Geneva, NY, 14456, USA
| | | |
Collapse
|
29
|
|
30
|
Loman NJ, Gladstone RA, Constantinidou C, Tocheva AS, Jefferies JMC, Faust SN, O’Connor L, Chan J, Pallen MJ, Clarke SC. Clonal expansion within pneumococcal serotype 6C after use of seven-valent vaccine. PLoS One 2013; 8:e64731. [PMID: 23724086 PMCID: PMC3665553 DOI: 10.1371/journal.pone.0064731] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/17/2013] [Indexed: 12/29/2022] Open
Abstract
Streptococcus pneumoniae causes invasive infections, primarily at the extremes of life. A seven-valent conjugate vaccine (PCV7) is used to protect against invasive pneumococcal disease in children. Within three years of PCV7 introduction, we observed a fourfold increase in serotype 6C carriage, predominantly due to a single clone. We determined the whole-genome sequences of nineteen S. pneumoniae serotype 6C isolates, from both carriage (n = 15) and disease (n = 4) states, to investigate the emergence of serotype 6C in our population, focusing on a single multi-locus sequence type (MLST) clonal complex 395 (CC395). A phylogenetic network was constructed to identify different lineages, followed by analysis of variability in gene sets and sequences. Serotype 6C isolates from this single geographical site fell into four broad phylogenetically distinct lineages. Variation was seen in the 6C capsular locus and in sequences of genes encoding surface proteins. The largest clonal complex was characterised by the presence of lantibiotic synthesis locus. In our population, the 6C capsular locus has been introduced into multiple lineages by independent capsular switching events. However, rapid clonal expansion has occurred within a single MLST clonal complex. Worryingly, plasticity exists within current and potential vaccine-associated loci, a consideration for future vaccine use, target selection and design.
Collapse
Affiliation(s)
- Nicholas J. Loman
- Centre for Systems Biology, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A. Gladstone
- Molecular Microbiology Group, Sir Henry Wellcome Laboratories, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Chrystala Constantinidou
- Division of Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Anna S. Tocheva
- Molecular Microbiology Group, Sir Henry Wellcome Laboratories, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Johanna M. C. Jefferies
- Molecular Microbiology Group, Sir Henry Wellcome Laboratories, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Southampton NIHR, Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom
| | - Saul N. Faust
- Molecular Microbiology Group, Sir Henry Wellcome Laboratories, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR, Wellcome Trust Clinical Research Facility, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom
- Southampton NIHR, Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom
| | - Leigh O’Connor
- Centre for Systems Biology, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jacqueline Chan
- Division of Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Mark J. Pallen
- Division of Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Stuart C. Clarke
- Molecular Microbiology Group, Sir Henry Wellcome Laboratories, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Health Protection Agency, Southampton, United Kingdom
- Southampton NIHR, Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom
| |
Collapse
|
31
|
Abstract
The biosynthesis of several classes of ribosomally synthesized and posttranslationally modified peptides involves dehydration of serine and threonine residues. For class I lantibiotics, thiopeptides, and goadsporin, this dehydration is catalyzed by lanthionine biosynthetic enzyme B (LanB) or LanB-like proteins. Although LanB proteins have been studied since 1992, in vitro reconstitution of their dehydration activity has been elusive. We show here the in vitro activity of the dehydratase involved in the biosynthesis of the food preservative nisin (NisB). In vitro, NisB dehydrated its substrate peptide NisA eight times in the presence of glutamate, ATP, Mg(2+), and the ribosomal/membrane fraction of bacterial cell extract. Mutation of 23 highly conserved residues of NisB identified a number of amino acids that are essential for dehydration activity. In addition, these mutagenesis studies identified three mutants, R786A, R826A, and H961A, that result in multiple glutamylations of the NisA substrate. Glutamylation was observed during both Escherichia coli coexpression of NisA with these mutants and in vitro assays. Treatment of the glutamylated substrate with WT NisB results in dehydrated NisA, suggesting that the glutamylated peptide is an intermediate in dehydration. Collectively, these studies suggest that dehydration involves glutamylation of the side chains of Ser and Thr followed by elimination. The latter step has precedent in the virginiamycin resistance protein virginiamycin B lyase. These studies will facilitate investigation of other LanB proteins involved in the biosynthesis of lantibiotics, thiopeptides, and goadsporin.
Collapse
|
32
|
Christ NA, Bochmann S, Gottstein D, Duchardt-Ferner E, Hellmich UA, Düsterhus S, Kötter P, Güntert P, Entian KD, Wöhnert J. The First structure of a lantibiotic immunity protein, SpaI from Bacillus subtilis, reveals a novel fold. J Biol Chem 2012; 287:35286-35298. [PMID: 22904324 PMCID: PMC3471728 DOI: 10.1074/jbc.m112.401620] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/16/2012] [Indexed: 11/06/2022] Open
Abstract
Lantibiotics are peptide-derived antibiotics that inhibit the growth of Gram-positive bacteria via interactions with lipid II and lipid II-dependent pore formation in the bacterial membrane. Due to their general mode of action the Gram-positive producer strains need to express immunity proteins (LanI proteins) for protection against their own lantibiotics. Little is known about the immunity mechanism protecting the producer strain against its own lantibiotic on the molecular level. So far, no structures have been reported for any LanI protein. We solved the structure of SpaI, a LanI protein from the subtilin producing strain Bacillus subtilis ATCC 6633. SpaI is a 16.8-kDa lipoprotein that is attached to the outside of the cytoplasmic membrane via a covalent diacylglycerol anchor. SpaI together with the ABC transporter SpaFEG protects the B. subtilis membrane from subtilin insertion. The solution-NMR structure of a 15-kDa biologically active C-terminal fragment reveals a novel fold. We also demonstrate that the first 20 N-terminal amino acids not present in this C-terminal fragment are unstructured in solution and are required for interactions with lipid membranes. Additionally, growth tests reveal that these 20 N-terminal residues are important for the immunity mediated by SpaI but most likely are not part of a possible subtilin binding site. Our findings are the first step on the way of understanding the immunity mechanism of B. subtilis in particular and of other lantibiotic producing strains in general.
Collapse
Affiliation(s)
- Nina A Christ
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany
| | - Sophie Bochmann
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Daniel Gottstein
- Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany; Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany
| | - Ute A Hellmich
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany; Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Stefanie Düsterhus
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Peter Kötter
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Peter Güntert
- Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany; Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; Cluster of Excellence "Macromolecular Complexes," Goethe University, 60438 Frankfurt am Main, Germany.
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany; Cluster of Excellence "Macromolecular Complexes," Goethe University, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
33
|
Abstract
The lantibiotic nisin has been used as an effective food preservative to combat food-borne pathogens for over 40 y. Despite this successful use, nisin's stability at pH 7 is limited. Herein, we describe a nisin analog encoded on the genome of the thermophilic bacterium Geobacillus thermodenitrificans NG80-2. This analog termed geobacillin I was obtained by heterologous expression in Escherichia coli and subsequent purification. Extensive NMR characterization demonstrated that geobacillin I contains seven thioether cross-links, two more than the five cross-links found in nisin and the most cross-links found in any lantibiotic to date. The antimicrobial spectrum of geobacillin I was generally similar to that of nisin A, with increased activity against Streptococcus dysgalactiae, one of the causative agents of bovine mastitis. Geobacillin I demonstrated increased stability compared to nisin A. In addition to geobacillin I, the genome of G. thermodenitrificans NG80-2 also contains a class II lantibiotic biosynthetic gene cluster. The corresponding compound was produced in E. coli, and has a ring topology different than that of any known lantibiotic as determined by tandem mass spectrometry. Interestingly, geobacillin II only demonstrated antimicrobial activity against Bacillus strains. Seven Geobacillus strains were screened for production of the geobacillins using whole-cell MALDI-MS and five were shown to produce geobacillin I, but none produced geobacillin II.
Collapse
|
34
|
Salivaricin D, a novel intrinsically trypsin-resistant lantibiotic from Streptococcus salivarius 5M6c isolated from a healthy infant. Appl Environ Microbiol 2011; 78:402-10. [PMID: 22101034 DOI: 10.1128/aem.06588-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we purified and characterized a newly identified lantibiotic (salivaricin D) from Streptococcus salivarius 5M6c. Salivaricin D is a 34-amino-acid-residue peptide (3,467.55 Da); the locus of the gene encoding this peptide is a 16.5-kb DNA segment which contains genes encoding the precursor of two lantibiotics, two modification enzymes (dehydratase and cyclase), an ABC transporter, a serine-like protease, immunity proteins (lipoprotein and ABC transporters), a response regulator, and a sensor histidine kinase. The immunity gene (salI) was heterologously expressed in a sensitive indicator and provided significant protection against salivaricin D, confirming its immunity function. Salivaricin D is a naturally trypsin-resistant lantibiotic that is similar to nisin-like lantibiotics. It is a relatively broad-spectrum bacteriocin that inhibits members of many genera of Gram-positive bacteria, including the important human pathogens Streptococcus pyogenes and Streptococcus pneumoniae. Thus, Streptococcus salivarius 5M6c may be a potential biological agent for the control of oronasopharynx-colonizing streptococcal pathogens or may be used as a probiotic bacterium.
Collapse
|
35
|
Heterologous expression and purification of the dehydratase NisB involved in the biosynthesis of lantibiotic nisin. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0351-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
36
|
Complete nisin A gene cluster from Lactococcus lactis M78 (HM219853) — obtaining the nucleic acid sequence and comparing it to other published nisin sequences. Genes Genomics 2011. [DOI: 10.1007/s13258-010-0140-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Gong HS, Meng XC, Wang H. Mode of action of plantaricin MG, a bacteriocin active against Salmonella typhimurium. J Basic Microbiol 2011; 50 Suppl 1:S37-45. [PMID: 20967788 DOI: 10.1002/jobm.201000130] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/03/2010] [Indexed: 11/08/2022]
Abstract
Plantaricin MG is a 2,180-Da bacteriocin produced by Lactobacillus plantarum KLDS1.0391, which was isolated from Chinese traditional fermented cream. Plantaricin MG showed a broad inhibitory activity against not only Gram-positive bacteria but also Gram-negative bacteria including Listeria monocytogenes and Salmonella typhimurium. The mode of action of plantaricin MG on S. typhimurium was reported in this article. The addition of plantaricin MG to energized cells of S. typhimurium dissipated both, the transmembrane potential (Δψ) and the pH gradient (ΔpH). Energized membrane, obtained after the addition of glucose, was more susceptible to plantaricin MG action, leading to the release of intracellular K(+)ions, inorganic phosphate, ATP and UV-absorbing materials. These data suggest that the presence of a proton motive force promotes the interaction of plantaricin MG with the cytoplasmic membrane of energized cells, leading to pores formation which allows the efflux of ions, thereby ensuring efficient killing of target bacteria.
Collapse
Affiliation(s)
- Han-Sheng Gong
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, People's Republic of China
| | | | | |
Collapse
|
38
|
Goto Y, Okesli A, van der Donk WA. Mechanistic studies of Ser/Thr dehydration catalyzed by a member of the LanL lanthionine synthetase family. Biochemistry 2011; 50:891-8. [PMID: 21229987 PMCID: PMC3031989 DOI: 10.1021/bi101750r] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Members of the LanL family of lanthionine synthetases consist of three catalytic domains, an N-terminal pSer/pThr lyase domain, a central Ser/Thr kinase domain, and a C-terminal lanthionine cyclase domain. The N-terminal lyase domain has sequence homology with members of the OspF family of effector proteins. In this study, the residues in the lyase domain of VenL that are conserved in the active site of OspF proteins were mutated to evaluate their importance for catalysis. In addition, residues that are fully conserved in the LanL family but not in the OspF family were mutated. Activity assays with these mutant proteins are consistent with a model in which Lys80 in VenL deprotonates the α-proton of pSer/pThr residues to initiate the elimination reaction. Lys51 is proposed to activate this proton by coordination to the carbonyl of the pSer/pThr, and His53 is believed to protonate the phosphate leaving group. These functions are very similar to the corresponding homologous residues in OspF proteins. On the other hand, recognition of the phosphate group of pSer/pThr appears to be achieved differently in VenL than in the OspF proteins. Arg156 and Lys103 are thought to interact with the phosphate group on the basis of a structural homology model.
Collapse
Affiliation(s)
- Yuki Goto
- Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | | | |
Collapse
|
39
|
Trmčić A, Monnet C, Rogelj I, Bogovič Matijašić B. Expression of nisin genes in cheese—A quantitative real-time polymerase chain reaction approach. J Dairy Sci 2011; 94:77-85. [DOI: 10.3168/jds.2010-3677] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/05/2010] [Indexed: 11/19/2022]
|
40
|
Yoneyama F, Fukao M, Zendo T, Nakayama J, Sonomoto K. Biosynthetic characterization and biochemical features of the third natural nisin variant, nisin Q, produced by Lactococcus lactis 61-14. J Appl Microbiol 2009; 105:1982-90. [PMID: 19120645 DOI: 10.1111/j.1365-2672.2008.03958.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To characterize the genetic and biochemical features of nisin Q. METHODS AND RESULTS The nisin Q gene cluster was sequenced, and 11 putative orfs having 82% homology with the nisin A biosynthesis gene cluster were identified. Nisin Q production was confirmed from the nisQ-introduced nisin Z producer. In the reporter assay, nisin Q exhibited an induction level that was threefold lower than that of nisin A. Nisin Q demonstrated an antimicrobial spectrum similar to those of the other nisins. Under oxidizing conditions, nisin Q retained a higher level of activity than nisin A. This higher oxidative tolerance could be attributed to the presence of only one methionine residue in nisin Q, in contrast to other nisins that contain two. CONCLUSIONS The 11 orfs of the nisin producers were identical with regard to their functions. The antimicrobial spectra of the three natural nisins were similar. Nisin Q demonstrated higher oxidative tolerance than nisin A. SIGNIFICANCE AND IMPACT OF THE STUDY Genetic and biochemical features of nisin Q are similar to those of other variants. Moreover, owing to its higher oxidative tolerance, nisin Q is a potential alternative for nisin A.
Collapse
Affiliation(s)
- F Yoneyama
- Division of Microbial Science and Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
41
|
Lubelski J, Khusainov R, Kuipers OP. Directionality and coordination of dehydration and ring formation during biosynthesis of the lantibiotic nisin. J Biol Chem 2009; 284:25962-72. [PMID: 19620240 DOI: 10.1074/jbc.m109.026690] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lantibiotic nisin is a potent antimicrobial substance, which contains unusual lanthionine rings and dehydrated amino acid residues and is produced by Lactococcus lactis. Recently, the nisin biosynthetic machinery has been applied to introduce lanthionine rings in peptides other than nisin with potential therapeutic use. Due to difficulties in the isolation of the proposed synthetase complex (NisBTC), mechanistic information concerning the enzymatic biosynthesis of nisin is scarce. Here, we present the molecular characterization of a number of nisin mutants that affect ring formation. We have investigated in a systematic manner how these mutations influence dehydration events, which are performed enzymatically by the dehydratase NisB. Specific mutations that hampered ring formation allowed for the dehydration of serine residues that directly follow the rings and are normally unmodified. The combined information leads to the conclusion that 1) nisin biosynthesis is an organized directional process that starts at the N terminus of the molecule and continues toward the C terminus, and 2) NisB and NisC are alternating enzymes, whose activities follow one after another in a repetitive way. Thus, the dehydration and cyclization processes are not separated in time and space. On the basis of these results and previous knowledge, a working model for the sequence of events in the maturation of nisin is proposed.
Collapse
Affiliation(s)
- Jacek Lubelski
- Molecular Genetics Department, University of Groningen and Kluyver Centre for Genomics of Industrial Fermentation, Kerklaan 30, 9751NN Haren, The Netherlands
| | | | | |
Collapse
|
42
|
Microbial quorum sensing: a tool or a target for antimicrobial therapy? Biotechnol Appl Biochem 2009; 54:65-84. [PMID: 19594442 DOI: 10.1042/ba20090072] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inter-cell communication aided by released chemical signals when cell density reaches a critical concentration has been investigated for over 30 years as quorum sensing. Originally discovered in Gram-negative bacteria, quorum-sensing systems have also been studied extensively in Gram-positive bacteria and dimorphic fungi. Microbial communities communicating via quorum sensing employ various chemical signals to supervise their surrounding environment, alter genetic expression and gain advantage over their competitors. These signals vary from acylhomoserine lactones to small modified or unmodified peptides to complex gamma-butyrolactone molecules. The scope of this review is to give an insight into some of the quorum-sensing systems now known and to explore their role in microbial physiology and development of pathogenesis. Particular attention will be dedicated to the signalling molecules involved in quorum-sensing-mediated processes and the potential shown by some of their natural and synthetic analogues in the treatment of infections triggered by quorum sensing.
Collapse
|
43
|
Ding F, Tang P, Hsu MH, Cui P, Hu S, Yu J, Chiu CH. Genome evolution driven by host adaptations results in a more virulent and antimicrobial-resistant Streptococcus pneumoniae serotype 14. BMC Genomics 2009; 10:158. [PMID: 19361343 PMCID: PMC2678160 DOI: 10.1186/1471-2164-10-158] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 04/13/2009] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus pneumoniae serotype 14 is one of the most common pneumococcal serotypes that cause invasive pneumococcal diseases worldwide. Serotype 14 often expresses resistance to a variety of antimicrobial agents, resulting in difficulties in treatment. To gain insight into the evolution of virulence and antimicrobial resistance traits in S. pneumoniae from the genome level, we sequenced the entire genome of a serotype 14 isolate (CGSP14), and carried out comprehensive comparison with other pneumococcal genomes. Multiple serotype 14 clinical isolates were also genotyped by multilocus sequence typing (MLST). Results Comparative genomic analysis revealed that the CGSP14 acquired a number of new genes by horizontal gene transfer (HGT), most of which were associated with virulence and antimicrobial resistance and clustered in mobile genetic elements. The most remarkable feature is the acquisition of two conjugative transposons and one resistance island encoding eight resistance genes. Results of MLST suggested that the major driving force for the genome evolution is the environmental drug pressure. Conclusion The genome sequence of S. pneumoniae serotype 14 shows a bacterium with rapid adaptations to its lifecycle in human community. These include a versatile genome content, with a wide range of mobile elements, and chromosomal rearrangement; the latter re-balanced the genome after events of HGT.
Collapse
Affiliation(s)
- Feng Ding
- The CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Liu G, Zhong J, Ni J, Chen M, Xiao H, Huan L. Characteristics of the bovicin HJ50 gene cluster in Streptococcus bovis HJ50. MICROBIOLOGY-SGM 2009; 155:584-593. [PMID: 19202107 DOI: 10.1099/mic.0.022707-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bovicin HJ50 is a new lantibiotic containing a disulfide bridge produced by Streptococcus bovis HJ50; its encoding gene bovA was reported in our previous publication. To identify other genes involved in bovicin HJ50 production, DNA fragments flanking bovA were cloned and sequenced. The bovicin HJ50 biosynthesis gene locus was encoded by a 9.9 kb region of chromosomal DNA and consisted of at least nine genes in the following order: bovA, -M, -T, -E, -F, ORF1, ORF2, bovK and bovR. A thiol-disulfide oxidoreductase gene named sdb1 was located downstream of bovR. A knockout mutant of this gene retained antimicrobial activity and the molecular mass of bovicin HJ50 in the mutant was the same as that of bovicin HJ50 in S. bovis HJ50, implying that sdb1 is not involved in bovicin HJ50 production. Transcriptional analyses showed that bovA, bovM and bovT constituted an operon, and the transcription start site of the bovA promoter was located at a G residue 45 bp upstream of the translation start codon for bovA, while bovE through bovR were transcribed together and the transcription start site of the bovE promoter was located at a C residue 35 bp upstream of bovE. We also demonstrated successful heterologous expression of bovicin HJ50 in Lactococcus lactis MG1363, which lacks thiol-disulfide oxidoreductase genes; this showed that thiol-disulfide oxidoreductase genes other than sdb1 are not essential for bovicin HJ50 biosynthesis.
Collapse
Affiliation(s)
- Gang Liu
- Graduate University of Chinese Academy of Sciences, Beijing 100039, PR China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jianqiang Ni
- Center for Metabolic Engineering of Microorganisms, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Meiling Chen
- Center for Metabolic Engineering of Microorganisms, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Haijie Xiao
- Center for Metabolic Engineering of Microorganisms, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Liandong Huan
- Center for Metabolic Engineering of Microorganisms, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
45
|
Hu S, Kong J, Kong W, Ji M. Identification of Nisin-Producing Strains by Nisin-Controlled Gene Expression System. Curr Microbiol 2009; 58:604-8. [DOI: 10.1007/s00284-009-9378-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 01/07/2009] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
|
46
|
Wu Z, Xuanyuan Z, Li R, Jiang D, Li C, Xu H, Bai Y, Zhang X, Turakainen H, Saris P, Savilahti H, Qiao M. Mu transposition complex mutagenesis inLactococcus lactis- identification of genes affecting nisin production. J Appl Microbiol 2009; 106:41-8. [DOI: 10.1111/j.1365-2672.2008.03962.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Distinct contributions of the nisin biosynthesis enzymes NisB and NisC and transporter NisT to prenisin production by Lactococcus lactis. Appl Environ Microbiol 2008; 74:5541-8. [PMID: 18621866 DOI: 10.1128/aem.00342-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several Lactococcus lactis strains produce the lantibiotic nisin. The dedicated enzymes NisB and NisC and the transporter NisT modify and secrete the ribosomally synthesized nisin precursor peptide. NisB can function in the absence of the cyclase NisC, yielding the dehydrated prenisin that lacks the thioether rings. A kinetic analysis of nisin production by L. lactis NZ9700 demonstrated that the prenisin was released from the cell into the medium before the processing of the leader sequence occurred. Upon the deletion of nisC, the production of prenisin was reduced by 70%, while in the absence of nisB, the production of prenisin was nearly completely abolished. In cells lacking nisT, no secretion was observed, while the expression of nisABC in these cells resulted in considerable growth rate inhibition caused by the intracellular accumulation of active nisin. Overall, these data indicate that the efficiency of prenisin transport by NisT is markedly enhanced by NisB, suggesting a channeling mechanism of prenisin transfer between the nisin modification enzymes and the transporter.
Collapse
|
48
|
Sahl HG, Jack RW, Bierbaum G. Biosynthesis and Biological Activities of Lantibiotics with Unique Post-Translational Modifications. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.0827g.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Kaiser A, Montville T. The influence of pH and growth rate on production of the bacteriocin, bavaricin MN, in batch and continuous fermentations. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1993.tb01591.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Characterization of the structural gene encoding nisin F, a new lantibiotic produced by a Lactococcus lactis subsp. lactis isolate from freshwater catfish (Clarias gariepinus). Appl Environ Microbiol 2007; 74:547-9. [PMID: 18039827 DOI: 10.1128/aem.01862-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis F10, isolated from freshwater catfish, produces a bacteriocin (BacF) active against Staphylococcus aureus, Staphylococcus carnosus, Lactobacillus curvatus, Lactobacillus plantarum, and Lactobacillus reuteri. The operon encoding BacF is located on a plasmid. Sequencing of the structural gene revealed no homology to other nisin genes. Nisin F is described.
Collapse
|