1
|
Burz SD, Causevic S, Dal Co A, Dmitrijeva M, Engel P, Garrido-Sanz D, Greub G, Hapfelmeier S, Hardt WD, Hatzimanikatis V, Heiman CM, Herzog MKM, Hockenberry A, Keel C, Keppler A, Lee SJ, Luneau J, Malfertheiner L, Mitri S, Ngyuen B, Oftadeh O, Pacheco AR, Peaudecerf F, Resch G, Ruscheweyh HJ, Sahin A, Sanders IR, Slack E, Sunagawa S, Tackmann J, Tecon R, Ugolini GS, Vacheron J, van der Meer JR, Vayena E, Vonaesch P, Vorholt JA. From microbiome composition to functional engineering, one step at a time. Microbiol Mol Biol Rev 2023; 87:e0006323. [PMID: 37947420 PMCID: PMC10732080 DOI: 10.1128/mmbr.00063-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
SUMMARYCommunities of microorganisms (microbiota) are present in all habitats on Earth and are relevant for agriculture, health, and climate. Deciphering the mechanisms that determine microbiota dynamics and functioning within the context of their respective environments or hosts (the microbiomes) is crucially important. However, the sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes poses substantial challenges to advancing our knowledge of these mechanisms. While nucleic acid sequencing technologies can chart microbiota composition with high precision, we mostly lack information about the functional roles and interactions of each strain present in a given microbiome. This limits our ability to predict microbiome function in natural habitats and, in the case of dysfunction or dysbiosis, to redirect microbiomes onto stable paths. Here, we will discuss a systematic approach (dubbed the N+1/N-1 concept) to enable step-by-step dissection of microbiome assembly and functioning, as well as intervention procedures to introduce or eliminate one particular microbial strain at a time. The N+1/N-1 concept is informed by natural invasion events and selects culturable, genetically accessible microbes with well-annotated genomes to chart their proliferation or decline within defined synthetic and/or complex natural microbiota. This approach enables harnessing classical microbiological and diversity approaches, as well as omics tools and mathematical modeling to decipher the mechanisms underlying N+1/N-1 microbiota outcomes. Application of this concept further provides stepping stones and benchmarks for microbiome structure and function analyses and more complex microbiome intervention strategies.
Collapse
Affiliation(s)
- Sebastian Dan Burz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Senka Causevic
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Alma Dal Co
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Marija Dmitrijeva
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institut de microbiologie, CHUV University Hospital Lausanne, Lausanne, Switzerland
| | | | | | | | - Clara Margot Heiman
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Soon-Jae Lee
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Julien Luneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Lukas Malfertheiner
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Bidong Ngyuen
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Omid Oftadeh
- Laboratory of Computational Systems Biotechnology, EPF Lausanne, Lausanne, Switzerland
| | | | | | - Grégory Resch
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, CHUV University Hospital Lausanne, Lausanne, Switzerland
| | | | - Asli Sahin
- Laboratory of Computational Systems Biotechnology, EPF Lausanne, Lausanne, Switzerland
| | - Ian R. Sanders
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Emma Slack
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | - Janko Tackmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Robin Tecon
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, EPF Lausanne, Lausanne, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
2
|
Mishra S, Sarma PM, Lal B. Crude oil degradation efficiency of a recombinantAcinetobacter baumanniistrain and its survival in crude oil-contaminated soil microcosm. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09606.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
3
|
Halden RU, Tepp SM, Halden BG, Dwyer DF. Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310(pPOB) and two modified Pseudomonas strains. Appl Environ Microbiol 1999; 65:3354-9. [PMID: 10427019 PMCID: PMC91504 DOI: 10.1128/aem.65.8.3354-3359.1999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/1999] [Accepted: 05/11/1999] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas pseudoalcaligenes POB310(pPOB) and Pseudomonas sp. strains B13-D5(pD30.9) and B13-ST1(pPOB) were introduced into soil microcosms containing 3-phenoxybenzoic acid (3-POB) in order to evaluate and compare bacterial survival, degradation of 3-POB, and transfer of plasmids to a recipient bacterium. Strain POB310 was isolated for its ability to use 3-POB as a growth substrate; degradation is initiated by POB-dioxygenase, an enzyme encoded on pPOB. Strain B13-D5 contains pD30.9, a cloning vector harboring the genes encoding POB-dioxygenase; strain B13-ST1 contains pPOB. Degradation of 3-POB in soil by strain POB310 was incomplete, and bacterial densities decreased even under the most favorable conditions (100 ppm of 3-POB, supplementation with P and N, and soil water-holding capacity of 90%). Strains B13-D5 and B13-ST1 degraded 3-POB (10 to 100 ppm) to concentrations of <50 ppb with concomitant increases in density from 10(6) to 10(8) CFU/g (dry weight) of soil. Thus, in contrast to strain POB310, the modified strains had the following two features that are important for in situ bioremediation: survival in soil and growth concurrent with removal of an environmental contaminant. Strains B13-D5 and B13-ST1 also completely degraded 3-POB when the inoculum was only 30 CFU/g (dry weight) of soil. This suggests that in situ bioremediation may be effected, in some cases, with low densities of introduced bacteria. In pure culture, transfer of pPOB from strains POB310 and B13-ST1 to Pseudomonas sp. strain B13 occurred at frequencies of 5 x 10(-7) and 10(-1) transconjugant per donor, respectively. Transfer of pPOB from strain B13-ST1 to strain B13 was observed in autoclaved soil but not in nonautoclaved soil; formation of transconjugant bacteria was more rapid in soil containing clay and organic matter than in sandy soil. Transfer of pPOB from strain POB310 to strain B13 in soil was never observed.
Collapse
Affiliation(s)
- R U Halden
- Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
4
|
Abstract
Hypochlorite and chlorine dioxide were used to disinfect hospital waste-water sludge. Their abilities to inactivate pathogenic micro-organisms were compared. Reductions in indigenous coliform organisms and Pseudomonas aeruginosa were estimated. The results indicate that hypochlorite is a better disinfectant than chlorine dioxide for coliforms. Higher disinfection efficiency was obtained by treating a lower concentration of sludge. In addition, a higher agitation speed gave a higher disinfection efficiency with hypochlorite. The disinfection efficiencies of both disinfectants were higher against settled sludge than against thickened sludge. Therefore, it is recommended that disinfection should be performed on settled sludge rather than in a thickening tank.
Collapse
Affiliation(s)
- C T Tsai
- Institute of Environmental Health of China Medical College, Republic of China
| | | |
Collapse
|
5
|
Abstract
Although many environmental pollutants are efficiently degraded by microorganisms, others persist and constitute a severe health hazard. In some instances, persistence is a consequence of the inadequate catabolic potential of the available microorganisms. Gene technology, combined with a solid knowledge of catabolic pathways and microbial physiology, enables the experimental evolution of new or improved catabolic activities for such pollutants.
Collapse
Affiliation(s)
- K N Timmis
- Division of Microbiology, GBF - National Research Centre for Biotechnology, Braunschweig, Germany.
| | | |
Collapse
|
6
|
Eismann F, Montuelle B. Microbial methods for assessing contaminant effects in sediments. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 1999; 159:41-93. [PMID: 9921139 DOI: 10.1007/978-1-4612-1496-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Contaminated sediments influence drastically the long-term toxicological and ecological properties of aquatic ecosystems. During the past three decades, scientific knowledge about sediment-water exchange processes and the deposition and distribution of pollutants in water and sediment phases has been supplemented by extensive research on the effects of sediment-associated pollutants on aquatic organisms. Basic research in microbiology, ecology, and toxicology has uncovered the crucial role of sediment microorganisms for the biodegradation of organic matter and for the cycling of nutrients, as well as the susceptibility of these processes to toxic pollution events. Microorganisms have been extensively applied in aquatic toxicology, and various microbial toxicity tests are today available that successfully couple microbial toxicity endpoints to the specificity of the sediment matrix. Sediment-associated toxicants can be brought in contact with test bacteria using sediment pore waters, elutriates, extracts, or whole-sediment material. Toxicity indication principles for microorganisms are versatile and comprise growth and biomass determinations, respiration or oxygen uptake, bacterial luminescence, the activity of a variety of enzymes, and a compendium of genotoxicity assays. The border between toxicological and ecological contaminant effect evaluations in sediments is flexible, and long-term ecological predictions should also include an assessment of pollutant degradation capacities and of key reactions in element cycling. Evaluating microbial community structure and function in environmental systems makes use of modern molecular techniques and bioindicators that could trigger a new quality in the assessment of contaminated sediments in terms of indication of subtoxic effects and early-warning requirements.
Collapse
Affiliation(s)
- F Eismann
- University of Leipzig, Institute for Animal Hygiene and Public Veterinary Affairs, Germany
| | | |
Collapse
|
7
|
Kawabata Z, Min M, Matsui K, Ishii N. Factors affecting the survival of genetically engineeredEscherichia colibearing a plasmid in a paddy field microcosm. ACTA ACUST UNITED AC 1998. [DOI: 10.1080/00207239808711168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
van Elsas J, Duarte G, Rosado A, Smalla K. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. J Microbiol Methods 1998. [DOI: 10.1016/s0167-7012(98)00025-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Erb RW, Eichner CA, Wagner-Döbler I, Timmis KN. Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonad. Nat Biotechnol 1997; 15:378-82. [PMID: 9094142 DOI: 10.1038/nbt0497-378] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pseudomonas sp. B13 SN45RE is a genetically engineered microorganism (GEM) that is able to simultaneously degrade mixtures of chloro- and methylaromatics ordinarily toxic for microbial communities via a designed novel ortho-cleavage pathway. The utility of the GEM was investigated in a laboratory scale sewage plant fed with mixtures of either 4-chlorophenol and 4-methyphenol or 3-chlorophenol and 4-methylphenol. In the model system the GEM significantly increased the rate and extent of degradation of the phenol mixtures. In the absence of the GEM, shock loads of the phenol mixtures (1 mM of each compound) reduced the numbers of culturable bacteria by three orders of magnitude, completely eliminated protozoa and metazoa, and caused a drastic decrease in oxygen consumption, whereas the presence of the GEM protected the indigenous microbial community and assured continued functioning of the sewage plant.
Collapse
Affiliation(s)
- R W Erb
- Department of Microbiology, GBF-National Research Centre for Biotechnology, Braunschweig, Germany
| | | | | | | |
Collapse
|
10
|
Pieper DH, Timmis KN, Ramos JL. Designing bacteria for the degradation of nitro- and chloroaromatic pollutants. Naturwissenschaften 1996. [DOI: 10.1007/bf01143325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Effects of exogenous phenol-degrading bacteria on performance and ecosystem of activated sludge. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0922-338x(96)88822-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Leser TD, Boye M, Hendriksen NB. Survival and activity of Pseudomonas sp. strain B13(FR1) in a marine microcosm determined by quantitative PCR and an rRNA-targeting probe and its effect on the indigenous bacterioplankton. Appl Environ Microbiol 1995; 61:1201-7. [PMID: 7538271 PMCID: PMC167374 DOI: 10.1128/aem.61.4.1201-1207.1995] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Genetically engineered Pseudomonas sp. strain B13(FR1) was released into laboratory-scale marine ecosystem models (microcosms). Survival of the introduced population in the water column and the sediment was determined by plating on a selective medium and by quantitative competitive PCR. The activity of the released bacteria was determined by in situ hybridization of single cells with a specific rRNA-targeting oligonucleotide probe. Two microcosms were inoculated with 10(6) cells ml-1, while an uninoculated microcosm served as a control. The number of Pseudomonas sp. strain B13(FR1) cells decreased rapidly to ca. 10(2) cells ml-1 within 2 days after the release, which is indicative of grazing by protozoa. Three days after the introduction into seawater, cells were unculturable, but PCR continued to detect cells in low numbers. Immediately after the release, the ribosomal content of Pseudomonas sp. strain B13(FR1) corresponded to a generation time of 2 h. The growth rate decreased to less than 0.04 h-1 in 5 days and remained low, probably because of carbon limitation of the cells. Specific amendment of the microcosms with 10 mM 4-chlorobenzoate resulted in a rapid increase of the growth rate and an exponentially increasing number of cells detected by PCR, but not in resuscitation of the cells to a culturable state. The release of Pseudomonas sp. strain B13(FR1) into the microcosms seemed to affect only the indigenous bacterioplankton community transiently. Effects on the community were also apparent from the handling of water during filling of the microcosms and the amendment with 4-chlorobenzoate.
Collapse
Affiliation(s)
- T D Leser
- Department of Marine Ecology and Microbiology, National Environmental Research Institute, Roskilde, Denmark
| | | | | |
Collapse
|
13
|
Heuer H, Dwyer DF, Timmis KN, Wagner-Döbler I. Efficacy in aquatic microcosms of a genetically engineered pseudomonad applicable for bioremediation. MICROBIAL ECOLOGY 1995; 29:203-220. [PMID: 24186724 DOI: 10.1007/bf00167165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/1994] [Revised: 07/07/1994] [Indexed: 06/02/2023]
Abstract
A genetically engineered microorganism (GEM), Pseudomonas sp. B13 FRI (pFRC20P) (abbreviated FR120), has previously been engineered to simultaneously mineralize mixtures of methylated and chlorinated benzoic acids and phenols through a modified ortho cleavage pathway. In this study, its performance was investigated both in different types of aquatic microcosms and in pure culture to determine (1) if under simulated in situ conditions the genetically engineered pathway effectively removes mixtures of model pollutants simultaneously, quickly, and completely; (2) where the optimum pollutant concentration range for this activity lies; and (3) how physical, chemical, and biological factors in the microcosms influence degradation rates. Growth and degradation parameters of FR 120 in pure culture were determined with 3-chlorobenzoate (3CB), 4-methylbenzoate (4MB), and equimolar mixtures of both as carbon sources. These substrates were degraded simultaneously, albeit with different degradation velocities, by FR120. The optimum growth concentrations for 3CB and 4MB were 3.0 mm and 2.1 mM, respectively, and the inhibition constants (Ki) were 11 mm (3CB) and 6 mm (4MB). The pathway was induced at low concentrations of substrate (> 1 [μM). The first order degradation constants (kl) were determined with respect to substrate concentration, cell density, and temperature. In aquatic microcosms inoculated with FR120, first order degradation constants and half lives of target chemicals were calculated based on the total amount of aromatics recovered. Half lives ranged from 1.3 days to 3.0 days, depending on the target chemical and the type of microcosm. Degradation constants determined in pure culture were extrapolated to the densities of FR120, substrate concentrations, and temperature occurring in the microcosm experiments, and used to calculate theoretical half lives. In water microcosms, theoretical and observed half lives corresponded well, indicating that FR120 functioned optimally in this environment. In whole core sediment microcosms, and especially at low cell densities, the observed degradation activity was in some cases considerably higher than expected from pure culture degradation rates. This suggests that environmental conditions in the sediment were more favorable to the degradation of substituted aromatics than those in pure culture. The physiological characteristics of FR120 and its performance in aquatic microcosms make it a good candidate for bioremediation at sites contamninated with mixtures of chlorinated and methylated aromatics.
Collapse
Affiliation(s)
- H Heuer
- Department of Microbiology, Molecular Microbial Ecology Group, National Research Center for Biotechnology (GBF), Mascheroder Weg 1, D-38124, Braunschweig, Germany
| | | | | | | |
Collapse
|
14
|
Leser TD. Validation of microbial community structure and ecological functional parameters in an aquatic microcosm designed for testing genetically engineered microorganisms. MICROBIAL ECOLOGY 1995; 29:183-201. [PMID: 24186723 DOI: 10.1007/bf00167164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/1994] [Revised: 07/25/1994] [Indexed: 06/02/2023]
Abstract
Microcosms were designed to facilitate studies of the fate, functioning, and ecological effects of microorganisms released into the aquatic environment. The microcosms were three-phase systems (sediment/water/air) with three compartments (a primary producer component, a herbivore grazer component, and intact sediment cores). The microcosms were validated by comparing gross ecological parameters and microbial community structure between the microcosms and the eutrophic Lake Bagsværd, which was simulated in the model. The photosynthetic potential and chlorophyll a concentrations were significantly lower in the microcosms than in the lake, which apparently was due to inorganic nutrient limitation. In the microcosms, total bacterial numbers and metabolic activity by [(3)H]thymidine incorporation were unaffected by the reduced algal biomass and primary production, simulating field conditions closely, with a strong dependence on temperature. Two days after filling the microcosms, the percentage of similarity of the microbial communities in the microcosm and Lake Bagsværd was 40%, measured by hybridizations of total microbial DNA. The similarity increased during the 10-day experimental period to 63-76%. In two experiments, Alcaligenes eutrophus AEO106(pRO101) was released into the microcosms. The release reduced the similarity between microcosms and lake to 2% and 27%, depending on the number of introduced cells. Concomitant to a decline in the A. eutrophus AEO106(pRO101) population, the similarity gradually recovered. It is concluded that the microcosms can simulate a freshwater lake ecosystem, but care has to be taken when extrapolating microcosm results to the source ecosystem because of the possible different selective conditions in the microcosm.
Collapse
Affiliation(s)
- T D Leser
- Department of Marine Ecology and Microbiology, National Environmental Research Institute, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| |
Collapse
|
15
|
Doyle JD, Stotzky G, McClung G, Hendricks CW. Effects of genetically engineered microorganisms on microbial populations and processes in natural habitats. ADVANCES IN APPLIED MICROBIOLOGY 1995; 40:237-87. [PMID: 7604738 DOI: 10.1016/s0065-2164(08)70366-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J D Doyle
- ManTech Environmental Technology, Inc., Corvallis, Oregon 97333, USA
| | | | | | | |
Collapse
|
16
|
Fetzner S, Lingens F. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev 1994; 58:641-85. [PMID: 7854251 PMCID: PMC372986 DOI: 10.1128/mr.58.4.641-685.1994] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review is a survey of bacterial dehalogenases that catalyze the cleavage of halogen substituents from haloaromatics, haloalkanes, haloalcohols, and haloalkanoic acids. Concerning the enzymatic cleavage of the carbon-halogen bond, seven mechanisms of dehalogenation are known, namely, reductive, oxygenolytic, hydrolytic, and thiolytic dehalogenation; intramolecular nucleophilic displacement; dehydrohalogenation; and hydration. Spontaneous dehalogenation reactions may occur as a result of chemical decomposition of unstable primary products of an unassociated enzyme reaction, and fortuitous dehalogenation can result from the action of broad-specificity enzymes converting halogenated analogs of their natural substrate. Reductive dehalogenation either is catalyzed by a specific dehalogenase or may be mediated by free or enzyme-bound transition metal cofactors (porphyrins, corrins). Desulfomonile tiedjei DCB-1 couples energy conservation to a reductive dechlorination reaction. The biochemistry and genetics of oxygenolytic and hydrolytic haloaromatic dehalogenases are discussed. Concerning the haloalkanes, oxygenases, glutathione S-transferases, halidohydrolases, and dehydrohalogenases are involved in the dehalogenation of different haloalkane compounds. The epoxide-forming halohydrin hydrogen halide lyases form a distinct class of dehalogenases. The dehalogenation of alpha-halosubstituted alkanoic acids is catalyzed by halidohydrolases, which, according to their substrate and inhibitor specificity and mode of product formation, are placed into distinct mechanistic groups. beta-Halosubstituted alkanoic acids are dehalogenated by halidohydrolases acting on the coenzyme A ester of the beta-haloalkanoic acid. Microbial systems offer a versatile potential for biotechnological applications. Because of their enantiomer selectivity, some dehalogenases are used as industrial biocatalysts for the synthesis of chiral compounds. The application of dehalogenases or bacterial strains in environmental protection technologies is discussed in detail.
Collapse
Affiliation(s)
- S Fetzner
- Institut für Mikrobiologie der Universität Hohenheim, Stuttgart, Germany
| | | |
Collapse
|
17
|
Abstract
Genetic construction of recombinant strains with expanded degradative abilities may be useful for bioremedation of recalcitrant compounds, such as polychlorinated biphenyls (PCBs). Some degradative genes have been found either on conjugative plasmids or on transposons, which would facilitate their genetic transfer. The catabolic pathway for the total degradation of PCBs is encoded by two different sets of genes that are not normally found in the same organism. The bphABCD genes normally reside on the chromosome and encode for the four enzymes involved in the production of benzoate and chlorobenzoates from the respective catabolism of biphenyl and chlorobiphenyls. The genes encoding for chlorobenzoate catabolism have been found on both plasmids and the chromosome, often in association with transposable elements. Ring fission of chlorobiphenyls and chlorobenzoates involves the meta-fission pathway (3-phenylcatechol 2,3-dioxygenase) and the ortho-fission pathway (chlorocatechol 1,2-dioxygenase), respectively. As the catecholic intermediates of both pathways are frequently inhibitory to each other, incompatibilities result. Presently, all hybrid strains constructed by in vivo matings metabolize simple chlorobiphenyls through complementary pathways by comprising the bph, benzoate, and chlorocatechol genes of parental strains. No strains have yet been verified which are able to utilize PCBs having at least one chlorine on each ring as growth substrates. The possible incompatibilities of hybrid pathways are evaluated with respect to product toxicity, and the efficiency of both in vivo and in vitro genetic methods for the construction of recombinant strains able to degrade PCBs is discussed.
Collapse
Affiliation(s)
- V Brenner
- Department of Soil and Environmental Sciences, University of California, Riverside 92521-0424
| | | | | |
Collapse
|
18
|
Abstract
The instability of cell cultures containing plasmid vectors is a major problem in the commercial exploitation of molecular cloning techniques. Plasmid stability is influenced by the nature of the host cell, the type of plasmid and/or environmental conditions. Plasmid encoded properties may confer a selective advantage on the host cell but can be an energy drain due to replication and expression. Stability of recombinant cultures ultimately may be determined by the cost to benefit ratio of plasmid carriage. The relative competition between plasmid containing and plasmid-free or indigenous populations can determine the degree of dominance of recombinant cultures. The use of inocula in biotechnological processes in which dynamic environmental conditions dominate may also result in instabilities resulting from the characteristics of the ecosystem. In such dynamic conditions plasmid stability is just one contribution to culture stability. Strategies to enhance plasmid stability, within such environments, based on manipulation of physiological state of host cells, must consider the responsiveness or plasticity of both cells and populations. The robustness of cells or the responses to stresses or transient environmental conditions can influence the levels of instability detected; for example, instability or mutation in the host genome may lead to enhanced plasmid stability. Competition among subpopulations arising from unstable copy number control may determine the levels of recombinant cells in open versus closed fermenter systems. Thus the ecological competence (ability to survive and compete) of recombinant cells in dynamic or transient environments is fundamental to the understanding of the ultimate dominance or survival of such recombinant cultures and may form the basis of a strategy to enhance or control stability either in fermenter systems or dynamic process environments. The creation of microniches in time and/or space can enhance plasmid stability. Transient operation based on defined environmental stresses or perturbations in fermenter systems or in heterogeneous or dynamic environments found in gel immobilized cultures have resulted in enhanced stability. Spatial organization resulting from immobilization has the additional advantage of regulated cell protection within defined microenvironments and controlled release, depending on the nature of the gel, from these microenvironments or microcosms. This regulation of ecological competence allied to the advantages of microbial cell growth in gel microenvironments combined with the spatial organization (or juxtapositioning of cells, selective agents, nutrients, protectants, etc.) possible through immobilization technology offers new strategies to enhance plasmid and culture stability.
Collapse
Affiliation(s)
- A J McLoughlin
- Department of Industrial Microbiology, University College Dublin, Ireland
| |
Collapse
|
19
|
Ramos JL, Díaz E, Dowling D, Lorenzo VD, Molin S, O'Gara F, Ramos C, Timmis KN. The behavior of bacteria designed for biodegradation. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1994; 12:1349-56. [PMID: 7765565 PMCID: PMC7097320 DOI: 10.1038/nbt1294-1349] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mineralization of organic molecules by microbes is essential for the carbon cycle to operate. The massive mobilization of compounds stored in natural resources, or the introduction of xenobiotics into the biosphere, leads to unidirectional fluxes, which result in the persistance of a number of chemicals in the biosphere, and thus constitute a source of pollution. Molecular biology offers the tools to optimize the biodegradative capacities of microorganisms, accelerate the evolution of "new" activities, and construct totally "new" pathways through the assemblage of catabolic segments from different microbes. Although the number of genetically engineered microbes (GEMs) for potential use in biodegradation is not large, these recombinant microbes function in microcosms according to their design. The survival and fate of recombinant microbes in different ecological niches under laboratory conditions is similar to what has been observed for the unmodified parental strains. rDNA, both on plasmids and on the host chromosome, is usually stably inherited by GEMs. The potential lateral transfer of rDNA from the GEMs to other microbes is significantly diminished, though not totally inhibited, when rDNA is incorporated on the host chromosome. The behavior and fate of GEMs can be predicted more accurately through the coupling of regulatory circuits that control the expression of catabolic pathways to killing genes, so that the GEMs survive in polluted environments, but die when the target chemical is eliminated.
Collapse
Affiliation(s)
- Juan L. Ramos
- grid.4711.30000 0001 2183 4846Consejo Superior de Investigaciones Científicas-Estación Experimental del Zaidín, Department of Biochemistry and Molecular and Cellular Biology of Plants, Granada, Spain
| | - Eduardo Díaz
- grid.418123.dGesellschaft für Biotechnologische Forschung, Division of Microbiology, Braunschweig, Germany
| | - David Dowling
- grid.7872.a0000000123318773Department of Microbiology, University College Cork, Cork, Ireland
| | - Victor de Lorenzo
- grid.4711.30000 0001 2183 4846Consejo Superior de Investigaciones Científicas-Centro de Investigaciones Biológicas, Department of Microbiology, Madrid, Spain
| | - Søren Molin
- grid.5170.30000 0001 2181 8870Department of Microbiology, Technical University of Denmark, Lyngby, Denmark
| | - Fergal O'Gara
- grid.7872.a0000000123318773Department of Microbiology, University College Cork, Cork, Ireland
| | - Cayo Ramos
- grid.4711.30000 0001 2183 4846Consejo Superior de Investigaciones Científicas-Estación Experimental del Zaidín, Department of Biochemistry and Molecular and Cellular Biology of Plants, Granada, Spain
| | - Kenneth N. Timmis
- grid.418123.dGesellschaft für Biotechnologische Forschung, Division of Microbiology, Braunschweig, Germany
| |
Collapse
|
20
|
Dowling DN, Pipke R, Dwyer DF. A DNA module encoding bph genes for the degradation of polychlorinated biphenyls (PCBs). FEMS Microbiol Lett 1993; 113:149-54. [PMID: 8262365 DOI: 10.1111/j.1574-6968.1993.tb06506.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In this report we describe the development and construction of a DNA module which encodes bph genes for the metabolism of PCBs and which is capable of stable integration into the chromosome of Gram negative bacteria. Introduction of the bph-module into Pseudomonas putida KT2442, Pseudomonas sp. strain B13 and its genetically engineered derivative B13FR1 expanded the biodegradative ability of these strains to include biphenyl and 4-chlorobiphenyl. The bph operon was stably inherited under laboratory conditions. Behavior of the genetically engineered strains was evaluated under simulated natural habitat conditions in lake sediment microcosms with respect to survival and removal of 4-chlorobiphenyl. The genetically engineered strains persisted under these conditions and were effective in degrading 4-chlorobiphenyl over a five day incubation period.
Collapse
Affiliation(s)
- D N Dowling
- Federal Institute for Biotechnology, Microbiology Department, Braunschweig, FRG
| | | | | |
Collapse
|
21
|
Kinkle BK, Sadowsky MJ, Schmidt EL, Koskinen WC. Plasmids pJP4 and r68.45 Can Be Transferred between Populations of Bradyrhizobia in Nonsterile Soil. Appl Environ Microbiol 1993; 59:1762-6. [PMID: 16348953 PMCID: PMC182158 DOI: 10.1128/aem.59.6.1762-1766.1993] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IncP plasmid r68.45, which carries several antibiotic resistance genes, and IncP plasmid pJP4, which contains genes for mercury resistance and 2,4-dichlorophenoxyacetic acid degradation, were evaluated for their ability to transfer to soil populations of rhizobia. Transfer of r68.45 was detected in nonsterile soil by using
Bradyrhizobium japonicum
USDA 123 as the plasmid donor and several
Bradyrhizobium
sp. strains as recipients. Plasmid transfer frequencies ranged up to 9.1 × 10
-5
in soil amended with 0.1% soybean meal and were highest after 7 days with strain 3G4b4-RS as the recipient. Transconjugants were detected in 7 of 500 soybean nodules tested, but the absence of both parental strains in these nodules suggests that plasmid transfer had occurred in the soil, in the rhizosphere, or on the root surface. Transfer of degradative plasmid pJP4 was also evaluated in nonsterile soil by using
B. japonicum
USDA 438 as the plasmid donor and several
Bradyrhizobium
sp. strains as recipients. Plasmid pJP4 was transferred only when strains USDA 110-ARS and 3G4b4-RS were the recipients. The plasmid transfer frequency was highest for strain 3G4b4-RS (up to 7.4 × 10
-6
). Mercury additions to soil, ranging from 10 to 50 μg/g of soil, did not affect population levels of parental strains or the plasmid transfer frequency.
Collapse
Affiliation(s)
- B K Kinkle
- Soil and Water Management Research Unit, Agricultural Research Service, U. S. Department of Agriculture, and Department of Soil Science, University of Minnesota, St. Paul, Minnesota 55108
| | | | | | | |
Collapse
|
22
|
Abstract
Environmental applications of genetically engineered microorganisms have caused concern among scientists, the authorities and the general public. Despite the many potential benefits offered by gene technology to agriculture, environment protection and the medical sector, only a few cases of released engineered bacteria have been permitted. In this review, the design of safer organisms for release purposes is discussed with specific emphasis on the use of suicide systems to limit the survival of bacteria in the environment.
Collapse
Affiliation(s)
- S Molin
- Department of Microbiology, Technical University of Denmark, Lyngby
| |
Collapse
|
23
|
van der Meer JR, de Vos WM, Harayama S, Zehnder AJ. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 1992; 56:677-94. [PMID: 1480115 PMCID: PMC372894 DOI: 10.1128/mr.56.4.677-694.1992] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microorganisms in the environment can often adapt to use xenobiotic chemicals as novel growth and energy substrates. Specialized enzyme systems and metabolic pathways for the degradation of man-made compounds such as chlorobiphenyls and chlorobenzenes have been found in microorganisms isolated from geographically separated areas of the world. The genetic characterization of an increasing number of aerobic pathways for degradation of (substituted) aromatic compounds in different bacteria has made it possible to compare the similarities in genetic organization and in sequence which exist between genes and proteins of these specialized catabolic routes and more common pathways. These data suggest that discrete modules containing clusters of genes have been combined in different ways in the various catabolic pathways. Sequence information further suggests divergence of catabolic genes coding for specialized enzymes in the degradation of xenobiotic chemicals. An important question will be to find whether these specialized enzymes evolved from more common isozymes only after the introduction of xenobiotic chemicals into the environment. Evidence is presented that a range of genetic mechanisms, such as gene transfer, mutational drift, and genetic recombination and transposition, can accelerate the evolution of catabolic pathways in bacteria. However, there is virtually no information concerning the rates at which these mechanisms are operating in bacteria living in nature and the response of such rates to the presence of potential (xenobiotic) substrates. Quantitative data on the genetic processes in the natural environment and on the effect of environmental parameters on the rate of evolution are needed.
Collapse
Affiliation(s)
- J R van der Meer
- Department of Microbiology, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|
24
|
Expression and transfer of engineered catabolic pathways harbored by Pseudomonas spp. introduced into activated sludge microcosms. Appl Environ Microbiol 1992; 58:3380-6. [PMID: 1444370 PMCID: PMC183107 DOI: 10.1128/aem.58.10.3380-3386.1992] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Two genetically engineered microorganisms (GEMs), Pseudomonas sp. strain B13 FR1(pFRC20P) (FR120) and Pseudomonas putida KT2440(pWWO-EB62) (EB62), were introduced into activated sludge microcosms that had the level of aeration, nutrient makeup, and microbial community structure of activated sludge reactors. FR120 contains an experimentally assembled ortho cleavage route for simultaneous degradation of 3-chlorobenzoate (3CB) and 4-methyl benzoate (4MB); EB62 contains a derivative TOL plasmid-encoded degradative pathway for toluene experimentally evolved so that it additionally processes 4-ethyl benzoate (4EB). Experiments assessed survival of the GEMs, their ability to degrade target substrates, and lateral transfer of plasmid-encoded recombinant DNA. GEMs added at initial densities of 10(6) to 10(7) bacteria per ml of activated sludge declined to stable population densities of 10(4) to 10(5) bacteria per ml. FR120 degraded combinations of 3CB and 4MB (1 mM each) following 3 days of adaptation in the microcosms. Indigenous microorganisms required an 8-day adaptation period before degradation of 4MB was observed; 3CB was degraded only after the concentration of 4MB was much reduced. The indigenous microbial community was killed when both compounds were present at concentrations of 4.0 mM. However, in parallel microcosms containing FR120, the microbial community maintained a normal density of viable cells. Indigenous microbes readily degraded 4EB (2 mM), and EB62 did not significantly increase the observed rate of degradation. In filter matings, transfer of pFRC20P, which specifies mobilization but not transfer functions, from FR120 to P. putida UWC1 was not detectable (< 10(-7) transconjugants per donor cell).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
25
|
|
26
|
Wagner-Döbler I, Pipke R, Timmis KN, Dwyer DF. Evaluation of aquatic sediment microcosms and their use in assessing possible effects of introduced microorganisms on ecosystem parameters. Appl Environ Microbiol 1992; 58:1249-58. [PMID: 1599244 PMCID: PMC195583 DOI: 10.1128/aem.58.4.1249-1258.1992] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this paper we describe a sediment microcosm system consisting of 20 undisturbed, layered sediment cores with overlying site water which are incubated under identical conditions of temperature, light, stirring rate of overlying water, and water exchange rate. Ecosystem parameters (nutrient level, photosynthetic potential, community structure of heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients) of the laboratory microcosms and the source ecosystem were compared and shown to be indistinguishable for the first 2 weeks. In weeks 3 and 4, small differences were detectable in the nutrient level, community structure of heterotrophic bacteria, and thymidine incorporation rate. However, the photosynthetic potential, depth profiles of heterotrophic bacterial community structure, and oxygen microgradients were maintained throughout the incubation period and did not differ between laboratory microcosms and the source ecosystem. The microcosm system described here would thus appear to be a valid model of aquatic sediments for up to 4 weeks; the actual period would depend on the sediment source and incubation temperature. The validated systems were used with Rhine river sediment to assess possible effects on ecosystem parameters of Pseudomonas sp. strain B13 FR1(pFRC20P), a genetically engineered microorganism (GEM) that had been constructed to degrade mixtures of halo- and alkylbenzoates and -phenols. The GEM survived in the surface sediment at densities of 5 x 10(4) to 5 x 10(5)/g (dry weight) for 4 weeks and degraded added chloro- and methylaromatics. The GEM did not measurably influence ecosystem parameters such as photosynthesis, densities of selected heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients. Thus, the microcosm system described here would seem to be useful for the study of the ecology of biodegradation and the fate and effect of microorganisms introduced into the environment.
Collapse
Affiliation(s)
- I Wagner-Döbler
- Molecular Microbial Ecology Group, Department of Microbiology, National Research Center for Biotechnology, Braunschweig, Germany
| | | | | | | |
Collapse
|