1
|
Bioconversion of Some Agro-Residues into Organic Acids by Cellulolytic Rock-Phosphate-Solubilizing Aspergillus japonicus. FERMENTATION 2022. [DOI: 10.3390/fermentation8090437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biological-based conversion of agricultural residues into bioactive compounds may be considered to be the basis for various vital industries. However, finding a suitable microorganism is a challenge in the bioconversion process. Therefore, this study was conducted to find local fungal isolates able to convert a combination of plant biomass residues into organic acids (OAs). Based on their cellulase and phytase activities and rock phosphate (RP) solubilization potential, an efficient 15 fungal isolates (named F1 to F15) were selected and identified by both morphological and molecular methods using the 18S rRNA sequencing technique. The best fungal isolate (F15) was identified as Aspergillus japonicus. After 4 weeks of incubation below solid-state fermentation (SSF) with a mix of sugarcane bagasse and faba bean straw (3:7), with 7.5% (v/w) fungal inoculum to the growth medium, the biodegradation process by the fungus reached its peak, i.e., maximum cellulolytic activity and RP solubilization ability. Under such fermentation conditions, seven organic acids were detected using HPLC, in the following order: ascorbic acid > oxalic acid > formic acid > malic acid > succinic acid > lactic acid > citric acid. Based on the results, Aspergillus japonicus (F15) could produce OAs and cellulose enzymes, and could be considered a new single-step bio-converter of sugarcane bagasse and faba bean straw residues into OAs. Furthermore, this fungus could be a new source of fungal cellulose, and could present a practical approach to reducing environmental contamination. Additional work is encouraged for more optimization of fermentation conditions.
Collapse
|
2
|
Wasai-Hara S, Hara S, Morikawa T, Sugawara M, Takami H, Yoneda J, Tokunaga T, Minamisawa K. Diversity of Bradyrhizobium in Non-Leguminous Sorghum Plants: B. ottawaense Isolates Unique in Genes for N 2O Reductase and Lack of the Type VI Secretion System. Microbes Environ 2020; 35. [PMID: 31932539 PMCID: PMC7104290 DOI: 10.1264/jsme2.me19102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Diverse members of Bradyrhizobium diazoefficiens, B. japonicum, and B. ottawaense were isolated from the roots of field-grown sorghum plants in Fukushima, and classified into “Rhizobia” with nodulated soybeans, “Free-living diazotrophs”, and “Non-diazotrophs” by nitrogen fixation and nodulation assays. Genome analyses revealed that B. ottawaense members possessed genes for N2O reduction, but lacked those for the Type VI secretion system (T6SS). T6SS is a new bacterial weapon against microbial competitors. Since T6SS-possessing B. diazoefficiens and B. japonicum have mainly been isolated from soybean nodules in Japan, T6SS-lacking B. ottawaense members may be a cryptic lineage of soybean bradyrhizobia in Japan.
Collapse
Affiliation(s)
| | | | | | | | - Hideto Takami
- Yokohama Institute, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | | | | | | |
Collapse
|
3
|
Zhao L, Xu Y, Lai X. Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Braz J Microbiol 2018; 49:269-278. [PMID: 29117917 PMCID: PMC5914205 DOI: 10.1016/j.bjm.2017.06.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 11/16/2022] Open
Abstract
A total of 276 endophytic bacteria were isolated from the root nodules of soybean (Glycine max L.) grown in 14 sites in Henan Province, China. The inhibitory activity of these bacteria against pathogenic fungus Phytophthora sojae 01 was screened in vitro. Six strains with more than 63% inhibitory activities were further characterized through optical epifluorescence microscopic observation, sequencing, and phylogenetic analysis of 16S rRNA gene, potential plant growth-promoting properties analysis, and plant inoculation assay. On the basis of the phylogeny of 16S rRNA genes, the six endophytic antagonists were identified as belonging to five genera: Enterobacter, Acinetobacter, Pseudomonas, Ochrobactrum, and Bacillus. The strain Acinetobacter calcoaceticus DD161 had the strongest inhibitory activity (71.14%) against the P. sojae 01, which caused morphological abnormal changes of fungal mycelia; such changes include fracture, lysis, formation of a protoplast ball at the end of hyphae, and split ends. Except for Ochrobactrum haematophilum DD234, other antagonistic strains showed the capacity to produce siderophore, indole acetic acid, and nitrogen fixation activity. Regression analysis suggested a significant positive correlation between siderophore production and inhibition ratio against P. sojae 01. This study demonstrated that nodule endophytic bacteria are important resources for searching for inhibitors specific to the fungi and for promoting effects for soybean seedlings.
Collapse
Affiliation(s)
- LongFei Zhao
- Shangqiu Normal University, College of Life Sciences, Key Laboratory of Plant-Microbe Interactions of Henan, Shangqiu, Henan, PR China.
| | - YaJun Xu
- Shangqiu Normal University, College of Life Sciences, Key Laboratory of Plant-Microbe Interactions of Henan, Shangqiu, Henan, PR China
| | - XinHe Lai
- The First Affiliated Hospital of Wenzhou Medical University, Institute of Inflammation & Diseases, Wenzhou, China
| |
Collapse
|
4
|
Zhang YM, Li Y, Chen WF, Wang ET, Tian CF, Li QQ, Zhang YZ, Sui XH, Chen WX. Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl Environ Microbiol 2011; 77:6331-42. [PMID: 21784912 PMCID: PMC3187167 DOI: 10.1128/aem.00542-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/09/2011] [Indexed: 11/20/2022] Open
Abstract
As the putative center of origin for soybean and the second largest region of soybean production in China, the North China Plain covers temperate and subtropical regions with diverse soil characteristics. However, the soybean rhizobia in this plain have not been sufficiently studied. To investigate the biodiversity and biogeography of soybean rhizobia in this plain, a total of 309 isolates of symbiotic bacteria from the soybean nodules collected from 16 sampling sites were studied by molecular characterization. These isolates were classified into 10 genospecies belonging to the genera Sinorhizobium and Bradyrhizobium, including four novel groups, with S. fredii (68.28%) as the dominant group. The phylogeny of symbiotic genes nodC and nifH defined four lineages among the isolates associated with Sinorhizobium fredii, Bradyrhizobium elkanii, B. japonicum, and B. yuanmingense, demonstrating the different origins of symbiotic genes and their coevolution with the chromosome. The possible lateral transfer of symbiotic genes was detected in several cases. The association between soil factors (available N, P, and K and pH) and the distribution of genospecies suggest clear biogeographic patterns: Sinorhizobium spp. were superdominant in sampling sites with alkaline-saline soils, while Bradyrhizobium spp. were more abundant in neutral soils. This study clarified the biodiversity and biogeography of soybean rhizobia in the North China Plain.
Collapse
Affiliation(s)
- Yan Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Wen Feng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México D.F., México
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Qin Qin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Yun Zeng Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
5
|
Thiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum. Appl Environ Microbiol 2010; 76:2402-9. [PMID: 20173070 DOI: 10.1128/aem.02783-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thiosulfate-oxidizing sox gene homologues were found at four loci (I, II, III, and IV) on the genome of Bradyrhizobium japonicum USDA110, a symbiotic nitrogen-fixing bacterium in soil. In fact, B. japonicum USDA110 can oxidize thiosulfate and grow under a chemolithotrophic condition. The deletion mutation of the soxY(1) gene at the sox locus I, homologous to the sulfur-oxidizing (Sox) system in Alphaproteobacteria, left B. japonicum unable to oxidize thiosulfate and grow under chemolithotrophic conditions, whereas the deletion mutation of the soxY(2) gene at sox locus II, homologous to the Sox system in green sulfur bacteria, produced phenotypes similar to those of wild-type USDA110. Thiosulfate-dependent O(2) respiration was observed only in USDA110 and the soxY(2) mutant and not in the soxY(1) mutant. In the cells, 1 mol of thiosulfate was stoichiometrically converted to approximately 2 mol of sulfate and consumed approximately 2 mol of O(2). B. japonicum USDA110 showed (14)CO(2) fixation under chemolithotrophic growth conditions. The CO(2) fixation of resting cells was significantly dependent on thiosulfate addition. These results show that USDA110 is able to grow chemolithoautotrophically using thiosulfate as an electron donor, oxygen as an electron acceptor, and carbon dioxide as a carbon source, which likely depends on sox locus I including the soxY(1) gene on USDA110 genome. Thiosulfate oxidation capability is frequently found in members of the Bradyrhizobiaceae, which phylogenetic analysis showed to be associated with the presence of sox locus I homologues, including the soxY(1) gene of B. japonicum USDA110.
Collapse
|
6
|
Soares RA, Passaglia LMP. Application of representational difference analysis to identify genomic differences between Bradyrhizobium elkanii and B. Japonicum species. Braz J Microbiol 2010; 41:1142-51. [PMID: 24031597 PMCID: PMC3769751 DOI: 10.1590/s1517-838220100004000036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/18/2009] [Accepted: 04/26/2010] [Indexed: 11/25/2022] Open
Abstract
Bradyrhizobium elkanii is successfully used in the formulation of commercial inoculants and, together with B. japonicum, it fully supplies the plant nitrogen demands. Despite the similarity between B. japonicum and B. elkanii species, several works demonstrated genetic and physiological differences between them. In this work Representational Difference Analysis (RDA) was used for genomic comparison between B. elkanii SEMIA 587, a crop inoculant strain, and B. japonicum USDA 110, a reference strain. Two hundred sequences were obtained. From these, 46 sequences belonged exclusively to the genome of B. elkanii strain, and 154 showed similarity to sequences from B. japonicum genome. From the 46 sequences with no similarity to sequences from B. japonicum, 39 showed no similarity to sequences in public databases and seven showed similarity to sequences of genes coding for known proteins. These seven sequences were divided in three groups: similar to sequences from other Bradyrhizobium strains, similar to sequences from other nitrogen-fixing bacteria, and similar to sequences from non nitrogen-fixing bacteria. These new sequences could be used as DNA markers in order to investigate the rates of genetic material gain and loss in natural Bradyrhizobium strains.
Collapse
Affiliation(s)
| | - Luciane Maria Pereira Passaglia
- *Corresponding Author. Mailing address: Universidade Federal do Rio Grande do Sul, Departamento de Genética. Av. Bento Gonçalves, 9500, C. P. 15053, Prédio 43312, sala 207b. Porto Alegre, RS, CEP 91501–970, Brazil.; E-mail:
| |
Collapse
|
7
|
Teixeira ML, Cladera-Olivera F, dos Santos J, Brandelli A. Purification and characterization of a peptide from Bacillus licheniformis showing dual antimicrobial and emulsifying activities. Food Res Int 2009. [DOI: 10.1016/j.foodres.2008.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Wei M, Yokoyama T, Minamisawa K, Mitsui H, Itakura M, Kaneko T, Tabata S, Saeki K, Omori H, Tajima S, Uchiumi T, Abe M, Ohwada T. Soybean seed extracts preferentially express genomic loci of Bradyrhizobium japonicum in the initial interaction with soybean, Glycine max (L.) Merr. DNA Res 2008; 15:201-14. [PMID: 18511436 PMCID: PMC2575884 DOI: 10.1093/dnares/dsn012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 05/02/2008] [Indexed: 11/12/2022] Open
Abstract
Initial interaction between rhizobia and legumes actually starts via encounters of both partners in the rhizosphere. In this study, the global expression profiles of Bradyrhizobium japonicum USDA 110 in response to soybean (Glycine max) seed extracts (SSE) and genistein, a major soybean-released isoflavone for nod genes induction of B. japonicum, were compared. SSE induced many genomic loci as compared with genistein (5.0 microM), nevertheless SSE-supplemented medium contained 4.7 microM genistein. SSE markedly induced four predominant genomic regions within a large symbiosis island (681 kb), which include tts genes (type III secretion system) and various nod genes. In addition, SSE-treated cells expressed many genomic loci containing genes for polygalacturonase (cell-wall degradation), exopolysaccharide synthesis, 1-aminocyclopropane-1-carboxylate deaminase, ribosome proteins family and energy metabolism even outside symbiosis island. On the other hand, genistein-treated cells exclusively showed one expression cluster including common nod gene operon within symbiosis island and six expression loci including multidrug resistance, which were shared with SSE-treated cells. Twelve putatively regulated genes were indeed validated by quantitative RT-PCR. Several SSE-induced genomic loci likely participate in the initial interaction with legumes. Thus, these results can provide a basic knowledge for screening novel genes relevant to the B. japonicum- soybean symbiosis.
Collapse
Affiliation(s)
- Min Wei
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Tadashi Yokoyama
- Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu 183-8509, Tokyo, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Science, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Science, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Manabu Itakura
- Graduate School of Life Science, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Takakazu Kaneko
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Chiba 292-0812, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Chiba 292-0812, Japan
| | - Kazuhiko Saeki
- Department of Biological Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Hirofumi Omori
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shigeyuki Tajima
- Department of Life Science, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Toshiki Uchiumi
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan
| | - Mikiko Abe
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan
| | - Takuji Ohwada
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
9
|
Annapurna K, Balakrishnan N, Vital L. Verification and rapid identification of soybean rhizobia in Indian soils. Curr Microbiol 2007; 54:287-91. [PMID: 17334844 DOI: 10.1007/s00284-006-0423-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 11/22/2006] [Indexed: 11/26/2022]
Abstract
Sixty root nodule isolates of soybean rhizobia indigenous to eight field sites in India were characterized using PCR-RFLP for repeated sequence RSalpha a 1195-bp DNA fragment, indole acetic acid production, and nitrogenase activity. Site-dependent variations were observed in terms of IAA production and nitrogenase activities. RSalpha was conserved in slow-growing soybean rhizobia across locations and sites and was absent in other Rhizobiaceae members and other bacterial genera. The results suggest that RSalpha can be a useful molecular marker for slow-growing soybean rhizobia. The study also showed the low presence of soybean nodulating fast growers in Indian soils.
Collapse
Affiliation(s)
- K Annapurna
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | | | | |
Collapse
|
10
|
Minamisawa K, Onodera S, Tanimura Y, Kobayashi N, Yuhashi KI, Kubota M. Preferential nodulation of Glycine max, Glycine soja and Macroptilium atropurpureum by two Bradyrhizobium species japonicum and elkanii. FEMS Microbiol Ecol 2006. [DOI: 10.1111/j.1574-6941.1997.tb00422.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Sameshima-Saito R, Chiba K, Minamisawa K. Correlation of Denitrifying Capability with the Existence of nap, nir, nor and nos Genes in Diverse Strains of Soybean Bradyrhizobia. Microbes Environ 2006. [DOI: 10.1264/jsme2.21.174] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Kaori Chiba
- Graduate School of Life Sciences, Tohoku University
| | | |
Collapse
|
12
|
Sameshima-Saito R, Chiba K, Minamisawa K. New method of denitrification analysis of bradyrhizobium field isolates by gas chromatographic determination of (15)N-labeled N(2). Appl Environ Microbiol 2004; 70:2886-91. [PMID: 15128547 PMCID: PMC404451 DOI: 10.1128/aem.70.5.2886-2891.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Accepted: 01/22/2004] [Indexed: 11/20/2022] Open
Abstract
To evaluate the denitrification abilities of many Bradyrhizobium field isolates, we developed a new (15)N-labeled N(2) detection methodology, which is free from interference from atmospheric N(2) contamination. (30)N(2) ((15)N(15)N) and (29)N(2) ((15)N(14)N) were detected as an apparent peak by a gas chromatograph equipped with a thermal conductivity detector with N(2) gas having natural abundance of (15)N (0.366 atom%) as a carrier gas. The detection limit was 0.04% (30)N(2), and the linearity extended at least to 40% (30)N(2). When Bradyrhizobium japonicum USDA110 was grown in cultures anaerobically with (15)NO(3)(-), denitrification product ((30)N(2)) was detected stoichiometrically. A total of 65 isolates of soybean bradyrhizobia from two field sites in Japan were assayed by this method. The denitrification abilities were partly correlated with filed sites, Bradyrhizobium species, and the hup genotype.
Collapse
Affiliation(s)
- Reiko Sameshima-Saito
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | |
Collapse
|
13
|
Phylogeny and distribution of extra-slow-growing Bradyrhizobium japonicum harboring high copy numbers of RSα, RSβ and IS1631. FEMS Microbiol Ecol 2003; 44:191-202. [DOI: 10.1016/s0168-6496(03)00009-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Minamisawa K, Itakura M, Suzuki M, Ichige K, Isawa T, Yuhashi KI, Mitsui H. Horizontal Transfer of Nodulation Genes in Soils and Microcosms from Bradyrhizobium japonicum to B. elkanii. Microbes Environ 2002. [DOI: 10.1264/jsme2.2002.82] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | | | | | - Tsuyoshi Isawa
- Graduate School of Life Sciences, Tohoku University
- School of Agriculture, Ibaraki University
| | - Ken-ichi Yuhashi
- Graduate School of Life Sciences, Tohoku University
- School of Agriculture, Ibaraki University
- Plant Biotechnology Institute, Ibaraki Agriculture Center
| | | |
Collapse
|
15
|
Yasuta T, Okazaki S, Mitsui H, Yuhashi K, Ezura H, Minamisawa K. DNA sequence and mutational analysis of rhizobitoxine biosynthesis genes in Bradyrhizobium elkanii. Appl Environ Microbiol 2001; 67:4999-5009. [PMID: 11679318 PMCID: PMC93263 DOI: 10.1128/aem.67.11.4999-5009.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned and sequenced a cluster of genes involved in the biosynthesis of rhizobitoxine, a nodulation enhancer produced by Bradyrhizobium elkanii. The nucleotide sequence of the cloned 28.4-kb DNA region encompassing rtxA showed that several open reading frames (ORFs) were located downstream of rtxA. A large-deletion mutant of B. elkanii, USDA94 Delta rtx::Omega 1, which lacks rtxA, ORF1 (rtxC), ORF2, and ORF3, did not produce rhizobitoxine, dihydrorhizobitoxine, or serinol. The broad-host-range cosmid pLAFR1, which contains rtxA and these ORFs, complemented rhizobitoxine production in USDA94 Delta rtx::Omega 1. Further complementation experiments involving cosmid derivatives obtained by random mutagenesis with a kanamycin cassette revealed that at least rtxA and rtxC are necessary for rhizobitoxine production. Insertional mutagenesis of the N-terminal and C-terminal regions of rtxA indicated that rtxA is responsible for two crucial steps, serinol formation and dihydrorhizobitoxine biosynthesis. An insertional mutant of rtxC produced serinol and dihydrorhizobitoxine but no rhizobitoxine. Moreover, the rtxC product was highly homologous to the fatty acid desaturase of Pseudomonas syringae and included the copper-binding signature and eight histidine residues conserved in membrane-bound desaturase. This result suggested that rtxC encodes dihydrorhizobitoxine desaturase for the final step of rhizobitoxine production. In light of results from DNA sequence comparison, gene disruption experiments, and dihydrorhizobitoxine production from various substrates, we discuss the biosynthetic pathway of rhizobitoxine and its evolutionary significance in bradyrhizobia.
Collapse
Affiliation(s)
- T Yasuta
- Institute of Genetic Ecology, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Göttfert M, Röthlisberger S, Kündig C, Beck C, Marty R, Hennecke H. Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 2001; 183:1405-12. [PMID: 11157954 PMCID: PMC95015 DOI: 10.1128/jb.183.4.1405-1412.2001] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physical and genetic map of the Bradyrhizobium japonicum chromosome revealed that nitrogen fixation and nodulation genes are clustered. Because of the complex interactions between the bacterium and the plant, we expected this chromosomal sector to contain additional genes that are involved in the maintenance of an efficient symbiosis. Therefore, we determined the nucleotide sequence of a 410-kb region. The overall G+C nucleotide content was 59.1%. Using a minimum gene length of 150 nucleotides, 388 open reading frames (ORFs) were selected as coding regions. Thirty-five percent of the predicted proteins showed similarity to proteins of rhizobia. Sixteen percent were similar only to proteins of other bacteria. No database match was found for 29%. Repetitive DNA sequence-derived ORFs accounted for the rest. The sequenced region contained all nitrogen fixation genes and, apart from nodM, all nodulation genes that were known to exist in B. japonicum. We found several genes that seem to encode transport systems for ferric citrate, molybdate, or carbon sources. Some of them are preceded by -24/-12 promoter elements. A number of putative outer membrane proteins and cell wall-modifying enzymes as well as a type III secretion system might be involved in the interaction with the host.
Collapse
Affiliation(s)
- M Göttfert
- Institut für Genetik, Technische Universität Dresden, D-01062 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
da Costa Coutinho HL, Kay HE, Manfio GP, Prata Neves MC, Ribeiro JR, Rumjanek NG, Beringer JE. Molecular evidence for shifts in polysaccharide composition associated with adaptation of soybean Bradyrhizobium strains to the Brazilian Cerrado soils. Environ Microbiol 1999; 1:401-8. [PMID: 11207759 DOI: 10.1046/j.1462-2920.1999.00047.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pyrolysis mass spectrometry (PyMS) and DNA fingerprinting (RAPD and RSalpha hybridization) were used to characterize soybean inoculant strains and root nodule isolates of bradyrhizobia from the Brazilian Cerrado soils. Most isolates were shown to be derived from the inoculant strains on the basis of genotype comparisons by DNA fingerprinting. Phenotypic analysis (using PyMS) of the strains and separately of the polysaccharides derived from them showed that the nodule isolates differed from the parental strains, suggesting adaptation to the Cerrado soil environment. The extent of the differences between the derivatives and inoculant strains was similar for comparisons made on the basis of whole-cell preparations or from the isolated polysaccharides, indicating that the adaptation was caused by changes in the composition of the polysaccharides produced.
Collapse
|
18
|
Isawa T, Sameshima R, Mitsui H, Minamisawa K. IS1631 occurrence in Bradyrhizobium japonicum highly reiterated sequence-possessing strains with high copy numbers of repeated sequences RSalpha and RSbeta. Appl Environ Microbiol 1999; 65:3493-501. [PMID: 10427040 PMCID: PMC91525 DOI: 10.1128/aem.65.8.3493-3501.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From Bradyrhizobium japonicum highly reiterated sequence-possessing (HRS) strains indigenous to Niigata and Tokachi in Japan with high copy numbers of the repeated sequences RSalpha and RSbeta (K. Minamisawa, T. Isawa, Y. Nakatsuka, and N. Ichikawa, Appl. Environ. Microbiol. 64:1845-1851, 1998), several insertion sequence (IS)-like elements were isolated by using the formation of DNA duplexes by denaturation and renaturation of total DNA, followed by treatment with S1 nuclease. Most of these sequences showed structural features of bacterial IS elements, terminal inverted repeats, and homology with known IS elements and transposase genes. HRS and non-HRS strains of B. japonicum differed markedly in the profiles obtained after hybridization with all the elements tested. In particular, HRS strains of B. japonicum contained many copies of IS1631, whereas non-HRS strains completely lacked this element. This association remained true even when many field isolates of B. japonicum were examined. Consequently, IS1631 occurrence was well correlated with B. japonicum HRS strains possessing high copy numbers of the repeated sequence RSalpha or RSbeta. DNA sequence analysis indicated that IS1631 is 2,712 bp long. In addition, IS1631 belongs to the IS21 family, as evidenced by its two open reading frames, which encode putative proteins homologous to IstA and IstB of IS21, and its terminal inverted repeat sequences with multiple short repeats.
Collapse
Affiliation(s)
- T Isawa
- Institute of Genetic Ecology, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
19
|
Minamisawa K, Nakatsuka Y, Isawa T. Diversity and field site variation of indigenous populations of soybean bradyrhizobia in Japan by fingerprints with repeated sequences RSα and RSβ. FEMS Microbiol Ecol 1999. [DOI: 10.1111/j.1574-6941.1999.tb00608.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Minamisawa K, Isawa T, Nakatsuka Y, Ichikawa N. New Bradyrhizobium japonicum strains that possess high copy numbers of the repeated sequence RS alpha. Appl Environ Microbiol 1998; 64:1845-51. [PMID: 9572961 PMCID: PMC106240 DOI: 10.1128/aem.64.5.1845-1851.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In a survey of DNA fingerprints of indigenous Bradyrhizobium japonicum with the species-specific repeated sequences RS alpha and RS beta, 21 isolates from three field sites showed numerous RS-specific hybridization bands. The isolates were designated highly reiterated sequence-possessing (HRS) isolates, and their DNA hybridization profiles were easily distinguished from the normal patterns. Some HRS isolates from two field sites possessed extremely high numbers of RS alpha copies, ranging from 86 to 175 (average, 128), and showed shifts and duplications of nif- and hup-specific hybridization bands. The HRS isolates exhibited slower growth than normal isolates, although no difference in symbiotic properties was detected between the HRS and normal isolates. Nucleotide sequence analysis of 16S rRNA genes showed that HRS isolates were strains of B. japonicum. There was no difference in the spectra of serological and hydrogenase groupings of normal and HRS isolates. Some HRS isolates possessed a tandem repeat RS alpha dimer that is similar to the structure of (IS30)2, which was shown to cause a burst of transpositional rearrangements in Escherichia coli. The results suggest that HRS isolates are derived from normal isolates in individual fields by genome rearrangements that may be mediated by insertion sequences such as RS alpha.
Collapse
Affiliation(s)
- K Minamisawa
- Institute of Genetic Ecology, Tohoku University, Sendai, Japan.
| | | | | | | |
Collapse
|
21
|
Kuykendall L, Barnett M, Mathis J. Duplication of DNA regions carrying repetitive sequence RS? in Bradyrhizobium japonicum 110. Lett Appl Microbiol 1997. [DOI: 10.1111/j.1472-765x.1997.tb00007.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Judd AK, Schneider M, Sadowsky MJ, de Bruijn FJ. Use of repetitive sequences and the polymerase chain reaction technique to classify genetically related Bradyrhizobium japonicum serocluster 123 strains. Appl Environ Microbiol 1993; 59:1702-8. [PMID: 8101072 PMCID: PMC182148 DOI: 10.1128/aem.59.6.1702-1708.1993] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have determined that repetitive (repetitive extragenic palindromic [REP] and enterobacterial repetitive intergenic consensus [ERIC]) sequences used in conjunction with the polymerase chain reaction technique (REP and ERIC PCR) provide an effective means of differentiating between and classifying genetically related Bradyrhizobium japonicum serocluster 123 strains. Analysis of REP and ERIC PCR-generated dendrograms indicated that this technique can effectively differentiate between closely related strains which were indistinguishable by using other classification methods. To maximize the genomic differences detected by REP and ERIC PCR fingerprint patterns, the REP and the ERIC data sets were combined for statistical analyses. REP-plus-ERIC PCR fingerprints were also found to provide a method to differentiate between highly diverse strains of Bradyrhizobium spp., but they did not provide an effective means for classifying these strains because of the relatively low number of REP and ERIC consensus sequences found in some of the bradyrhizobia. Our results also suggest that there is a relationship between nodulation phenotypes and the distribution of REP and ERIC consensus sequences within the genomes of B. japonicum serogroup 123 and 127 strains. Results obtained by restriction fragment length polymorphism hybridization analyses were correlated with the phylogenetic classification of B. japonicum serocluster 123 strains obtained by using REP and ERIC PCR.
Collapse
Affiliation(s)
- A K Judd
- Soil Science Department, University of Minnesota, St. Paul 55108
| | | | | | | |
Collapse
|