1
|
Jarrell KF, Albers SV, Machado JNDS. A comprehensive history of motility and Archaellation in Archaea. FEMS MICROBES 2021; 2:xtab002. [PMID: 37334237 PMCID: PMC10117864 DOI: 10.1093/femsmc/xtab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 08/24/2023] Open
Abstract
Each of the three Domains of life, Eukarya, Bacteria and Archaea, have swimming structures that were all originally called flagella, despite the fact that none were evolutionarily related to either of the other two. Surprisingly, this was true even in the two prokaryotic Domains of Bacteria and Archaea. Beginning in the 1980s, evidence gradually accumulated that convincingly demonstrated that the motility organelle in Archaea was unrelated to that found in Bacteria, but surprisingly shared significant similarities to type IV pili. This information culminated in the proposal, in 2012, that the 'archaeal flagellum' be assigned a new name, the archaellum. In this review, we provide a historical overview on archaella and motility research in Archaea, beginning with the first simple observations of motile extreme halophilic archaea a century ago up to state-of-the-art cryo-tomography of the archaellum motor complex and filament observed today. In addition to structural and biochemical data which revealed the archaellum to be a type IV pilus-like structure repurposed as a rotating nanomachine (Beeby et al. 2020), we also review the initial discoveries and subsequent advances using a wide variety of approaches to reveal: complex regulatory events that lead to the assembly of the archaellum filaments (archaellation); the roles of the various archaellum proteins; key post-translational modifications of the archaellum structural subunits; evolutionary relationships; functions of archaella other than motility and the biotechnological potential of this fascinating structure. The progress made in understanding the structure and assembly of the archaellum is highlighted by comparing early models to what is known today.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sonja-Verena Albers
- Institute for Biology II- Microbiology, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
| | - J Nuno de Sousa Machado
- Institute for Biology II- Microbiology, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany
| |
Collapse
|
2
|
|
3
|
|
4
|
S-layer glycoproteins and flagellins: reporters of archaeal posttranslational modifications. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20721273 PMCID: PMC2913515 DOI: 10.1155/2010/612948] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 06/15/2010] [Indexed: 01/06/2023]
Abstract
Many archaeal proteins undergo posttranslational modifications. S-layer proteins and flagellins have been used successfully to study a variety of these modifications, including N-linked glycosylation, signal peptide removal and lipid modification. Use of these well-characterized reporter proteins in the genetically tractable model organisms, Haloferax volcanii, Methanococcus voltae and Methanococcus maripaludis, has allowed dissection of the pathways and characterization of many of the enzymes responsible for these modifications. Such studies have identified archaeal-specific variations in signal peptidase activity not found in the other domains of life, as well as the enzymes responsible for assembly and biosynthesis of novel N-linked glycans. In vitro assays for some of these enzymes have already been developed. N-linked glycosylation is not essential for either Hfx. volcanii or the Methanococcus species, an observation that allowed researchers to analyze the role played by glycosylation in the function of both S-layers and flagellins, by generating mutants possessing these reporters with only partial attached glycans or lacking glycan altogether. In future studies, it will be possible to consider questions related to the heterogeneity associated with given modifications, such as differential or modulated glycosylation.
Collapse
|
5
|
Berghofer Y, Klein A. Insertional Mutations in the Hydrogenase vhc and frc Operons Encoding Selenium-Free Hydrogenases in Methanococcus voltae. Appl Environ Microbiol 2010; 61:1770-5. [PMID: 16535019 PMCID: PMC1388437 DOI: 10.1128/aem.61.5.1770-1775.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanococcus voltae, which contains four different gene groups that encode [NiFe]-hydrogenases, was transformed with integration vectors to achieve polar inactivation of two of the four hydrogenase operons that encode the selenium-free enzymes Vhc and Frc. Transformants which were selected by their acquired puromycin resistance showed site-specific insertions in either the vhc or frc operon by single crossover events. Southern hybridization revealed tandem integrations of whole vectors in the vhc operon, whereas only one vector copy was found in the frc operon. Northern (RNA) hybridizations showed a pac transcript of defined size, indicating strong termination in front of the hydrogenase genes downstream. In spite of the apparent abolition of expression of selenium-free hydrogenases through these polar insertions, they were not lethal to cells upon growth in selenium-deprived minimal medium, which we had previously shown to strongly induce transcription of the respective operons in M. voltae. Instead, like wild-type control cultures, transformants responded to selenium deprivation only with a reduction in growth rate. We conclude that loss of the potential to express a selenium-free hydrogenase can nevertheless be balanced by very small amounts of selenium hydrogenases under laboratory conditions in which the hydrogen supply is not likely to be a limiting growth factor.
Collapse
|
6
|
Lange M, Ahring BK. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea. FEMS Microbiol Rev 2001; 25:553-71. [PMID: 11742691 DOI: 10.1111/j.1574-6976.2001.tb00591.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Methanogens belong to the kingdom of Euryarchaeota in the domain of Archaea. The Archaea differ from Bacteria in many aspects important to molecular work. Among these are cell wall composition, their sensitivity to antibiotics, their translation and transcription machinery, and their very strict demands to anaerobic culture conditions. These differences may, at least partly, be responsible for the delay in availability of genetic research tools for methanogens. At present, however, the research within genetics of methanogens and their gene regulation and expression is in rapid progress. Two complete methanogenic genomes have been sequenced and published and more are underway. Besides, sequences are known from a multitude of individual genes from methanogens. Standard methods for simple DNA and RNA work can normally be employed, but permeabilization of the cell wall may demand special procedures. Efficient genetic manipulation systems, including shuttle and integration vector systems, have appeared for mesophilic, but not for thermophilic species within the last few years and will have a major impact on future investigations of methanogenic molecular biology.
Collapse
Affiliation(s)
- M Lange
- Biocentrum-DTU, Technical University of Denmark, Building 227, DK-2800 Lyngby, Denmark
| | | |
Collapse
|
7
|
Abstract
Members of the Archaea domain are extremely diverse in their adaptation to extreme environments, yet also widespread in "normal" habitats. Altogether, among the best characterized archaeal representatives all mechanisms of gene transfer such as transduction, conjugation, and transformation have been discovered, as briefly reviewed here. For some halophiles and mesophilic methanogens, usable genetic tools were developed for in vivo studies. However, on an individual basis no single organism has evolved into the "E. coli of Archaea" as far as genetics is concerned. Currently, and unfortunately, most of the genome sequences available are those of microorganisms which are either not amenable to gene transfer or not among the most promising candidates for genetic studies.
Collapse
Affiliation(s)
- Y Luo
- Institute of Microbiology, Swiss Federal Institute of Technology Zürich
| | | |
Collapse
|
8
|
|
9
|
Tumbula DL, Bowen TL, Whitman WB. Characterization of pURB500 from the archaeon Methanococcus maripaludis and construction of a shuttle vector. J Bacteriol 1997; 179:2976-86. [PMID: 9139917 PMCID: PMC179063 DOI: 10.1128/jb.179.9.2976-2986.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The complete sequence of the 8,285-bp plasmid pURB500 from Methanococcus maripaludis C5 was determined. Sequence analysis identified 18 open reading frames as well as two regions of potential iterons and complex secondary structures. The shuttle vector, pDLT44, for M. maripaludis JJ was constructed from the entire pURB500 plasmid and pMEB.2, an Escherichia coli vector containing a methanococcal puromycin-resistance marker (P. Gernhardt, O. Possot, M. Foglino, L. Sibold, and A. Klein, Mol. Gen. Genet. 221:273-279, 1990). By using polyethylene glycol transformation, M. maripaludis JJ was transformed at a frequency of 3.3 x 10(7) transformants per microg of pDLT44. The shuttle vector was stable in E. coli under ampicillin selection but was maintained at a lower copy number than pMEB.2. Based on the inability of various restriction fragments of pURB500 to support maintenance in M. maripaludis JJ, multiple regions of pURB500 were required. pDLT44 did not replicate in Methanococcus voltae.
Collapse
Affiliation(s)
- D L Tumbula
- Department of Microbiology, University of Georgia, Athens 30602-2605, USA
| | | | | |
Collapse
|
10
|
Apolinario EA, Sowers KR. Plate colonization ofMethanococcus maripaludisandMethanosarcina thermophilain a modified canning jar. FEMS Microbiol Lett 1996. [DOI: 10.1111/j.1574-6968.1996.tb08567.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Choquet CG, Patel GB, Beveridge TJ, Sprott GD. Stability of pressure-extruded liposomes made from archaeobacterial ether lipids. Appl Microbiol Biotechnol 1994; 42:375-84. [PMID: 7765779 DOI: 10.1007/bf00902745] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ether lipids were obtained from a wide range of archaeobacteria grown at extremes of pH, temperature, and salt concentration. With the exception of Sulfolobus acidocaldarius, unilamellar and/or multilamellar liposomes could be prepared from emulsions of total polar lipid extracts by pressure extrusion through filters of various pore sizes. Dynamic light scattering, and electron microscopy revealed homogeneous liposome populations with sizes varying from 40 to 230 nm, depending on both the lipid source and the pore size of the filters. Leakage rates of entrapped fluorescent or radioactive compounds established that those archaeobacterial liposomes that contained tetraether lipids were the most stable to high temperatures, alkaline pH, and serum proteins. Most ether liposomes were stable to phospholipase A2, phospholipase B and pancreatic lipase. These properties of archaeobacterial liposomes make them attractive for applications in biotechnology.
Collapse
Affiliation(s)
- C G Choquet
- Institute for Biological Sciences, National Research Council of Canada (NRCC), Ottawa, Ontario
| | | | | | | |
Collapse
|
12
|
Tumbula DL, Makula RA, Whitman WB. Transformation ofMethanococcus maripaludisand identification of aPstI-like restriction system. FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb07118.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
13
|
Choquet CG, Richards JC, Patel GB, Sprott GD. Purine and pyrimidine biosynthesis in methanogenic bacteria. Arch Microbiol 1994. [DOI: 10.1007/bf00307767] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Patel GB, Nash JH, Agnew BJ, Sprott GD. Natural and Electroporation-Mediated Transformation of
Methanococcus voltae
Protoplasts. Appl Environ Microbiol 1994; 60:903-7. [PMID: 16349218 PMCID: PMC201408 DOI: 10.1128/aem.60.3.903-907.1994] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lack of high-efficiency transformation systems has severely impeded genetic research on methanogenic members of the kingdom
Archaeobacteria.
By using protoplasts of
Methanococcus voltae
and an integration vector, Mip1, previously shown to impart puromycin resistance, we obtained natural transformation frequencies that were about 80-fold higher (705 transformants per μg of transforming DNA) than that reported with whole cells. Electroporation-mediated transformation of
M. voltae
protoplasts with covalently closed circular Mip1 DNA was possible, but at lower frequencies of ca. 177 transformants per μg of vector DNA. However, a 380-fold improvement (3,417 transformants per μg of DNA) over the frequency of natural transformation with whole cells was achieved by electroporation of protoplasts with linearized DNA. This general approach, of using protoplasts, should allow the transformation of other methanogens, especially those that may be gently converted to protoplasts as a result of their tendency to lyse in hypotonic solutions.
Collapse
Affiliation(s)
- G B Patel
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A OR6
| | | | | | | |
Collapse
|
15
|
Konisky J, Lynn D, Hoppert M, Mayer F, Haney P. Identification of the Methanococcus voltae S-layer structural gene. J Bacteriol 1994; 176:1790-2. [PMID: 8132478 PMCID: PMC205272 DOI: 10.1128/jb.176.6.1790-1792.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have established that the gene which we had previously identified as encoding the Methanococcus voltae P-type ATPase is, in fact, the structural gene for the M. voltae S-layer protein. This conclusion is based on a comparison of the N-terminal sequence of S-layer protein prepared by two independent methods with that derived from the nucleotide sequence of the cloned gene. This conclusion was further supported by immunocytochemical localization of the antigen directed against the antibodies used in the cloning experiments.
Collapse
Affiliation(s)
- J Konisky
- Department of Microbiology, University of Illinois, Urbana 61802
| | | | | | | | | |
Collapse
|