1
|
Hallberg ZF, Seth EC, Thevasundaram K, Taga ME. Comparative Analysis of Corrinoid Profiles across Host-Associated and Environmental Samples. Biochemistry 2022; 61:2791-2796. [PMID: 36037062 DOI: 10.1021/acs.biochem.2c00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vitamin B12 (the cyanated form of cobalamin cofactors) is best known for its essential role in human health. In addition to its function in human metabolism, cobalamin also plays important roles in microbial metabolism and can impact microbial community function. Cobalamin is a member of the structurally diverse family of cofactors known as cobamides that are produced exclusively by certain prokaryotes. Cobamides are considered shared nutrients in microbial communities because the majority of bacteria that possess cobamide-dependent enzymes cannot synthesize cobamides de novo. Furthermore, different microbes have evolved metabolic specificity for particular cobamides, and therefore, the availability of cobamides in the environment is important for cobamide-dependent microbes. Determining the cobamides present in an environment of interest is essential for understanding microbial metabolic interactions. By examining the abundances of different cobamides in diverse environments, including 10 obtained in this study, we find that, contrary to its preeminence in human metabolism, cobalamin is relatively rare in many microbial habitats. Comparison of cobamide profiles of mammalian gastrointestinal samples and wood-feeding insects reveals that host-associated cobamide abundances vary and that fecal cobamide profiles differ from those of their host gastrointestinal tracts. Environmental cobamide profiles obtained from aquatic, soil, and contaminated groundwater samples reveal that the cobamide compositions of environmental samples are highly variable. As the only commercially available cobamide, cobalamin is routinely supplied during microbial culturing efforts. However, these findings suggest that cobamides specific to a given microbiome may yield greater insight into nutrient utilization and physiological processes that occur in these habitats.
Collapse
Affiliation(s)
- Zachary F Hallberg
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Erica C Seth
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Kersh Thevasundaram
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Synthesis, solution and crystal structure of the coenzyme B(12) analogue Co(β)-2'-fluoro-2',5'-dideoxyadenosylcobalamin. J Inorg Biochem 2015; 148:62-8. [PMID: 25726330 DOI: 10.1016/j.jinorgbio.2015.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 11/23/2022]
Abstract
Crystal structure analyses have helped to decipher the mode of binding of coenzyme B12 (AdoCbl) in the active site of AdoCbl-dependent enzymes. However, the question of how such enzymes perform their radical reactions is still incompletely answered. A pioneering study by Gruber and Kratky of AdoCbl-dependent glutamate mutase (GLM) laid out a path for the movement of the catalytically active 5'-deoxyadenosyl radical, in which H-bonds between the protein and the 2'- and 3'-OH groups of the protein bound AdoCbl would play a decisive role. Studies with correspondingly modified coenzyme B12-analogues are of interest to gain insights into cofactor binding and enzyme mechanism. Here we report the preparation of Coβ-2'-fluoro-2',5'-dideoxyadenosylcobalamin (2'FAdoCbl), which lacks the 2'-OH group critical for the interaction in enzymes. 2'FAdoCbl was prepared by alkylation of cob(I)alamin, obtained from the electrochemical reduction of aquocobalamin. Spectroscopic data and a single crystal X-ray analysis of 2'FAdoCbl established its structure, which was very similar to that one of coenzyme B12. 2'FAdoCbl is a (19)F NMR active mimic of coenzyme B12 that may help to gain insights into binding interactions of coenzyme B12 with AdoCbl-dependent enzymes, proteins of B12 transport and of AdoCbl-biosynthesis, as well as with B12-riboswitches.
Collapse
|
3
|
Crofts TS, Hazra AB, Tran JLA, Sokolovskaya OM, Osadchiy V, Ad O, Pelton J, Bauer S, Taga ME. Regiospecific Formation of Cobamide Isomers Is Directed by CobT. Biochemistry 2014; 53:7805-15. [DOI: 10.1021/bi501147d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Terence S. Crofts
- Department of Plant and Microbial Biology, ∥Department of Chemistry, ⊥QB3 Institute, and #Energy Biosciences Institute, University of California, Berkeley, United States
| | - Amrita B. Hazra
- Department of Plant and Microbial Biology, ∥Department of Chemistry, ⊥QB3 Institute, and #Energy Biosciences Institute, University of California, Berkeley, United States
| | - Jennifer LA Tran
- Department of Plant and Microbial Biology, ∥Department of Chemistry, ⊥QB3 Institute, and #Energy Biosciences Institute, University of California, Berkeley, United States
| | - Olga M. Sokolovskaya
- Department of Plant and Microbial Biology, ∥Department of Chemistry, ⊥QB3 Institute, and #Energy Biosciences Institute, University of California, Berkeley, United States
| | - Vadim Osadchiy
- Department of Plant and Microbial Biology, ∥Department of Chemistry, ⊥QB3 Institute, and #Energy Biosciences Institute, University of California, Berkeley, United States
| | - Omer Ad
- Department of Plant and Microbial Biology, ∥Department of Chemistry, ⊥QB3 Institute, and #Energy Biosciences Institute, University of California, Berkeley, United States
| | - Jeffrey Pelton
- Department of Plant and Microbial Biology, ∥Department of Chemistry, ⊥QB3 Institute, and #Energy Biosciences Institute, University of California, Berkeley, United States
| | - Stefan Bauer
- Department of Plant and Microbial Biology, ∥Department of Chemistry, ⊥QB3 Institute, and #Energy Biosciences Institute, University of California, Berkeley, United States
| | - Michiko E. Taga
- Department of Plant and Microbial Biology, ∥Department of Chemistry, ⊥QB3 Institute, and #Energy Biosciences Institute, University of California, Berkeley, United States
| |
Collapse
|
4
|
Abstract
Eleven adenosylcorrinoid-dependent rearrangements and elimination reactions have been described during the last four decades of vitamin B12 research. In contrast, only the cobamide-dependent methionine synthase was well established as a corrinoid-dependent methyl transfer reaction. yet, investigations during the last few years revealed nine additional corrinoid-dependent methyltransferases. Many of these reactions are catalyzed by bacteria which possess a distinct C1 metabolism. Notably acetogenic and methanogenic bacteria carry out such methyl transfers in their anabolism and catabolism. Tetrahydrofolate or a similar pterine derivative is a key intermediate in these reactions. It functions as methyl acceptor and the methylated tetrahydrofolate serves as a methyl donor.
Collapse
Affiliation(s)
- E Stupperich
- Department of Applied Microbiology, University of Ulm, FRG
| |
Collapse
|