1
|
Mandal S, Flood BE, Lunzer M, Kumar D, Bailey JV. Fluoride and gallein regulate polyphosphate accumulation in dental caries-associated Lacticaseibacillus. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001519. [PMID: 39607745 PMCID: PMC11604172 DOI: 10.1099/mic.0.001519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Inorganic polyphosphates (polyPs) are energy-storing biopolymers synthesized by all three domains of life. PolyP accumulation has been well studied with respect to its role in stress response, but its role in dental disease has received less attention. Dental decay can be promoted by changes in pH as well as the chemical activity of ions such as phosphate in oral fluids at the enamel interface. Previous work has shown that the drawdown of phosphate from biofilm fluids can alter the saturation state of oral fluids to thermodynamically favour mineral dissolution. The members of the Lactobacillaceae are known to accumulate polyP and play a role in early-stage and late-stage dental caries. In this study, we examined the effects of potential metabolic inhibitors on polyP accumulation in Lacticaseibacillus rhamnosus. We observed that two inhibitors of the enzyme responsible for polyP synthesis, gallein and fluoride, inhibited polyP accumulation in a balanced medium. However, fluoride and gallein treatments amended with either glucose or lactate were found to enhance polyP accumulation. These results illustrate the potential complexity of polyP metabolism in the oral environment.
Collapse
Affiliation(s)
- Subhrangshu Mandal
- Department of Earth & Environmental Sciences, University of Minnesota – Twin Cities, Minneapolis, MN 55455, USA
- Department of Botany, Visva Bharati University, Bolpur, West Bengal, India
| | - Beverly E. Flood
- Department of Earth & Environmental Sciences, University of Minnesota – Twin Cities, Minneapolis, MN 55455, USA
| | - Mark Lunzer
- Department of Diagnostic and Biological Sciences, University of Minnesota – Twin Cities, Minneapolis, MN 55455, USA
| | - Dhiraj Kumar
- Department of Diagnostic and Biological Sciences, University of Minnesota – Twin Cities, Minneapolis, MN 55455, USA
| | - Jake V. Bailey
- Department of Earth & Environmental Sciences, University of Minnesota – Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Gabrielli N, Maga-Nteve C, Kafkia E, Rettel M, Loeffler J, Kamrad S, Typas A, Patil KR. Unravelling metabolic cross-feeding in a yeast-bacteria community using 13 C-based proteomics. Mol Syst Biol 2023; 19:e11501. [PMID: 36779294 PMCID: PMC10090948 DOI: 10.15252/msb.202211501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/14/2023] Open
Abstract
Cross-feeding is fundamental to the diversity and function of microbial communities. However, identification of cross-fed metabolites is often challenging due to the universality of metabolic and biosynthetic intermediates. Here, we use 13 C isotope tracing in peptides to elucidate cross-fed metabolites in co-cultures of Saccharomyces cerevisiae and Lactococcus lactis. The community was grown on lactose as the main carbon source with either glucose or galactose fraction of the molecule labelled with 13 C. Data analysis allowing for the possible mass-shifts yielded hundreds of peptides for which we could assign both species identity and labelling degree. The labelling pattern showed that the yeast utilized galactose and, to a lesser extent, lactic acid shared by L. lactis as carbon sources. While the yeast provided essential amino acids to the bacterium as expected, the data also uncovered a complex pattern of amino acid exchange. The identity of the cross-fed metabolites was further supported by metabolite labelling in the co-culture supernatant, and by diminished fitness of a galactose-negative yeast mutant in the community. Together, our results demonstrate the utility of 13 C-based proteomics for uncovering microbial interactions.
Collapse
Affiliation(s)
| | | | - Eleni Kafkia
- European Molecular Biology Laboratory, Heidelberg, Germany.,Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Mandy Rettel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jakob Loeffler
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stephan Kamrad
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Kiran Raosaheb Patil
- European Molecular Biology Laboratory, Heidelberg, Germany.,Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Zeng L, Burne RA. Subpopulation behaviors in lactose metabolism by Streptococcus mutans. Mol Microbiol 2020; 115:58-69. [PMID: 32881164 DOI: 10.1111/mmi.14596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
When Streptococcus mutans is transferred from a preferred carbohydrate (glucose or fructose) to lactose, initiation of growth can take several hours, and substantial amounts of glucose are released during growth. Here, S. mutans strains UA159 and GS-5 were examined for stochastic behaviors in transcription of the lac operon. Using a gfp reporter fusion, we demonstrated that induction of the lac operon occurs in only a fraction of the population, with prior exposure to carbohydrate source and strain influencing the magniture of the sub-population response. Lower glucokinase activity in GS-5 was associated with release of substantially more glucose than UA159 and significantly lower lac expression. Mutants unable to use lactose grew on lactose as the sole carbohydrate when strains with an intact lac operon were also present in the cultures, indicative of the potential for population cheating. Utilizing a set of engineered obligate cheating and non-cheating strains, we confirmed that cheating can sustain a heterogeneous population. Futher, obligate cheaters of GS-5 competed well with the non-cheaters and showed a high degree of competitive fitness in a human-derived consortium biofilm model. The results show that bet-hedging behaviors in carbohydrate metabolism may substantially influence the composition and pathogenic potential of oral biofilms.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| |
Collapse
|
4
|
Lactococcus lactis Diversity Revealed by Targeted Amplicon Sequencing of purR Gene, Metabolic Comparisons and Antimicrobial Properties in an Undefined Mixed Starter Culture Used for Soft-Cheese Manufacture. Foods 2020; 9:foods9050622. [PMID: 32414204 PMCID: PMC7278722 DOI: 10.3390/foods9050622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
The undefined mixed starter culture (UMSC) is used in the manufacture of cheeses. Deciphering UMSC microbial diversity is important to optimize industrial processes. The UMSC was studied using culture-dependent and culture-independent based methods. MALDI-TOF MS enabled identification of species primarily from the Lactococcus genus. Comparisons of carbohydrate metabolism profiles allowed to discriminate five phenotypes of Lactococcus (n = 26/1616). The 16S sequences analysis (V1–V3, V3–V4 regions) clustered the UMSC microbial diversity into two Lactococcus operational taxonomic units (OTUs). These clustering results were improved with the DADA2 algorithm on the housekeeping purR sequences. Five L. lactis variants were detected among the UMSC. The whole-genome sequencing of six isolates allowed for the identification of the lactis subspecies using Illumina® (n = 5) and Pacbio® (n = 1) technologies. Kegg analysis confirmed the L. lactis species-specific niche adaptations and highlighted a progressive gene pseudogenization. Then, agar spot tests and agar well diffusion assays were used to assess UMSC antimicrobial activities. Of note, isolate supernatants (n = 34/1616) were shown to inhibit the growth of Salmonella ser. Typhimurium CIP 104115, Lactobacillus sakei CIP 104494, Staphylococcus aureus DSMZ 13661, Enterococcus faecalis CIP103015 and Listeria innocua CIP 80.11. Collectively, these results provide insightful information about UMSC L. lactis diversity and revealed a potential application as a bio-protective starter culture.
Collapse
|
5
|
Sahoo TK, Jayaraman G. Co-culture of Lactobacillus delbrueckii and engineered Lactococcus lactis enhances stoichiometric yield of D-lactic acid from whey permeate. Appl Microbiol Biotechnol 2019; 103:5653-5662. [PMID: 31115633 DOI: 10.1007/s00253-019-09819-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 12/18/2022]
Abstract
D-Lactic acid (D-LA) is an enantiomer of lactic acid, which has a niche application in synthesis of poly-lactic acid based (PLA) polymer owing to its contribution to the thermo-stability of stereo-complex PLA polymer. Utilization of renewable substrates such as whey permeate is pivotal to economically viable production of D-LA. In present work, we have demonstrated D-LA production from whey permeate by Lactobacillus delbrueckii and engineered Lactococcus lactis. We observed that lactose fermentation by a monoculture of L. delbrueckii yields D-LA and galactose as major products. The highest yield of D-LA obtained was 0.48 g g-1 when initial lactose concentration was 30 g L-1. Initial lactose concentration beyond 20 g L-1 resulted in accumulation of glucose and galactose, and hence, reduced the stoichiometric yield of D-LA. L. lactis naturally produces L-lactic acid (L-LA), so a mutant strain of L. lactis (L. lactis Δldh ΔldhB ΔldhX) was used to prevent L-LA production and engineer it for D-LA production. Heterologous over-expression of D-lactate dehydrogenase (ldhA) in the recombinant strain L. lactis TSG1 resulted in 0.67 g g-1 and 0.44 g g-1 of D-LA yield from lactose and galactose, respectively. Co-expression of galactose permease (galP) and α-phosphoglucomutase (pgmA) with ldhA in the recombinant strain L. lactis TSG3 achieved a D-LA yield of 0.92 g g-1 from galactose. A co-culture batch process of L. delbrueckii and L. lactis TSG3 achieved an enhanced stoichiometric yield of 0.90 g g-1 and ~45 g L-1D-LA from whey permeate (lactose). This is the highest reported yield of D-LA from lactose substrate, and the titres can be improved further by a suitably designed fed-batch co-culture process.
Collapse
Affiliation(s)
- Tridweep K Sahoo
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Guhan Jayaraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
6
|
Presence of galactose in precultures induces lacS and leads to short lag phase in lactose-grown Lactococcus lactis cultures. J Ind Microbiol Biotechnol 2018; 46:33-43. [PMID: 30413923 PMCID: PMC6339885 DOI: 10.1007/s10295-018-2099-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/26/2018] [Indexed: 11/29/2022]
Abstract
Lactose conversion by lactic acid bacteria is of high industrial relevance and consistent starter culture quality is of outmost importance. We observed that Lactococcus lactis using the high-affinity lactose-phosphotransferase system excreted galactose towards the end of the lactose consumption phase. The excreted galactose was re-consumed after lactose depletion. The lacS gene, known to encode a lactose permease with affinity for galactose, a putative galactose–lactose antiporter, was upregulated under the conditions studied. When transferring cells from anaerobic to respiration-permissive conditions, lactose-assimilating strains exhibited a long and non-reproducible lag phase. Through systematic preculture experiments, the presence of galactose in the precultures was correlated to short and reproducible lag phases in respiration-permissive main cultivations. For starter culture production, the presence of galactose during propagation of dairy strains can provide a physiological marker for short culture lag phase in lactose-grown cultures.
Collapse
|
7
|
Solopova A, Bachmann H, Teusink B, Kok J, Kuipers OP. Further Elucidation of Galactose Utilization in Lactococcus lactis MG1363. Front Microbiol 2018; 9:1803. [PMID: 30123211 PMCID: PMC6085457 DOI: 10.3389/fmicb.2018.01803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/17/2018] [Indexed: 11/20/2022] Open
Abstract
Since the 1970s, galactose metabolism in Lactococcus lactis has been in debate. Different studies led to diverse outcomes making it difficult to conclude whether galactose uptake was PEP- or ATP- dependent and decide what the exact connection was between galactose and lactose uptake and metabolism. It was shown that some Lactococcus strains possess two galactose-specific systems – a permease and a PTS, even if they lack the lactose utilization plasmid, proving that a lactose-independent PTSGal exists. However, the PTSGal transporter was never identified. Here, with the help of transcriptome analyses and genetic knock-out mutants, we reveal the identities of two low-affinity galactose PTSs. A novel plant-niche-related PTS component Llmg_0963 forming a hybrid transporter Llmg_0963PtcBA and a glucose/mannose-specific PTS are shown to be involved in galactose transport in L. lactis MG1363.
Collapse
Affiliation(s)
- Ana Solopova
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Herwig Bachmann
- Faculty of Earth and Life Sciences, Systems Bioinformatics IBIVU/NISB, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bas Teusink
- Faculty of Earth and Life Sciences, Systems Bioinformatics IBIVU/NISB, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
Yu J, Song Y, Ren Y, Qing Y, Liu W, Sun Z. Genome-level comparisons provide insight into the phylogeny and metabolic diversity of species within the genus Lactococcus. BMC Microbiol 2017; 17:213. [PMID: 29100523 PMCID: PMC5670709 DOI: 10.1186/s12866-017-1120-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/19/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The genomic diversity of different species within the genus Lactococcus and the relationships between genomic differentiation and environmental factors remain unclear. In this study, type isolates of ten Lactococcus species/subspecies were sequenced to assess their genomic characteristics, metabolic diversity, and phylogenetic relationships. RESULTS The total genome sizes varied between 1.99 (Lactococcus plantarum) and 2.46 megabases (Mb; L. lactis subsp. lactis), and the G + C content ranged from 34.81 (L. lactis subsp. hordniae) to 39.67% (L. raffinolactis) with an average value of 37.02%. Analysis of genome dynamics indicated that the genus Lactococcus has an open pan-genome, while the core genome size decreased with sequential addition at the genus and species group levels. A phylogenetic dendrogram based on the concatenated amino acid sequences of 643 core genes was largely consistent with the phylogenetic tree obtained by 16S ribosomal RNA (rRNA) genes, but it provided a more robust phylogenetic resolution than the 16S rRNA gene-based analysis. CONCLUSIONS Comparative genomics indicated that species in the genus Lactococcus had high degrees of diversity in genome size, gene content, and carbohydrate metabolism. This may be important for the specific adaptations that allow different Lactococcus species to survive in different environments. These results provide a quantitative basis for understanding the genomic and metabolic diversity within the genus Lactococcus, laying the foundation for future studies on taxonomy and functional genomics.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Ren
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanting Qing
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
9
|
Feutry F, Torre P, Arana I, Garcia S, Pérez Elortondo FJ, Berthier F. Suitability of a new mixed-strain starter for manufacturing uncooked raw ewe's milk cheeses. Food Microbiol 2016; 56:52-68. [PMID: 26919818 DOI: 10.1016/j.fm.2015.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/06/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Most raw milk Ossau-Iraty cheeses are currently manufactured on-farm using the same commercial streptococcal-lactococcal starter (S1). One way to enhance the microbial diversity that gives raw milk its advantages for cheese-making is to formulate new starters combining diverse, characterized strains. A new starter (OI) combining 6 raw milk strains of lactococci, recently isolated and characterized, was tested in parallel with the current starter by making 12 Ossau-Iraty raw milk cheeses at 3 farmhouses under the conditions prevailing at each farm. Compliance of the sensory characteristics with those expected by the Ossau-Iraty professionals, physicochemical parameters and coliforms were quantified at key manufacturing steps. The new starter OI gave cheeses having proper compliance but having lower compliance than the S1 cheeses under most manufacturing conditions, while managing coliform levels equally well as starter S1. This lower compliance relied more on the absence of Streptococcus thermophilus in starter OI, than on the nature of the lactoccocal strains present in starter OI. The study also shows that variations in 5 technological parameters during the first day of manufacture, within the range of values applied in the 3 farmhouses, are powerful tools for diversifying the scores for the sensory characteristics investigated.
Collapse
Affiliation(s)
- Fabienne Feutry
- Syndicat de défense de l'AOC Ossau-Iraty, 64120, Ostabat-Asme, France.
| | - Paloma Torre
- Area de Nutrición y Bromatología, Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Campus Arrosadia s/n, 31006, Pamplona, Spain
| | - Ines Arana
- Area de Nutrición y Bromatología, Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Campus Arrosadia s/n, 31006, Pamplona, Spain
| | - Susana Garcia
- Area de Nutrición y Bromatología, Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Campus Arrosadia s/n, 31006, Pamplona, Spain
| | - Francisco J Pérez Elortondo
- Laboratorio de Análisis Sensorial Euskal Herriko Unibertsitatea (LASEHU), Department of Pharmacy and Food sciences, Lascaray Research Center, Universidad del País Vasco, 3, 01006, Vitoria-Gasteiz, Spain
| | - Françoise Berthier
- INRA, UR 342 Technologie et Analyses Laitières, F-39801, Poligny, France
| |
Collapse
|
10
|
Ryan P, Burdíková Z, Beresford T, Auty M, Fitzgerald G, Ross R, Sheehan J, Stanton C. Reduced-fat Cheddar and Swiss-type cheeses harboring exopolysaccharide-producing probiotic Lactobacillus mucosae DPC 6426. J Dairy Sci 2015; 98:8531-44. [DOI: 10.3168/jds.2015-9996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022]
|
11
|
Thum C, Roy NC, McNabb WC, Otter DE, Cookson AL. In Vitro Fermentation of caprine milk oligosaccharides by bifidobacteria isolated from breast-fed infants. Gut Microbes 2015; 6:352-63. [PMID: 26587678 PMCID: PMC4826140 DOI: 10.1080/19490976.2015.1105425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This study was conducted to investigate the catabolism and fermentation of caprine milk oligosaccharides (CMO) by selected bifidobacteria isolated from 4 breast-fed infants. Seventeen bifidobacterial isolates consisting of 3 different species (Bifidobacterium breve, Bifidobacterium longum subsp. longum and Bifidobacterium bifidum) were investigated. A CMO-enriched fraction (CMOF) (50% oligosaccharides, 10% galacto-oligosaccharides (GOS), 20% lactose, 10% glucose and 10% galactose) from caprine cheese whey was added to a growth medium as a sole source of fermentable carbohydrate. The inclusion of the CMOF was associated with increased bifidobacterial growth for all strains compared to glucose, lactose, GOS, inulin, oligofructose, 3'-sialyl-lactose and 6'-sialyl-lactose. Only one B. bifidum strain (AGR2166) was able to utilize the sialyl-CMO, 3'-sialyl-lactose and 6'-sialyl-lactose, as carbohydrate sources. The inclusion of CMOF increased the production of acetic and lactic acid (P < 0.001) after 36 h of anaerobic fermentation at 37 °C, when compared to other fermentable substrates. Two B. bifidum strains (AGR2166 and AGR2168) utilised CMO, contained in the CMOF, to a greater extent than B. breve or B. longum subsp longum isolates, and this increased CMO utilization was associated with enhanced sialidase activity. CMOF stimulated bifidobacterial growth when compared to other tested fermentable carbohydrates and also increased the consumption of mono- and disaccharides, such as galactose and lactose present in the CMOF. These findings indicate that the dietary consumption of CMO may stimulate the growth and metabolism of intestinal Bifidobacteria spp. including B. bifidum typically found in the large intestine of breast-fed infants.
Collapse
Affiliation(s)
- Caroline Thum
- Food Nutrition & Health Team; Food and Bio-based Products Group; AgResearch Grasslands; Palmerston North, New Zealand,Riddet Institute; Massey University; Palmerston North, New Zealand
| | - Nicole C Roy
- Food Nutrition & Health Team; Food and Bio-based Products Group; AgResearch Grasslands; Palmerston North, New Zealand,Riddet Institute; Massey University; Palmerston North, New Zealand,Gravida; National Centre for Growth and Development; The University of Auckland; Auckland, New Zealand
| | - Warren C McNabb
- Riddet Institute; Massey University; Palmerston North, New Zealand,Director of Research Office; AgResearch Grasslands; Palmerston North, New Zealand
| | - Don E Otter
- Food Nutrition & Health Team; Food and Bio-based Products Group; AgResearch Grasslands; Palmerston North, New Zealand
| | - Adrian L Cookson
- Riddet Institute; Massey University; Palmerston North, New Zealand,Food Assurance & Meat Quality Team; Food and Bio-based Products Group; Hopkirk Institute; Palmerston North, New Zealand,Correspondence to: Adrian L Cookson;
| |
Collapse
|
12
|
Pessoni RAB, Tersarotto CC, Mateus CAP, Zerlin JK, Simões K, de Cássia L Figueiredo-Ribeiro R, Braga MR. Fructose affecting morphology and inducing β-fructofuranosidases in Penicillium janczewskii. SPRINGERPLUS 2015; 4:487. [PMID: 26380163 PMCID: PMC4564379 DOI: 10.1186/s40064-015-1298-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/01/2015] [Indexed: 12/03/2022]
Abstract
Fructose, glucose, and an equimolar mixture of both sugars affected differently hyphae thickness, biomass production and secretion of β-fructofuranosidase in Penicillium janczewskii. Reduced growth, thinner hyphae and visible injuries were early observed during fungal cultivation in fructose-containing medium, reaching the maximum between 12 and 15 days of culture. Total sugar content from the cell wall was lower when fructose was supplied and polysaccharides lower than 10 kDa predominated, regardless the culture age. Maximal inulinase and invertase activities were detected in culture filtrates after 12 days, excepting in the glucose-containing medium. Structural changes in cell walls coincided with the increase of extracellular enzyme activity in the fructose-containing medium. The fragility of the hyphae might be related with both low carbohydrate content and predominance of low molecular weight glucans in the walls. Data presented here suggest changes in carbohydrate component of the cell walls are induced by the carbon source.
Collapse
Affiliation(s)
- Rosemeire A B Pessoni
- Faculdade da Saúde, Curso de Ciências Biológicas, Universidade Metodista de São Paulo, São Bernardo do Campo, SP Brazil
| | - Carla C Tersarotto
- Faculdade da Saúde, Curso de Ciências Biológicas, Universidade Metodista de São Paulo, São Bernardo do Campo, SP Brazil
| | - Cássia A P Mateus
- Faculdade da Saúde, Curso de Ciências Biológicas, Universidade Metodista de São Paulo, São Bernardo do Campo, SP Brazil
| | - Juliana K Zerlin
- Faculdade da Saúde, Curso de Ciências Biológicas, Universidade Metodista de São Paulo, São Bernardo do Campo, SP Brazil
| | - Kelly Simões
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, CP 68041, São Paulo, SP CEP 04045-972 Brazil
| | | | - Márcia R Braga
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, CP 68041, São Paulo, SP CEP 04045-972 Brazil
| |
Collapse
|
13
|
Thum C, Cookson A, McNabb WC, Roy NC, Otter D. Composition and enrichment of caprine milk oligosaccharides from New Zealand Saanen goat cheese whey. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Nath A, Datta S, Chowdhury R, Bhattacharjee C. Fermentative production of intracellular β-galactosidase by Bacillus safensis (JUCHE 1) growing on lactose and glucose—Modeling and experimental. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Ainsworth S, Stockdale S, Bottacini F, Mahony J, van Sinderen D. The Lactococcus lactis plasmidome: much learnt, yet still lots to discover. FEMS Microbiol Rev 2014; 38:1066-88. [PMID: 24861818 DOI: 10.1111/1574-6976.12074] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/17/2014] [Accepted: 05/07/2014] [Indexed: 01/20/2023] Open
Abstract
Lactococcus lactis is used extensively worldwide for the production of a variety of fermented dairy products. The ability of L. lactis to successfully grow and acidify milk has long been known to be reliant on a number of plasmid-encoded traits. The recent availability of low-cost, high-quality genome sequencing, and the quest for novel, technologically desirable characteristics, such as novel flavour development and increased stress tolerance, has led to a steady increase in the number of available lactococcal plasmid sequences. We will review both well-known and very recent discoveries regarding plasmid-encoded traits of biotechnological significance. The acquired lactococcal plasmid sequence information has in recent years progressed our understanding of the origin of lactococcal dairy starter cultures. Salient points on the acquisition and evolution of lactococcal plasmids will be discussed in this review, as well as prospects of finding novel plasmid-encoded functions.
Collapse
Affiliation(s)
- Stuart Ainsworth
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
16
|
The carbohydrate metabolism signature of lactococcus lactis strain A12 reveals its sourdough ecosystem origin. Appl Environ Microbiol 2013; 79:5844-52. [PMID: 23872564 DOI: 10.1128/aem.01560-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Lactococcus lactis subsp. lactis strain A12 was isolated from sourdough. Combined genomic, transcriptomic, and phenotypic analyses were performed to understand its survival capacity in the complex sourdough ecosystem and its role in the microbial community. The genome sequence comparison of strain A12 with strain IL1403 (a derivative of an industrial dairy strain) revealed 78 strain-specific regions representing 23% of the total genome size. Most of the strain-specific genes were involved in carbohydrate metabolism and are potentially required for its persistence in sourdough. Phenotype microarray, growth tests, and analysis of glycoside hydrolase content showed that strain A12 fermented plant-derived carbohydrates, such as arabinose and α-galactosides. Strain A12 exhibited specific growth rates on raffinose that were as high as they were on glucose and was able to release sucrose and galactose outside the cell, providing soluble carbohydrates for sourdough microflora. Transcriptomic analysis identified genes specifically induced during growth on raffinose and arabinose and reveals an alternative pathway for raffinose assimilation to that used by other lactococci.
Collapse
|
17
|
Martinussen J, Solem C, Holm AK, Jensen PR. Engineering strategies aimed at control of acidification rate of lactic acid bacteria. Curr Opin Biotechnol 2012; 24:124-9. [PMID: 23266099 DOI: 10.1016/j.copbio.2012.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
The ability of lactic acid bacteria to produce lactic acid from various sugars plays an important role in food fermentations. Lactic acid is derived from pyruvate, the end product of glycolysis and thus a fast lactic acid production rate requires a high glycolytic flux. In addition to lactic acid, alternative end products--ethanol, acetic acid and formic acid--are formed by many species. The central role of glycolysis in lactic acid bacteria has provoked numerous studies aiming at identifying potential bottleneck(s) since knowledge about flux control could be important not only for optimizing food fermentation processes, but also for novel applications of lactic acid bacteria, such as cell factories for the production of green fuels and chemicals. With respect to the control and regulation of the fermentation mode, some progress has been made, but the question of which component(s) control the main glycolytic flux remains unanswered.
Collapse
Affiliation(s)
- Jan Martinussen
- Center for Systems Microbiology, Department of Systems Biology, Technical University of Denmark, Matematiktorvet, Building 301, 2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
18
|
Abstract
Accumulation of galactose in dairy products due to partial lactose fermentation by lactic acid bacteria yields poor-quality products and precludes their consumption by individuals suffering from galactosemia. This study aimed at extending our knowledge of galactose metabolism in Lactococcus lactis, with the final goal of tailoring strains for enhanced galactose consumption. We used directed genetically engineered strains to examine galactose utilization in strain NZ9000 via the chromosomal Leloir pathway (gal genes) or the plasmid-encoded tagatose 6-phosphate (Tag6P) pathway (lac genes). Galactokinase (GalK), but not galactose permease (GalP), is essential for growth on galactose. This finding led to the discovery of an alternative route, comprising a galactose phosphotransferase system (PTS) and a phosphatase, for galactose dissimilation in NZ9000. Introduction of the Tag6P pathway in a galPMK mutant restored the ability to metabolize galactose but did not sustain growth on this sugar. The latter strain was used to prove that lacFE, encoding the lactose PTS, is necessary for galactose metabolism, thus implicating this transporter in galactose uptake. Both PTS transporters have a low affinity for galactose, while GalP displays a high affinity for the sugar. Furthermore, the GalP/Leloir route supported the highest galactose consumption rate. To further increase this rate, we overexpressed galPMKT, but this led to a substantial accumulation of α-galactose 1-phosphate and α-glucose 1-phosphate, pointing to a bottleneck at the level of α-phosphoglucomutase. Overexpression of a gene encoding α-phosphoglucomutase alone or in combination with gal genes yielded strains with galactose consumption rates enhanced up to 50% relative to that of NZ9000. Approaches to further improve galactose metabolism are discussed.
Collapse
|
19
|
Müller M, Steller J. Comparative studies of the degradation of grass fructan and inulin by strains ofLactobacillus paracasei subsp. paracaseiandLactobacillus plantarum. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1995.tb05021.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Collet C, Girbal L, Péringer P, Schwitzguébel JP, Soucaille P. Metabolism of lactose by Clostridium thermolacticum growing in continuous culture. Arch Microbiol 2006; 185:331-9. [PMID: 16508746 DOI: 10.1007/s00203-006-0098-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 01/18/2006] [Accepted: 02/07/2006] [Indexed: 11/24/2022]
Abstract
The objective of the present study was to characterize the metabolism of Clostridium thermolacticum, a thermophilic anaerobic bacterium, growing continuously on lactose (10 g l(-1)) and to determine the enzymes involved in the pathways leading to the formation of the fermentation products. Biomass and metabolites concentration were measured at steady-state for different dilution rates, from 0.013 to 0.19 h(-1). Acetate, ethanol, hydrogen and carbon dioxide were produced at all dilution rates, whereas lactate was detected only for dilution rates below 0.06 h(-1). The presence of several key enzymes involved in lactose metabolism, including beta-galactosidase, glyceraldehyde-3-phosphate dehydrogenase, pyruvate:ferredoxin oxidoreductase, acetate kinase, ethanol dehydrogenase and lactate dehydrogenase, was demonstrated. Finally, the intracellular level of NADH, NAD+, ATP and ADP was also measured for different dilution rates. The production of ethanol and lactate appeared to be linked with the re-oxidation of NADH produced during glycolysis, whereas hydrogen produced should come from reduced ferredoxin generated during pyruvate decarboxylation. To produce more hydrogen or more acetate from lactose, it thus appears that an efficient H2 removal system should be used, based on a physical (membrane) or a biological approach, respectively, by cultivating C. thermolacticum with efficient H2 scavenging and acetate producing microorganisms.
Collapse
Affiliation(s)
- Christophe Collet
- Laboratory for Environmental Biotechnology (LBE), Swiss Federal Institute of Technology Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Zuleta A, Sarchi MI, Rio ME, Sambucetti ME. Fermented milk-starch and milk-inulin products as vehicles for lactic acid bacteria. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2004; 59:155-160. [PMID: 15678724 DOI: 10.1007/s11130-004-0048-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Formulations using cassava starch or inulin plus milk were fermented with three different lactic acid bacteria (LAB) strains: Lactobacillus plantarum D34, Lactobacillus sp. SLH6, and Streptococcus thermophilus ST4. Growth and acidification were followed in 3% powdered milk (M3), 3% milk-6% starch (M3-S6), and 3% milk-6% inulin (M3-In6). D34 and SLH6 growth was enhanced by starch in M3-S6, when compared to the count (CFU/ml) obtained in M3. Growth of all strains was promoted by inulin. All fermented products showed LAB counts of 8.0 log or higher. Carbohydrate utilization was in agreement with growth and acidification results. The highest increase in CFU in rat feces was observed in M3-S6 fermented with ST4; the D34 fermented product also increased CFU but SLH6 did not, either with starch or inulin. This suggests that ST4 and D34 strains provide a good choice to ferment the proposed formulations in order to obtain a marked improvement of natural intestinal flora.
Collapse
Affiliation(s)
- Angela Zuleta
- Facultad de Farmacía y Bioquímica, Universidad de Buenos Aires, Junin 956, (1113) Buenos Aires, Argentina
| | | | | | | |
Collapse
|
22
|
Even S, Lindley ND, Loubière P, Cocaign-Bousquet M. Dynamic response of catabolic pathways to autoacidification in Lactococcus lactis: transcript profiling and stability in relation to metabolic and energetic constraints. Mol Microbiol 2002; 45:1143-52. [PMID: 12180931 DOI: 10.1046/j.1365-2958.2002.03086.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dynamic response of the central metabolic pathways to autoacidification (accumulation of organic acid fermentation products) in Lactococcus lactis was investigated in a global manner by integrating molecular data (cellular transcript concentrations, mRNA turnover) within physiological investigations of metabolic and energetic parameters. The decrease in pH associated with the accumulation of organic acids modified the physiological state of the cell considerably. Cytoplasmic acidification led to inhibition of enzyme activities and, consequently, to a diminished catabolic flux through glycolysis and a decreased rate of biochemical energy synthesis. This decrease in energy production together with the increased energy expenditure to counter cytoplasmic acidification led to energetic limitations for biomass synthesis. In these conditions, the specific growth rate decreased progressively, and growth ultimately stopped, although a diminished catabolic flux was maintained in the absence of growth. The cellular response to this phenomenon was to maintain significant levels of mRNA of catabolic genes, involving both continued transcription of the genes and also, in certain cases, an increase in transcript stability. Thus, translation was maintained, and intracellular concentration of certain enzymes increased, partially compensating for the inhibition of activity provoked by the diminished pH. When catabolic activity ceased after prolonged exposure to stress-induced stationary phase, endogenous RNA catabolism was observed.
Collapse
Affiliation(s)
- Sergine Even
- Laboratorie Biotechnologie-Bioprocédés, UMR 5504 INSA/CNRS and UMR 792 INSA/INRA, Centre de Bioingénierie Gilbert Durand, Institute National des Sciences Appliquées, Toulouse, France
| | | | | | | |
Collapse
|
23
|
Garrigues C, Mercade M, Cocaign-Bousquet M, Lindley ND, Loubiere P. Regulation of pyruvate metabolism inLactococcus lactis depends on the imbalance between catabolism and anabolism. Biotechnol Bioeng 2001. [DOI: 10.1002/bit.1100] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Influence of reduced water activity on lactose metabolism by lactococcus lactis subsp. cremoris At different pH values. Appl Environ Microbiol 1998; 64:2111-6. [PMID: 9603822 PMCID: PMC106286 DOI: 10.1128/aem.64.6.2111-2116.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The influence of reduced water activity (aw) on lactose metabolism by Lactococcus lactis subsp. cremoris 2254 and 2272 was studied at different pH values. In control incubations (aw, 0.99) with nongrowing cells in pH-controlled phosphate buffer, the levels of carbon recovered as L-(+)-lactate were 92% at pH 6.1 and 5.3 and 78% at pH 4.5. However, the levels of recovery decreased to approximately 50% at all pH values tested when the aw was 0.88 (with glycerol as the humectant). When growing cells in broth controlled at pH 6.3 were used, a reduction in the aw from 0.99 to 0.96 resulted in a decrease in the level of lactose carbon recovered as L-(+)-lactate from 100 to 71%. Low levels of L-(+)-lactate carbon recovery (<50%) were also observed with cells resuspended in pH-uncontrolled reconstituted skim milk at aw values of 0.99 and 0. 87 and in young cheese curds. The missing lactose carbon could not be accounted for by acetate, ethanol, formate, acetaldehyde, or pyruvate. Attempts were made to determine where the missing lactose carbon was diverted to under the stress conditions used. Some of the missing lactose carbon was recovered as galactose (0.1 to 2.5 mM) in culture supernatants. Decreasing either the aw or the pH resulted in increased galactose accumulation by nongrowing cells; adjusting both environmental factors together potentiated the effect. The sensitivities of the two lactococcal strains tested were different; strain 2272 was more prone to accumulate galactose under stress conditions. A methyl pentose(s) and additional galactose were found in acid-hydrolyzed supernatants from cultures containing both growing and nongrowing cells, indicating that a saccharide(s) rich in these components was formed by lactococci under low-aw and low-pH stress conditions.
Collapse
|
25
|
Dominguez H, Lindley ND. Complete Sucrose Metabolism Requires Fructose Phosphotransferase Activity in Corynebacterium glutamicum To Ensure Phosphorylation of Liberated Fructose. Appl Environ Microbiol 1996; 62:3878-80. [PMID: 16535429 PMCID: PMC1388967 DOI: 10.1128/aem.62.10.3878-3880.1996] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sucrose uptake by Corynebacterium glutamicum involves a phosphoenolpyruvate-dependent sucrose phosphotransferase (PTS), but in the absence of fructokinase, further metabolism of the liberated fructose requires efflux of the fructose and reassimilation via the fructose PTS. Mutant strains lacking detectable fructose-transporting PTS activity accumulated fructose extracellularly but consumed sucrose at rates comparable to those of the wild-type strain.
Collapse
|
26
|
Vrljic M, Kronemeyer W, Sahm H, Eggeling L. Unbalance of L-lysine flux in Corynebacterium glutamicum and its use for the isolation of excretion-defective mutants. J Bacteriol 1995; 177:4021-7. [PMID: 7608075 PMCID: PMC177132 DOI: 10.1128/jb.177.14.4021-4027.1995] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We found that the simple addition of L-methionine to the wild type of Corynebacterium glutamicum results in excretion of the cellular building block L-lysine up to rates of 2.5 nmol/min/mg (dry weight). Biochemical analyses revealed that L-methionine represses the homoserine dehydrogenase activity and reduces the intracellular L-threonine level from 7 to less than 2 mM. Since L-lysine synthesis is regulated mainly by L-threonine (plus L-lysine) availability, the result is enhanced flux towards L-lysine. This indicates a delicate and not well controlled type of flux control at the branch point of aspartate semialdehyde conversion to either L-lysine or L-threonine, probably due to the absence of isoenzymes in C. glutamicum. The inducible system of L-lysine excretion discovered was used to isolate mutants defective in the excretion of this amino acid. One such mutant characterized in detail accumulated 174 mM L-lysine in its cytosol without extracellular excretion of L-lysine, whereas the wild type accumulated 53 mM L-lysine in the cytosol and 5.9 mM L-lysine in the medium. The mutant was unaffected in L-lysine uptake or L-isoleucine or L-glutamate excretion, and also the membrane potential was unaltered. This mutant therefore represents a strain with a defect in an excretion system for the primary metabolite L-lysine.
Collapse
Affiliation(s)
- M Vrljic
- Biotechnologie 1, Forschungszentrum Jülich GmbH, Germany
| | | | | | | |
Collapse
|