1
|
Exploitation of new endophytic bacteria and their ability to promote sugarcane growth and nitrogen nutrition. Antonie van Leeuwenhoek 2018; 112:283-295. [DOI: 10.1007/s10482-018-1157-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
|
2
|
Dent D. Non-nodular Endophytic Bacterial Symbiosis and the Nitrogen Fixation of Gluconacetobacter diazotrophicus. Symbiosis 2018. [DOI: 10.5772/intechopen.75813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Schwab S, Pessoa CA, de Lima Bergami AA, de Azevedo Figueiredo NL, Dos Santos Teixeira KR, Baldani JI. Isolation and characterization of active promoters from Gluconacetobacter diazotrophicus strain PAL5 using a promoter-trapping plasmid. Arch Microbiol 2016; 198:445-58. [PMID: 26914247 DOI: 10.1007/s00203-016-1203-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/18/2016] [Accepted: 02/07/2016] [Indexed: 12/27/2022]
Abstract
Gluconacetobacter diazotrophicus is a nitrogen-fixing, endophytic bacterium that has the potential to promote plant growth and increase yield. Genetically modified strains might get more benefits to host plants, including through expression of useful proteins, such as Cry toxins from B. thuringiensis, or enzymes involved in phytohormone production, proteins with antagonistic activity for phytopathogens, or that improve nutrient utilization by the plant. For that, expression systems for G. diazotrophicus are needed, which requires active promoters fused to foreign (or innate) genes. This article describes the construction of a G. diazotrophicus PAL5 promoter library using a promoter-less lacZ-bearing vector, and the identification of six active promoters through β-galactosidase activity assays, sequencing and localization in the bacterial genome. The characterized promoters, which are located on distinct regions of the bacterial genome and encoding either sense or antisense transcripts, present variable expression strengths and might be used in the future for expressing useful proteins.
Collapse
Affiliation(s)
- Stefan Schwab
- Embrapa Agrobiologia, Rodovia BR 465 km 7, Seropédica, RJ, Brazil.
| | - Cristiane Alves Pessoa
- Embrapa Agrobiologia, Rodovia BR 465 km 7, Seropédica, RJ, Brazil
- Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Amanda Aparecida de Lima Bergami
- Embrapa Agrobiologia, Rodovia BR 465 km 7, Seropédica, RJ, Brazil
- Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465 km 7, Seropédica, RJ, Brazil
| | - Nathália Lima de Azevedo Figueiredo
- Embrapa Agrobiologia, Rodovia BR 465 km 7, Seropédica, RJ, Brazil
- Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465 km 7, Seropédica, RJ, Brazil
| | | | - José Ivo Baldani
- Embrapa Agrobiologia, Rodovia BR 465 km 7, Seropédica, RJ, Brazil
| |
Collapse
|
4
|
Costa OYA, Souto BM, Tupinambá DD, Bergmann JC, Kyaw CM, Kruger RH, Barreto CC, Quirino BF. Microbial diversity in sugarcane ethanol production in a Brazilian distillery using a culture-independent method. J Ind Microbiol Biotechnol 2014; 42:73-84. [PMID: 25404204 DOI: 10.1007/s10295-014-1533-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/01/2014] [Indexed: 10/24/2022]
Abstract
Sugarcane ethanol production occurs in non-sterile conditions, and microbial contamination can decrease productivity. In this study, we assessed the microbial diversity of contaminants of ethanol production in an industrial facility in Brazil. Samples obtained at different stages were analyzed by pyrosequencing-based profiling of bacterial and archaeal 16S rRNA genes and the fungal internal transcribed spacer region. A total of 355 bacterial groups, 22 archaeal groups, and 203 fungal groups were identified, and community changes were related to temperature changes at certain stages. After fermentation, Lactobacillus and unclassified Lactobacillaceae accounted for nearly 100 % of the bacterial sequences. Predominant Fungi groups were "unclassified Fungi," Meyerozyma, and Candida. The predominant Archaea group was unclassified Thaumarchaeota. This is the first work to assess the diversity of Bacteria, and Archaea and Fungi associated with the industrial process of sugarcane-ethanol production using culture-independent techniques.
Collapse
Affiliation(s)
- Ohana Yonara Assis Costa
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Low recovery frequency of Gluconacetobacter diazotrophicus from plants and associated mealybugs in Cuban sugarcane fields. Symbiosis 2011. [DOI: 10.1007/s13199-011-0133-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
A comparative proteomic analysis of Gluconacetobacter diazotrophicus PAL5 at exponential and stationary phases of cultures in the presence of high and low levels of inorganic nitrogen compound. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1578-89. [PMID: 18662807 DOI: 10.1016/j.bbapap.2008.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/07/2008] [Accepted: 06/23/2008] [Indexed: 11/23/2022]
Abstract
A proteomic view of G. diazotrophicus PAL5 at the exponential (E) and stationary phases (S) of cultures in the presence of low (L) and high levels (H) of combined nitrogen is presented. The proteomes analyzed on 2D-gels showed 131 proteins (42E+32S+29H+28L) differentially expressed by G. diazotrophicus, from which 46 were identified by combining mass spectrometry and bioinformatics tools. Proteins related to cofactor, energy and DNA metabolisms and cytoplasmic pH homeostasis were differentially expressed in E growth phase, under L and H conditions, in line with the high metabolic rate of the cells and the low pH of the media. Proteins most abundant in S-phase cells were stress associated and transporters plus transferases in agreement with the general phenomenon that binding protein-dependent systems are induced under nutrient limitation as part of hunger response. Cells grown in L condition produced nitrogen-fixation accessory proteins with roles in biosynthesis and stabilization of the nitrogenase complex plus proteins for protection of the nitrogenases from O(2)-induced inactivation. Proteins of the cell wall biogenesis apparatus were also expressed under nitrogen limitation and might function in the reshaping of the nitrogen-fixing G. diazotrophicus cells previously described. Genes whose protein products were detected in our analysis were mapped onto the chromosome and, based on the tendency of functionally related bacterial genes to cluster, we identified genes of particular pathways that could be organized in operons and are co-regulated. These results showed the great potential of proteomics to describe events in G. diazotrophicus cells by looking at proteins expressed under distinct growth conditions.
Collapse
|
7
|
Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM. Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. MICROBIAL ECOLOGY 2008; 55:130-40. [PMID: 17574542 DOI: 10.1007/s00248-007-9258-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 04/14/2007] [Indexed: 05/13/2023]
Abstract
Gluconacetobacter diazotrophicus has a long-standing history of bacterial-plant interrelationship as a symbiotic endophyte capable of fixing atmospheric nitrogen. In low nitrogen fertilized sugarcane fields it plays a significant role and its occurrence was realised in most of the sugarcane growing countries. In this mini review, the association of G. diazotrophicus with sugarcane, other crop plants and with various hosts is discussed. The factors affecting survival in the rhizosphere and the putative soil mode of transmission are emphasized. In addition, other N(2)-fixing Acetobacteraceae members, including Gluconacetobacter azotocaptans, Gluconacetobacter johannae and Swaminathania salitolerans, occurring in coffee, corn and rice plants are also covered. Lastly, the plant-growth-promoting traits identified in this group of bacteria, including N(2) fixation, phytohormone synthesis, P and Zn solubilization and biocontrol, are analysed.
Collapse
Affiliation(s)
- V S Saravanan
- School of Bio-Technology, Chemical and Bio-Medical Engineering, Vellore Institute of Technology (VIT) University, Vellore 632 014, Tamil Nadu, India.
| | | | | | | | | |
Collapse
|
8
|
Pedraza RO. Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol 2007; 125:25-35. [PMID: 18177965 DOI: 10.1016/j.ijfoodmicro.2007.11.079] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 10/10/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects, as well as their association with different plants and contribution through BNF are described as an overview.
Collapse
Affiliation(s)
- Raúl O Pedraza
- Departamento de Ecología, Microbiología Agrícola. Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán. Av. Roca 1900, (4000) Tucumán, Argentina.
| |
Collapse
|
9
|
Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM. Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 2007; 73:7259-67. [PMID: 17905875 PMCID: PMC2168197 DOI: 10.1128/aem.01222-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 09/20/2007] [Indexed: 11/20/2022] Open
Abstract
Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37 degrees C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria.
Collapse
Affiliation(s)
- Rodrigo Mendes
- Department of Genetics, University of São Paulo, 13400-970 Piracicaba SP, Brazil
| | | | | | | |
Collapse
|
10
|
Loiret FG, Ortega E, Kleiner D, Ortega-Rodés P, Rodés R, Dong Z. A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. J Appl Microbiol 2004; 97:504-11. [PMID: 15281930 DOI: 10.1111/j.1365-2672.2004.02329.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To isolate and identify endophytic nitrogen-fixing bacteria in sugarcane growing in Cuba without chemical fertilizers. METHODS AND RESULTS Two N2-fixing isolates, 9C and T2, were obtained from surface-sterilized stems and roots, respectively, of sugarcane variety ML3-18. Both isolates showed acetylene reduction and H2 production in nitrogen-free media. Nitrogenase activity measured by H2 production was about 15 times higher for isolate 9C than for T2 or for Gluconoacetobacter diazotrophicus (PAL-5 standard strain, ATCC 49037). The nifH gene segment was amplified from both isolates using specific primers. Classification of both T2 and 9C was made on the basis of morphological, biochemical, PCR tests and 16S rDNA sequence analysis. CONCLUSIONS Isolate 9C was identified as a Pantoea species from its 16S rDNA, but showed considerable differences in physiological properties from previously reported species of this genus. For example, 9C can be cultured over a wide range of temperature, pH and salt concentration, and showed high H2 production (up to 67.7 nmol H2 h(-1) 10(10) cell(-1)). Isolate T2 was a strain of Gluconacetobacter diazotrophicus. SIGNIFICANCE AND IMPACT OF THE STUDY A new N2-fixing endophyte, i.e. Pantoea, able to produce H2 and to grow in a wide range of conditions, was isolated from sugarcane stem tissue and characterized. The strain with these attributes may well be valuable for agriculture.
Collapse
Affiliation(s)
- F G Loiret
- Lab. Fisiología Vegetal, Dpto. Biología Vegetal, Facultad de Biología, Universidad de la Habana, La Habana, Cuba
| | | | | | | | | | | |
Collapse
|
11
|
Madhaiyan M, Saravanan VS, Jovi DBSS, Lee H, Thenmozhi R, Hari K, Sa T. Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiol Res 2004; 159:233-43. [PMID: 15462523 DOI: 10.1016/j.micres.2004.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Endophytic bacteria were isolated from the tissues of surface sterilized roots, stems, and leaves of fifty different crop plants. Phenotypic, biochemical tests and species-specific PCR assay permitted identification of four isolates of Gluconacetobacter diazotrophicus from root tissues of carrot (Daucus carota L.), raddish (Raphanus sativus L.), beetroot (Beta vulgaris L.) and coffee (Coffea arabica L.). Further the plant growth promoting traits such as nitrogenase activity, production of phytohormone indole acetic acid (IAA), phosphorus and zinc solubilization were assessed. Significant nitrogenase activity was recorded among the isolates and all the isolates produced IAA in the presence of tryptophan. Though all the four isolates efficiently solubilized phosphorus, the zinc solubilizing ability differed among the isolates.
Collapse
Affiliation(s)
- M Madhaiyan
- Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
12
|
Lee S, Flores-Encarnación M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 2004; 186:5384-91. [PMID: 15292139 PMCID: PMC490937 DOI: 10.1128/jb.186.16.5384-5391.2004] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 05/17/2004] [Indexed: 11/20/2022] Open
Abstract
Gluconacetobacter diazotrophicus is an endophyte of sugarcane frequently found in plants grown in agricultural areas where nitrogen fertilizer input is low. Recent results from this laboratory, using mutant strains of G. diazotrophicus unable to fix nitrogen, suggested that there are two beneficial effects of G. diazotrophicus on sugarcane growth: one dependent and one not dependent on nitrogen fixation. A plant growth-promoting substance, such as indole-3-acetic acid (IAA), known to be produced by G. diazotrophicus, could be a nitrogen fixation-independent factor. One strain, MAd10, isolated by screening a library of Tn5 mutants, released only approximately 6% of the amount of IAA excreted by the parent strain in liquid culture. The mutation causing the IAA(-) phenotype was not linked to Tn5. A pLAFR3 cosmid clone that complemented the IAA deficiency was isolated. Sequence analysis of a complementing subclone indicated the presence of genes involved in cytochrome c biogenesis (ccm, for cytochrome c maturation). The G. diazotrophicus ccm operon was sequenced; the individual ccm gene products were 37 to 52% identical to ccm gene products of Escherichia coli and equivalent cyc genes of Bradyrhizobium japonicum. Although several ccm mutant phenotypes have been described in the literature, there are no reports of ccm gene products being involved in IAA production. Spectral analysis, heme-associated peroxidase activities, and respiratory activities of the cell membranes revealed that the ccm genes of G. diazotrophicus are involved in cytochrome c biogenesis.
Collapse
Affiliation(s)
- Sunhee Lee
- Division of Plant Pathology and Microbiology, Department of Plant Sciences, University of Arizona, Tucson, 85721, USA
| | | | | | | | | | | |
Collapse
|
13
|
Dong Z, Zelmer CD, Canny MJ, McCully ME, Luit B, Pan B, Faustino RS, Pierce GN, Vessey JK. Evidence for protection of nitrogenase from O(2) by colony structure in the aerobic diazotroph Gluconacetobacter diazotrophicus. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2293-2298. [PMID: 12177323 DOI: 10.1099/00221287-148-8-2293] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gluconacetobacter diazotrophicus is an endophytic diazotroph of sugarcane which exhibits nitrogenase activity when growing in colonies on solid media. Nitrogenase activity of G. diazotrophicus colonies can adapt to changes in atmospheric partial pressure of oxygen (pO(2)). This paper investigates whether colony structure and the position of G. diazotrophicus cells in the colonies are components of the bacterium's ability to maintain nitrogenase activity at a variety of atmospheric pO(2) values. Colonies of G. diazotrophicus were grown on solid medium at atmospheric pO(2) of 2 and 20 kPa. Imaging of live, intact colonies by confocal laser scanning microscopy and of fixed, sectioned colonies by light microscopy revealed that at 2 kPa O(2) the uppermost bacteria in the colony were very near the upper surface of the colony, while the uppermost bacteria of colonies cultured at 20 kPa O(2) were positioned deeper in the mucilaginous matrix of the colony. Disruption of colony structure by physical manipulation or due to 'slumping' associated with colony development resulted in significant declines in nitrogenase activity. These results support the hypothesis that G. diazotrophicus utilizes the path-length of colony mucilage between the atmosphere and the bacteria to achieve a flux of O(2) that maintains aerobic respiration while not inhibiting nitrogenase activity.
Collapse
Affiliation(s)
- Z Dong
- Department of Biology, Carleton University, Ottawa, ON, CanadaK1S 5B61
| | - C D Zelmer
- Department of Plant Science, University of Manitoba, Winnipeg, MB, CanadaR3T 2N22
| | - M J Canny
- Department of Biology, Carleton University, Ottawa, ON, CanadaK1S 5B61
| | - M E McCully
- Department of Biology, Carleton University, Ottawa, ON, CanadaK1S 5B61
| | - B Luit
- Department of Plant Science, University of Manitoba, Winnipeg, MB, CanadaR3T 2N22
| | - B Pan
- Department of Plant Science, University of Manitoba, Winnipeg, MB, CanadaR3T 2N22
| | - R S Faustino
- Department of Physiology, University of Manitoba, Winnipeg, MB, CanadaR3E 3J73
| | - G N Pierce
- Department of Physiology, University of Manitoba, Winnipeg, MB, CanadaR3E 3J73
| | - J K Vessey
- Department of Plant Science, University of Manitoba, Winnipeg, MB, CanadaR3T 2N22
| |
Collapse
|
14
|
Pan B, Vessey JK. Response of the endophytic diazotroph Gluconacetobacter diazotrophicus on solid media to changes in atmospheric partial O(2) pressure. Appl Environ Microbiol 2001; 67:4694-700. [PMID: 11571174 PMCID: PMC93221 DOI: 10.1128/aem.67.10.4694-4700.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gluconacetobacter diazotrophicus is an N(2)-fixing endophyte isolated from sugarcane. G. diazotrophicus was grown on solid medium at atmospheric partial O(2) pressures (pO(2)) of 10, 20, and 30 kPa for 5 to 6 days. Using a flowthrough gas exchange system, nitrogenase activity and respiration rate were then measured at a range of atmospheric pO(2) (5 to 60 kPa). Nitrogenase activity was measured by H(2) evolution in N(2)-O(2) and in Ar-O(2), and respiration rate was measured by CO(2) evolution in N(2)-O(2). To validate the use of H(2) production as an assay for nitrogenase activity, a non-N(2)-fixing (Nif(-)) mutant of G. diazotrophicus was tested and found to have a low rate of uptake hydrogenase (Hup(+)) activity (0.016 +/- 0.009 micromol of H(2) 10(10) cells(-1) h(-1)) when incubated in an atmosphere enriched in H(2). However, Hup(+) activity was not detectable under the normal assay conditions used in our experiments. G. diazotrophicus fixed nitrogen at all atmospheric pO(2) tested. However, when the assay atmospheric pO(2) was below the level at which the colonies had been grown, nitrogenase activity was decreased. Optimal atmospheric pO(2) for nitrogenase activity was 0 to 20 kPa above the pO(2) at which the bacteria had been grown. As atmospheric pO(2) was increased in 10-kPa steps to the highest levels (40 to 60 kPa), nitrogenase activity decreased in a stepwise manner. Despite the decrease in nitrogenase activity as atmospheric pO(2) was increased, respiration rate increased marginally. A large single-step increase in atmospheric pO(2) from 20 to 60 kPa caused a rapid 84% decrease in nitrogenase activity. However, upon returning to 20 kPa of O(2), 80% of nitrogenase activity was recovered within 10 min, indicating a "switch-off/switch-on" O(2) protection mechanism of nitrogenase activity. Our study demonstrates that colonies of G. diazotrophicus can fix N(2) at a wide range of atmospheric pO(2) and can adapt to maintain nitrogenase activity in response to both long-term and short-term changes in atmospheric pO(2).
Collapse
Affiliation(s)
- B Pan
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | |
Collapse
|
15
|
Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 2000; 24:487-506. [PMID: 10978548 DOI: 10.1111/j.1574-6976.2000.tb00552.x] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Azospirillum represents the best characterized genus of plant growth-promoting rhizobacteria. Other free-living diazotrophs repeatedly detected in association with plant roots, include Acetobacter diazotrophicus, Herbaspirillum seropedicae, Azoarcus spp. and Azotobacter. Four aspects of the Azospirillum-plant root interaction are highlighted: natural habitat, plant root interaction, nitrogen fixation and biosynthesis of plant growth hormones. Each of these aspects is dealt with in a comparative way. Azospirilla are predominantly surface-colonizing bacteria, whereas A. diazotrophicus, H. seropedicae and Azoarcus sp. are endophytic diazotrophs. The attachment of Azospirillum cells to plant roots occurs in two steps. The polar flagellum, of which the flagellin was shown to be a glycoprotein, mediates the adsorption step. An as yet unidentified surface polysaccharide is believed to be essential in the subsequent anchoring phase. In Azoarcus sp. the attachment process is mediated by type IV pili. Nitrogen fixation structural genes (nif) are highly conserved among all nitrogen-fixing bacteria, and in all diazotrophic species of the class of proteobacteria examined, the transcriptional activator NifA is required for expression of other nif genes in response to two major environmental signals (oxygen and fixed N). However, the mechanisms involved in this control can vary in different organisms. In Azospirillum brasilense and H. seropedicae (alpha- and beta-subgroup, respectively), NifA is inactive in conditions of excess nitrogen. Activation of NifA upon removal of fixed N seems to involve, either directly or indirectly, the signal transduction protein P(II). The presence of four conserved cysteine residues in the NifA protein might be an indication that NifA is directly sensitive to oxygen. In Azotobacter vinelandii (gamma-subgroup) nifA is cotranscribed with a second gene nifL. The nifL gene product inactivates NifA in response to high oxygen tension and cellular nitrogen-status. NifL was found to be a redox-sensitive flavoprotein. The relief of NifL inhibition on NifA activity, in response to N-limitation, is suggested to involve a P(II)-like protein. Moreover, nitrogenase activity is regulated according to the intracellular nitrogen and O(2) level. In A. brasilense and Azospirillum lipoferum posttranslational control of nitrogenase, in response to ammonium and anaerobiosis, involves ADP-ribosylation of the nitrogenase iron protein, mediated by the enzymes DraT and DraG. At least three pathways for indole-3-acetic acid (IAA) biosynthesis in A. brasilense exist: two Trp-dependent (the indole-3-pyruvic acid and presumably the indole-3-acetamide pathway) and one Trp-independent pathway. The occurrence of an IAA biosynthetic pathway not using Trp (tryptophan) as precursor is highly unusual in bacteria. Nevertheless, the indole-3-pyruvate decarboxylase encoding ipdC gene is crucial in the overall IAA biosynthesis in Azospirillum. A number of genes essential for Trp production have been isolated in A. brasilense, including trpE(G) which codes for anthranilate synthase, the key enzyme in Trp biosynthesis. The relevance of each of these four aspects for plant growth promotion by Azospirillum is discussed.
Collapse
Affiliation(s)
- O Steenhoudt
- F.A. Janssens Laboratory of Genetics, Katholieke Universiteit Leuven, Kard. Mercierlaan 92, B-3001, Heverlee, Belgium
| | | |
Collapse
|
16
|
Jimenez-Salgado T, Fuentes-Ramirez LE, Tapia-Hernandez A, Mascarua-Esparza MA, Martinez-Romero E, Caballero-Mellado J. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Appl Environ Microbiol 1997; 63:3676-83. [PMID: 9293018 PMCID: PMC168673 DOI: 10.1128/aem.63.9.3676-3683.1997] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Acetobacter diazotrophicus was isolated from coffee plant tissues and from rhizosphere soils. Isolation frequencies ranged from 15 to 40% and were dependent on soil pH. Attempts to isolate this bacterial species from coffee fruit, from inside vesicular-arbuscular mycorrhizal fungi spores, or from mealybugs (Planococcus citri) associated with coffee plants were not successful. Other acid-producing diazotrophic bacteria were recovered with frequencies of 20% from the coffee rhizosphere. These N2-fixing isolates had some features in common with the genus Acetobacter but should not be assigned to the species Acetobacter diazotrophicus because they differed from A. diazotrophicus in morphological and biochemical traits and were largely divergent in electrophoretic mobility patterns of metabolic enzymes at coefficients of genetic distance as high as 0.950. In addition, these N2-fixing acetobacteria differed in the small-subunit rRNA restriction fragment length polymorphism patterns obtained with EcoRI, and they exhibited very low DNA-DNA homology levels, ranging from 11 to 15% with the A. diazotrophicus reference strain PAI 5T. Thus, some of the diazotrophic acetobacteria recovered from the rhizosphere of coffee plants may be regarded as N2-fixing species of the genus Acetobacter other than A. diazotrophicus. Endophytic diazotrophic bacteria may be more prevalent than previously thought, and perhaps there are many more potentially beneficial N2-fixing bacteria which can be isolated from other agronomically important crops.
Collapse
Affiliation(s)
- T Jimenez-Salgado
- Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | | | |
Collapse
|