1
|
Xylan Deconstruction by Thermophilic Thermoanaerobacterium bryantii Hemicellulases Is Stimulated by Two Oxidoreductases. Catalysts 2022. [DOI: 10.3390/catal12020182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Thermoanaerobacterium bryantii strain mel9T is a thermophilic bacterium isolated from a waste pile of a corn-canning factory. The genome of T. bryantii mel9T was sequenced and a hemicellulase gene cluster was identified. The cluster encodes seven putative enzymes, which are likely an endoxylanase, an α-glucuronidase, two oxidoreductases, two β-xylosidases, and one acetyl xylan esterase. These genes were designated tbxyn10A, tbagu67A, tbheoA, tbheoB, tbxyl52A, tbxyl39A, and tbaxe1A, respectively. Only TbXyn10A released reducing sugars from birchwood xylan, as shown by thin-layer chromatography analysis. The five components of the hemicellulase cluster (TbXyn10A, TbXyl39A, TbXyl52A, TbAgu67A, and TbAxe1A) functioned in synergy to hydrolyze birchwood xylan. Surprisingly, the two putative oxidoreductases increased the enzymatic activities of the gene products from the xylanolytic gene cluster in the presence of NADH and manganese ions. The two oxidoreductases were therefore named Hemicellulase-Enhancing Oxidoreductases (HEOs). All seven enzymes were thermophilic and acted in synergy to degrade xylans at 60 °C. Except for TbXyn10A, the other enzymes encoded by the gene cluster were conserved with high amino acid identities (85–100%) in three other Thermoanaerobacterium species. The conservation of the gene cluster is, therefore, suggestive of an important role of these enzymes in xylan degradation by these bacteria. The mechanism for enhancement of hemicellulose degradation by the HEOs is under investigation. It is anticipated, however, that the discovery of these new actors in hemicellulose deconstruction will have a significant impact on plant cell wall deconstruction in the biofuel industry.
Collapse
|
2
|
Bhardwaj A, Mahanta P, Ramakumar S, Ghosh A, Leelavathi S, Reddy VS. Emerging role of N- and C-terminal interactions in stabilizing (β/α)8 fold with special emphasis on Family 10 xylanases. Comput Struct Biotechnol J 2012; 2:e201209014. [PMID: 24688655 PMCID: PMC3962208 DOI: 10.5936/csbj.201209014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 11/22/2022] Open
Abstract
Xylanases belong to an important class of industrial enzymes. Various xylanases have been purified and characterized from a plethora of organisms including bacteria, marine algae, plants, protozoans, insects, snails and crustaceans. Depending on the source, the enzymatic activity of xylanases varies considerably under various physico-chemical conditions such as temperature, pH, high salt and in the presence of proteases. Family 10 or glycosyl hydrolase 10 (GH10) xylanases are one of the well characterized and thoroughly studied classes of industrial enzymes. The TIM-barrel fold structure which is ubiquitous in nature is one of the characteristics of family 10 xylanases. Family 10 xylanases have been used as a “model system” due to their TIM-barrel fold to dissect and understand protein stability under various conditions. A better understanding of structure-stability-function relationships of family 10 xylanases allows one to apply these governing molecular rules to engineer other TIM-barrel fold proteins to improve their stability and retain function(s) under adverse conditions. In this review, we discuss the implications of N-and C-terminal interactions, observed in family 10 xylanases on protein stability under extreme conditions. The role of metal binding and aromatic clusters in protein stability is also discussed. Studying and understanding family 10 xylanase structure and function, can contribute to our protein engineering knowledge.
Collapse
Affiliation(s)
- Amit Bhardwaj
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, 34149, Trieste, Italy
| | - Pranjal Mahanta
- Department of Physics, Indian Institute of Science, Bangalore, India
| | | | - Amit Ghosh
- National Institute of Cholera and Enteric diseases, Kolkata, India
| | - Sadhu Leelavathi
- Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | - Vanga Siva Reddy
- Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi - 110067, India
| |
Collapse
|
3
|
Prakash P, Jayalakshmi SK, Prakash B, Rubul M, Sreeramulu K. Production of alkaliphilic, halotolerent, thermostable cellulase free xylanase by Bacillus halodurans PPKS-2 using agro waste: single step purification and characterization. World J Microbiol Biotechnol 2011; 28:183-92. [DOI: 10.1007/s11274-011-0807-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/29/2011] [Indexed: 11/30/2022]
|
4
|
Bhardwaj A, Leelavathi S, Mazumdar-Leighton S, Ghosh A, Ramakumar S, Reddy VS. The critical role of N- and C-terminal contact in protein stability and folding of a family 10 xylanase under extreme conditions. PLoS One 2010; 5:e11347. [PMID: 20596542 PMCID: PMC2893209 DOI: 10.1371/journal.pone.0011347] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/27/2010] [Indexed: 11/18/2022] Open
Abstract
Background Stabilization strategies adopted by proteins under extreme conditions are very complex and involve various kinds of interactions. Recent studies have shown that a large proportion of proteins have their N- and C-terminal elements in close contact and suggested they play a role in protein folding and stability. However, the biological significance of this contact remains elusive. Methodology In the present study, we investigate the role of N- and C-terminal residue interaction using a family 10 xylanase (BSX) with a TIM-barrel structure that shows stability under high temperature, alkali pH, and protease and SDS treatment. Based on crystal structure, an aromatic cluster was identified that involves Phe4, Trp6 and Tyr343 holding the N- and C-terminus together; this is a unique and important feature of this protein that might be crucial for folding and stability under poly-extreme conditions. Conclusion A series of mutants was created to disrupt this aromatic cluster formation and study the loss of stability and function under given conditions. While the deletions of Phe4 resulted in loss of stability, removal of Trp6 and Tyr343 affected in vivo folding and activity. Alanine substitution with Phe4, Trp6 and Tyr343 drastically decreased stability under all parameters studied. Importantly, substitution of Phe4 with Trp increased stability in SDS treatment. Mass spectrometry results of limited proteolysis further demonstrated that the Arg344 residue is highly susceptible to trypsin digestion in sensitive mutants such as ΔF4, W6A and Y343A, suggesting again that disruption of the Phe4-Trp6-Tyr343 (F-W-Y) cluster destabilizes the N- and C-terminal interaction. Our results underscore the importance of N- and C-terminal contact through aromatic interactions in protein folding and stability under extreme conditions, and these results may be useful to improve the stability of other proteins under suboptimal conditions.
Collapse
Affiliation(s)
- Amit Bhardwaj
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Botany, University of Delhi, Delhi, India
| | - Sadhu Leelavathi
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Amit Ghosh
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Suryanarayanarao Ramakumar
- Department of Physics, Indian Institute of Science, Bangalore, India
- Bioinformatics Centre, Indian Institute of Science, Bangalore, India
| | - Vanga S. Reddy
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail:
| |
Collapse
|
5
|
A novel xylanase, XynA4-2, from thermoacidophilic Alicyclobacillus sp. A4 with potential applications in the brewing industry. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0445-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Mamo G, Delgado O, Martinez A, Mattiasson B, Hatti-Kaul R. Cloning, sequence analysis, and expression of a gene encoding an endoxylanase from Bacillus halodurans S7. Mol Biotechnol 2010; 33:149-59. [PMID: 16757802 DOI: 10.1385/mb:33:2:149] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
The gene encoding an alkaline active xylanase of Bacillus halodurans S7, containing an open reading frame of 1188 nucleotides encoding 396 amino acids, was cloned and expressed in Escherchia coli. On the basis of sequence similarity, possible -10 and -35, ribosome binding, and transcription terminator regions were identified. Analysis of the deduced amino acid sequence revealed that the protein was a single domain enzyme belonging to family 10 and designated as xyn10A. The calculated molecular mass and isoelectric point (pI) of the mature peptide were 42.6 and 4.5 kDa, respectively. Xylanase activity expressed by the recombinant organism was detected in the cytoplasm, periplasm and the extracellular medium. In an 18-h old culture, about 39% of the xylanase was detected in the medium. The stability and activity profile of the recombinant xylanase was similar to the properties of the enzyme produced by the wild-type organism.
Collapse
Affiliation(s)
- Gashaw Mamo
- Department of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
7
|
A new xylanase from thermoalkaline Anoxybacillus sp. E2 with high activity and stability over a broad pH range. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0254-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Gallardo O, Pastor FIJ, Polaina J, Diaz P, Łysek R, Vogel P, Isorna P, González B, Sanz-Aparicio J. Structural insights into the specificity of Xyn10B from Paenibacillus barcinonensis and its improved stability by forced protein evolution. J Biol Chem 2009; 285:2721-33. [PMID: 19940147 DOI: 10.1074/jbc.m109.064394] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Paenibacillus barcinonensis is a soil bacterium bearing a complex set of enzymes for xylan degradation, including several secreted enzymes and Xyn10B, one of the few intracellular xylanases reported to date. The crystal structure of Xyn10B has been determined by x-ray analysis. The enzyme folds into the typical (beta/alpha)(8) barrel of family 10 glycosyl hydrolases (GH10), with additional secondary structure elements within the beta/alpha motifs. One of these loops -L7- located at the beta7 C terminus, was essential for xylanase activity as its partial deletion yielded an inactive enzyme. The loop contains residues His(249)-Glu(250), which shape a pocket opened to solvent in close proximity to the +2 subsite, which has not been described in other GH10 enzymes. This wide cavity at the +2 subsite, where methyl-2,4-pentanediol from the crystallization medium was found, is a noteworthy feature of Xyn10B, as compared with the narrow crevice described for other GH10 xylanases. Docking analysis showed that this open cavity can accommodate glucuronic acid decorations of xylo-oligosaccharides. Co-crystallization experiments with conduramine derivative inhibitors supported the importance of this open cavity at the +2 subsite for Xyn10B activity. Several mutant derivatives of Xyn10B with improved thermal stability were obtained by forced evolution. Among them, mutant xylanases S15L and M93V showed increased half-life, whereas the double mutant S15L/M93V exhibited a further increase in stability, showing a 20-fold higher heat resistance than the wild type xylanase. All the mutations obtained were located on the surface of Xyn10B. Replacement of a Ser by a Leu residue in mutant xylanase S15L can increase hydrophobic packing efficiency and fill a superficial indentation of the protein, giving rise to a more compact structure of the enzyme.
Collapse
Affiliation(s)
- Oscar Gallardo
- Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
A new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability. J Ind Microbiol Biotechnol 2009; 37:187-94. [DOI: 10.1007/s10295-009-0662-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 10/24/2009] [Indexed: 11/29/2022]
|
10
|
Sapre MP, Jha H, Patil MB. Purification and characterization of a thermostable-cellulase free xylanase from Syncephalastrum racemosum Cohn. J GEN APPL MICROBIOL 2005; 51:327-34. [PMID: 16474192 DOI: 10.2323/jgam.51.327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Syncephalastrum racemosum Cohn. produces an extracellular xylanase that was shown to potentially bleach pulp at pH 10 and 50 degrees C. The enzyme was found to be a dimer with an apparent molecular weight of 29 kDa as determined by SDS-PAGE. The optimum activity was found at two pH values 8.5 and 10.5; however the activity sharply decreased below pH 6 and above pH 10.5. The enzyme was stable for 72 h at pH 10.5 and at 50 degrees C. Kinetic experiments at 50 degrees C gave V(max) and K(m) of 1,400 U/ml min(-1) mg(-1) protein and 0.05 mg/ml respectively. The enzyme had no apparent requirement for cofactors, and its activity was strongly inhibited by group II b metal ions like Zn2+, Hg2+, etc. Xylan completely protected the enzyme from being inactivated by N-bromosuccinimide.
Collapse
Affiliation(s)
- Meenaksui P Sapre
- Post Graduate Teaching Department of Biochemistry, Nagpur University, India
| | | | | |
Collapse
|
11
|
Velázquez E, de Miguel T, Poza M, Rivas R, Rosselló-Mora R, Villa TG. Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int J Syst Evol Microbiol 2004; 54:59-64. [PMID: 14742459 DOI: 10.1099/ijs.0.02709-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During a search for xylan-degrading micro-organisms, a sporulated bacterium was recovered from recent and old cow dung and rectal samples. The isolates were identified as members of a novel species of the genus Paenibacillus, based on 16S rRNA gene sequences. According to the results of phylogenetic analysis, the most closely related species was Paenibacillus azoreducens. Phenotypic and chemotaxonomic analyses and DNA–DNA hybridization experiments also showed that the isolates belonged to a novel species of the genus Paenibacillus. The novel species is a facultatively anaerobic, motile, Gram-variable, sporulated rod. The spores of this rod-shaped micro-organism occur in slightly swollen sporangia and are honeycomb-shaped. The main fatty acid is anteiso-branched C15 : 0. Growth was observed with many carbohydrates, including xylan, as the only carbon source and gas production was not observed from glucose. The novel species produces a wide variety of hydrolytic enzymes, such as xylanases, cellulases, amylases, gelatinase, urease and β-galactosidase. On the contrary, it does not produce caseinase, phenylalanine deaminase or lysine decarboxylase. According to the data obtained in this work, the strains belong to a novel species, for which the name Paenibacillus favisporus sp. nov. is proposed (type strain, GMP01T=LMG 20987T=CECT 5760T).
Collapse
Affiliation(s)
- Encarna Velázquez
- Departamento de Microbiología y Genetica, Facultad de Farmacia, Universidad de Salamanca, Spain
| | - Trinidad de Miguel
- Departamento de Microbioloxía e Parasitoloxía, Facultad de Farmacia, Universidad Santiago de Compostela, Spain
| | - Margarita Poza
- Departamento de Microbioloxía e Parasitoloxía, Facultad de Farmacia, Universidad Santiago de Compostela, Spain
| | - Raúl Rivas
- Departamento de Microbiología y Genetica, Facultad de Farmacia, Universidad de Salamanca, Spain
| | - Ramón Rosselló-Mora
- Institut Mediterrani d'Estudis Avancats and Departamento de Biologia Ambiental, Universitat de les Illes Balears (CSIC-UIB), Crtra Valldemossa Km 7·5, 07071 Palma de Mallorca, Spain
| | - Tomás G Villa
- Departamento de Microbioloxía e Parasitoloxía, Facultad de Farmacia, Universidad Santiago de Compostela, Spain
| |
Collapse
|
12
|
Gallardo O, Diaz P, Pastor FIJ. Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: a new subclass of family 10 xylanases. Appl Microbiol Biotechnol 2003; 61:226-33. [PMID: 12698280 DOI: 10.1007/s00253-003-1239-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2002] [Revised: 12/13/2002] [Accepted: 12/16/2002] [Indexed: 11/25/2022]
Abstract
The sequence of gene xynB encoding xylanase B from Paenibacillus sp. BP-23 was determined. It revealed an open reading frame of 999 nucleotides encoding a protein of 38,561 Da. The deduced amino acid sequence of xylanase B shows that the N-terminal region of the enzyme lacks the features of a signal peptide. When the xylan-degrading system of Paenibacillus sp. BP-23 was analysed in zymograms, it revealed that xylanase B was not secreted to the extracellular medium but instead remained cell-associated, even in late stationary-phase cultures. When xynB was expressed in a Bacillus subtilis secreting host, it also remained associated with the cells. Sequence homology analysis showed that xylanase B from Paenibacillus sp. BP-23 belongs to family 10 glycosyl hydrolases, exhibiting a distinctive high homology to six xylanases of this family. The homologous enzymes were also found to be devoid of a signal peptide and seem to constitute, together with xylanase B, a separate group of enzymes. They all have two conserved amino acid regions not found in the other family 10 xylanases, and cluster in a separate group after dendrogram analysis. We propose that these enzymes constitute a new subclass of family 10 xylanases, that are cell-associated, and that hydrolyse the xylooligosaccharides resulting from extracellular xylan hydrolysis. Xylanase B shows similar specific activity on aryl-xylosides and xylans. This can be correlated to some, not yet identified, trait of catalytic activity of the enzyme on plant xylan.
Collapse
Affiliation(s)
- O Gallardo
- Department of Microbiology, Faculty of Biology, University of Barcelona, Avinguda Diagonal 645, 08028, Barcelona, Spain
| | | | | |
Collapse
|
13
|
Usui K, Suzuki T, Akisaka T, Kawai K. A cytoplasmic xylanase (XynX) of Aeromonas caviae ME-1 is released from the cytoplasm to the periplasm by osmotic downshock. J Biosci Bioeng 2003; 95:488-95. [PMID: 16233445 DOI: 10.1016/s1389-1723(03)80050-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2002] [Accepted: 01/22/2003] [Indexed: 10/27/2022]
Abstract
Aeromonas caviae ME-1 is a multiple xylanase-producing gram-negative bacterium which was isolated from the gut contents of a wild silkworm, Samia cynthia pryeri. One of the xylanases produced by A. caviae ME-1, XynX (38 kDa, family 10 xylanase), hydrolyzes xylan to xylobiose and xylotetraose as final degradation products. Generally, xylanases are extracellular or cell surface enzymes. However, XynX is not exported to the extracellular fluid by A. caviae ME-1 and an Escherichia coli transformant harboring the xynX gene. In this study, we investigated the intracellular localization of XynX in A. caviae ME-1 and an E. coli transformant. XynX was found in the cytoplasm when the cells were grown under normal culture conditions. However, XynX was released from the cytoplasm to the periplasm during osmotic downshock. This release of XynX in the E. coli transformant was blocked in the presence of gadolinium chloride, which has been reported to be an inhibitor of bacterial mechanosensitive channels.
Collapse
Affiliation(s)
- Kengo Usui
- Department of Biotechnology, United Graduate School Agricultural Science, Department of Biotechnology, Faculty of Agriculture, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | |
Collapse
|
14
|
Fontes CMGA, Gilbert HJ, Hazlewood GP, Clarke JH, Prates JAM, McKie VA, Nagy T, Fernandes TH, Ferreira LMA. A novel Cellvibrio mixtus family 10 xylanase that is both intracellular and expressed under non-inducing conditions. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 8):1959-1967. [PMID: 10931900 DOI: 10.1099/00221287-146-8-1959] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydrolysis of the plant cell wall polysaccharides cellulose and xylan requires the synergistic interaction of a repertoire of extracellular enzymes. Recently, evidence has emerged that anaerobic bacteria can synthesize high levels of periplasmic xylanases which may be involved in the hydrolysis of small xylo-oligosaccharides absorbed by the micro-organism. Cellvibrio mixtus, a saprophytic aerobic soil bacterium that is highly active against plant cell wall polysaccharides, was shown to express internal xylanase activity when cultured on media containing xylan or glucose as sole carbon source. A genomic library of C. mixtus DNA, constructed in lambdaZAPII, was screened for xylanase activity. The nucleotide sequence of the genomic insert from a xylanase-positive clone that expressed intracellular xylanase activity in Escherichia coli revealed an ORF of 1137 bp (xynC), encoding a polypeptide with a deduced M(r) of 43413, defined as xylanase C (XylC). Probing a gene library of Pseudomonas fluorescens subsp. cellulosa with C. mixtus xynC identified a xynC homologue (designated xynG) encoding XylG; XylG and xynG were 67% and 63% identical to the corresponding C. mixtus sequences, respectively. Both XylC and XylG exhibit extensive sequence identity with family 10 xylanases, particularly with non-modular enzymes, and gene deletion studies on xynC supported the suggestion that they are single-domain xylanases. Purified recombinant XylC had an M(r) of 41000, and displayed biochemical properties typical of family 10 polysaccharidases. However, unlike previously characterized xylanases, XylC was particularly sensitive to proteolytic inactivation by pancreatic proteinases and was thermolabile. C. mixtus was grown to late-exponential phase in the presence of glucose or xylan and the cytoplasmic, periplasmic and cell envelope fractions were probed with anti-XylC antibodies. The results showed that XylC was absent from the culture media but was predominantly present in the periplasm of C. mixtus cells grown on glucose, xylan, CM-cellulose or Avicel. These data suggest that C. mixtus can express non-modular internal xylanases whose potential roles in the hydrolysis of plant cell wall components are discussed.
Collapse
Affiliation(s)
- C M G A Fontes
- CIISA-Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Rua Professor Cid dos Santos, 1300-477 Lisboa, Portugal1
| | - H J Gilbert
- Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK2
| | - G P Hazlewood
- Laboratory of Molecular Enzymology, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK3
| | - J H Clarke
- Laboratory of Molecular Enzymology, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK3
| | - J A M Prates
- CIISA-Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Rua Professor Cid dos Santos, 1300-477 Lisboa, Portugal1
| | - V A McKie
- Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK2
| | - T Nagy
- Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK2
| | - T H Fernandes
- CIISA-Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Rua Professor Cid dos Santos, 1300-477 Lisboa, Portugal1
| | - L M A Ferreira
- CIISA-Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Rua Professor Cid dos Santos, 1300-477 Lisboa, Portugal1
| |
Collapse
|
15
|
Kulkarni N, Lakshmikumaran M, Rao M. Xylanase II from an alkaliphilic thermophilic Bacillus with a distinctly different structure from other xylanases: evolutionary relationship to alkaliphilic xylanases. Biochem Biophys Res Commun 1999; 263:640-5. [PMID: 10512731 DOI: 10.1006/bbrc.1999.1420] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 1.0 kilobase gene fragment from the genomic DNA of an alkaliphilic thermophilic Bacillus was found to code for a functional xylanase (XynII). The complete nucleotide sequence including the structural gene and the 5' and 3' flanking sequences of the xylanase gene have been determined. An open reading frame starting from ATG initiator codon comprising 402 nucleotides gave a preprotein of 133 amino acids of calculated molecular mass 14.090 kDa. The occurrence of three potential N-glycosylation sites in XynII gene is a unique feature for a gene of bacterial origin. The stop codon was followed by hairpin loop structures indicating the presence of transcription termination signals. The secondary structure analysis of XynII predicted that the polypeptide was primarily formed of beta-sheets. XynII appeared to be a member of family G/11 of xylanases based on its molecular weight and basic pI (8.0). However, sequence homology revealed similar identity with families 10 and 11 of xylanases. The conserved triad (Val-Val-Xaa, where Xaa is Asn or Asp) was identified only in the xylanases from alkaliphilic organisms. Our results implicate for the first time the concept of convergent evolution for XynII and provide a basis for research in evolutionary relationship among the xylanases from alkaliphilic and neutrophilic organisms.
Collapse
Affiliation(s)
- N Kulkarni
- Biochemical Sciences Division, National Chemical Laboratory, Pune, 411008, India
| | | | | |
Collapse
|
16
|
Usui K, Ibata K, Suzuki T, Kawai K. XynX, a possible exo-xylanase of Aeromonas caviae ME-1 that produces exclusively xylobiose and xylotetraose from xylan. Biosci Biotechnol Biochem 1999; 63:1346-52. [PMID: 10500996 DOI: 10.1271/bbb.63.1346] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A gene, xynX, encoding a novel xylanase, was cloned from Aeromonas caviae ME-1. This gene encoded an enzyme that was constituted of 334 amino acid residues (38,580 Da) and was similar in sequence to Family 10 (Family F) beta-1,4 endo-xylanases. XynX produced only xylobiose and xylotetraose from birch wood xylan, and xylotriose, xylopentaose, and higher oligosaccharides were not detected in the TLC analysis. We designated it as X2/X4-forming xylanase. This enzyme does not have transglycosylation activity. These data suggested that this enzyme is a possible exo-xylanase. According to homology modeling, the enzyme has a ring-shaped (alpha/beta)8 barrel (TIM barrel) structure, typical of Family 10 endo-xylanases, with the extraordinary feature of a longer bottom-loop structure.
Collapse
Affiliation(s)
- K Usui
- Department of Biotechnology, Faculty of Agriculture, Gifu University, Japan
| | | | | | | |
Collapse
|
17
|
Ratanakhanokchai K, Kyu KL, Tanticharoen M. Purification and properties of a xylan-binding endoxylanase from Alkaliphilic bacillus sp. strain K-1. Appl Environ Microbiol 1999; 65:694-7. [PMID: 9925602 PMCID: PMC91081 DOI: 10.1128/aem.65.2.694-697.1999] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/1998] [Accepted: 11/09/1998] [Indexed: 11/20/2022] Open
Abstract
An alkaliphilic bacterium, Bacillus sp. strain K-1, produces extracellular xylanolytic enzymes such as xylanases, beta-xylosidase, arabinofuranosidase, and acetyl esterase when grown in xylan medium. One of the extracellular xylanases that is stable in an alkaline state was purified to homogeneity by affinity adsorption-desorption on insoluble xylan. The enzyme bound to insoluble xylan but not to crystalline cellulose. The molecular mass of the purified xylan-binding xylanase was estimated to be approximately 23 kDa. The enzyme was stable at alkaline pHs up to 12. The optimum temperature and optimum pH of the enzyme activity were 60 degrees C and 5.5, respectively. Metal ions such as Fe2+, Ca2+, and Mg2+ greatly increased the xylanase activity, whereas Mn2+ strongly inhibited it. We also demonstrated that the enzyme could hydrolyze the raw lignocellulosic substances effectively. The enzymatic products of xylan hydrolysis were a series of short-chain xylooligosaccharides, indicating that the enzyme was an endoxylanase.
Collapse
Affiliation(s)
- K Ratanakhanokchai
- School of Bioresources and Technology, King Mongkut's University of Technology, Thonburi, Bangkok 10140, Thailand.
| | | | | |
Collapse
|
18
|
Biely P, Vrsanská M, Tenkanen M, Kluepfel D. Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol 1997; 57:151-66. [PMID: 9335171 DOI: 10.1016/s0168-1656(97)00096-5] [Citation(s) in RCA: 407] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microbial endo-beta-1,4-xylanases (EXs, EC 3.2.1.8) belonging to glycanase families 10 (formerly F) and 11 (formerly G) differ in their action on 4-O-methyl-D-glucurono-D-xylan and rhodymenan, a beta-1,3-beta-1,4-xylan. Two high molecular mass EXs (family 10), the Cryptococcus albidus EX and XlnA of Streptomyces lividans, liberate from glucuronoxylan aldotetrauronic acid as the shortest acidic fragment, and from rhodymenan an isomeric xylotriose of the structure Xyl beta 1-3Xyl beta 1-4Xyl as the shortest fragment containing a beta-1,3-linkage. Low molecular mass EXs (family 11), such as the Trichoderma reesei enzymes and XlnB and XlnC of S. lividans, liberate from glucuronoxylan an aldopentauronic acid as the shortest fragment, and from rhodymenan an isomeric xylotetraose as the shortest fragment containing a beta-1,3-linkage. The structure of the oligosaccharides was established by: NMR spectroscopy, mass spectrometry of per-O-methylated compounds and enzymic hydrolysis by beta-xylosidase and EX, followed by analysis of products by chromatography. The structures of the fragments define in the polysaccharides the linkages attacked and non-attacked by the enzymes. EXs of family 10 require a lower number of unsubstituted consecutive beta-1,4-xylopyranosyl units in the main chain and a lower number of consecutive beta-1,4-xylopyranosyl linkages in rhodymenan than EXs of family 11. These results, together with a greater catalytic versatility of EXs of family 10, suggest that EXs of family 10 have substrate binding sites smaller than those of EXs of family 11. This suggestion is in agreement with the finding that EXs of family 10 show higher affinity for shorter linear beta-1,4-xylooligosaccharides than EXs of family 11. The results are discussed with relevant literature data to understand better the structure-function relationship in this group of glycanases.
Collapse
Affiliation(s)
- P Biely
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | |
Collapse
|
19
|
Abstract
Xylanases are classified into two major families (10 or F and 11 or G) of glycosyl hydrolases. Both use ion pair catalytic mechanisms and both retain anomeric configuration following hydrolysis. Family 10 xylanases are larger, more complex and produce smaller oligosaccharides; Family 11 xylanases are more specific for xylan. Alkaline-active and extreme-thermophilic enzymes are of particular interest. Such xylanases are being commercialized for bleaching pulps and other applications.
Collapse
Affiliation(s)
- T W Jeffries
- Institute for Microbial and Biochemical Technology, USDA, University of Wisconsin, Madison 53705-2398, USA.
| |
Collapse
|