1
|
Degeneration of aflatoxin gene clusters in Aspergillus flavus from Africa and North America. AMB Express 2016; 6:62. [PMID: 27576895 PMCID: PMC5005231 DOI: 10.1186/s13568-016-0228-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/12/2016] [Indexed: 01/07/2023] Open
Abstract
Aspergillus flavus is the most common causal agent of aflatoxin contamination of food and feed. However, aflatoxin-producing potential varies widely among A. flavus genotypes with many producing no aflatoxins. Some non-aflatoxigenic genotypes are used as biocontrol agents to prevent contamination. Aflatoxin biosynthesis genes are tightly clustered in a highly conserved order. Gene deletions and presence of single nucleotide polymorphisms (SNPs) in aflatoxin biosynthesis genes are often associated with A. flavus inability to produce aflatoxins. In order to identify mechanisms of non-aflatoxigenicity in non-aflatoxigenic genotypes of value in aflatoxin biocontrol, complete cluster sequences of 35 A. flavus genotypes from Africa and North America were analyzed. Inability of some genotypes to produce aflatoxin resulted from deletion of biosynthesis genes. In other genotypes, non-aflatoxigenicity originated from SNP formation. The process of degeneration differed across the gene cluster; genes involved in early biosynthesis stages were more likely to be deleted while genes involved in later stages displayed high frequencies of SNPs. Comparative analyses of aflatoxin gene clusters provides insight into the diversity of mechanisms of non-aflatoxigenicity in A. flavus genotypes used as biological control agents. The sequences provide resources for both diagnosis of non-aflatoxigenicity and monitoring of biocontrol genotypes during biopesticide manufacture and in the environment.
Collapse
|
2
|
Sheikh-Ali SI, Ahmad A, Mohd-Setapar SH, Zakaria ZA, Abdul-Talib N, Khamis AK, Hoque ME. The potential hazards of Aspergillus sp. in foods and feeds, and the role of biological treatment: a review. J Microbiol 2014; 52:807-18. [PMID: 25269603 DOI: 10.1007/s12275-014-4294-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 11/24/2022]
Abstract
The contamination of food and feed by Aspergillus has become a global issue with a significant worldwide economic impact. The growth of Aspergillus is unfavourable to the development of food and feed industries, where the problems happen mostly due to the presence of mycotoxins, which is a toxic metabolite secreted by most Aspergillus groups. Moreover, fungi can produce spores that cause diseases, such as allergies and asthma, especially to human beings. High temperature, high moisture, retarded crops, and poor food storage conditions encourage the growth of mold, as well as the development of mycotoxins. A variety of chemical, biological, and physical strategies have been developed to control the production of mycotoxins. A biological approach, using a mixed culture comprised of Saccharomyces cerevisiae and Lactobacillus rhamnosus resulted in the inhibition of the growth of fungi when inoculated into fermented food. The results reveal that the mixed culture has a higher potential (37.08%) to inhibit the growth of Aspergillus flavus (producer of Aflatoxin) compared to either single culture, L. rhamnosus NRRL B-442 and S. cerevisiae, which inhibit the growth by 63.07% and 64.24%, respectively.
Collapse
|
3
|
Yu J. Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination. Toxins (Basel) 2012; 4:1024-57. [PMID: 23202305 PMCID: PMC3509697 DOI: 10.3390/toxins4111024] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 01/20/2023] Open
Abstract
Traditional molecular techniques have been used in research in discovering the genes and enzymes that are involved in aflatoxin formation and genetic regulation. We cloned most, if not all, of the aflatoxin pathway genes. A consensus gene cluster for aflatoxin biosynthesis was discovered in 2005. The factors that affect aflatoxin formation have been studied. In this report, the author summarized the current status of research progress and future possibilities that may be used for solving aflatoxin contamination.
Collapse
Affiliation(s)
- Jiujiang Yu
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA/ARS), New Orleans, LA 70112, USA.
| |
Collapse
|
4
|
Flaherty JE, Payne GA. Overexpression of aflR Leads to Upregulation of Pathway Gene Transcription and Increased Aflatoxin Production in Aspergillus flavus. Appl Environ Microbiol 2010; 63:3995-4000. [PMID: 16535712 PMCID: PMC1389268 DOI: 10.1128/aem.63.10.3995-4000.1997] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aflatoxin biosynthetic pathway regulatory gene, aflR, encodes a putative 47-kDa protein containing a zinc cluster DNA binding motif. It is required for the transcription of all of the characterized aflatoxin pathway genes in both Aspergillus flavus and Aspergillus parasiticus. The objective of this study was to examine the effects of aflR overexpression on temporal gene expression, aflatoxin production, and nitrate inhibition of aflatoxin biosynthesis in A. flavus. An inducible expression construct was made by fusing the coding region of aflR to the promoter region of the A. flavus adh1 gene. This construct was transformed into A. flavus 656-2 (FGSC A1010), a strain mutated at the aflR locus. Strain 656-2 containing the adh1(p)::aflR construct had induced transcription of two early aflatoxin pathway genes, nor-1 and pksA, and produced wild-type concentrations of aflatoxin in a temporal pattern similar to that of wild-type strains of A. flavus. Strains 656-2 and 86-10 (FGSC A1009) an aflatoxigenic strain, were transformed with a construct containing the constitutive promoter gpdA driving aflR. Transformants of these strains constitutively expressed aflR, fas-1A, pksA, nor-1, and omtA but did not constitutively produce aflatoxin. Strain 86-10 containing the gpdA(p)::aflR construct produced 50 times more aflatoxin than 86-10, but the temporal pattern of aflatoxin production was the same as for 86-10, and aflatoxin production was also induced by sucrose. The addition of 10 g of nitrate per liter to sucrose low salts medium inhibited aflatoxin production by both strain 86-10 and a transformant of 86-10 containing the gpdA(p)::aflR construct, indicating that nitrate inhibition of aflatoxin biosynthesis does not occur solely at the level of aflR transcription. These studies show that constitutive overexpression of the pathway transcriptional regulatory gene aflR leads to higher transcript accumulation of pathway genes and increased aflatoxin production but that the initiation of aflatoxin biosynthesis is not solely regulated by the transcriptional activities of the biosynthetic pathway.
Collapse
|
5
|
Donner M, Atehnkeng J, Sikora R, Bandyopadhyay R, Cotty P. Molecular characterization of atoxigenic strains for biological control of aflatoxins in Nigeria. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:576-90. [DOI: 10.1080/19440040903551954] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Ehrlich KC, Chang PK, Scharfenstein LL, Cary JW, Crawford JM, Townsend CA. Absence of the aflatoxin biosynthesis gene, norA, allows accumulation of deoxyaflatoxin B1 in Aspergillus flavus cultures. FEMS Microbiol Lett 2010; 305:65-70. [PMID: 20158523 DOI: 10.1111/j.1574-6968.2010.01914.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Biosynthesis of the highly toxic and carcinogenic aflatoxins in select Aspergillus species from the common intermediate O-methylsterigmatocystin has been postulated to require only the cytochrome P450 monooxygenase, OrdA (AflQ). We now provide evidence that the aryl alcohol dehydrogenase NorA (AflE) encoded by the aflatoxin biosynthetic gene cluster in Aspergillus flavus affects the accumulation of aflatoxins in the final steps of aflatoxin biosynthesis. Mutants with inactive norA produced reduced quantities of aflatoxin B(1) (AFB(1)), but elevated quantities of a new metabolite, deoxyAFB(1). To explain this result, we suggest that, in the absence of NorA, the AFB(1) reduction product, aflatoxicol, is produced and is readily dehydrated to deoxyAFB(1) in the acidic medium, enabling us to observe this otherwise minor toxin produced in wild-type A. flavus.
Collapse
Affiliation(s)
- Kenneth C Ehrlich
- Southern Regional Research Center, ARS/USDA, New Orleans, LA 70179, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Yin Y, Lou T, Yan L, Michailides TJ, Ma Z. Molecular characterization of toxigenic and atoxigenic Aspergillus flavus isolates, collected from peanut fields in China. J Appl Microbiol 2009; 107:1857-65. [PMID: 19457031 DOI: 10.1111/j.1365-2672.2009.04356.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The objectives of this study were to assess the genetic relationships between toxigenic and atoxigenic isolates of Aspergillus flavus collected from peanut fields in China, and to analyse deletions within the aflatoxin biosynthetic gene cluster for the atoxigenic isolates. METHODS AND RESULTS Analysis of random-amplified polymorphic DNA and microsatellite-primed PCR data showed that the toxigenic and atoxigenic isolates of A. flavus were not clustered based on their regions and their ability of aflatoxin and sclerotial production. These results were further supported by DNA sequence of ITS, pksA and omtA genes. PCR assays showed that 24 of 35 isolates containing no detectable aflatoxins had the entire aflatoxin gene cluster. Eleven atoxigenic isolates had five different deletion patterns in the cluster. CONCLUSIONS Toxigenic and atoxigenic isolates of A. flavus are genetically similar, but some atoxigenic isolates having deletions within the aflatoxin gene cluster can be identified readily by PCR assays. SIGNIFICANCE AND IMPACT OF THE STUDY Because the extensive deletions within the aflatoxin gene cluster are not rare in the atoxigenic isolates, analysis of deletion within the cluster would be an effective method for the rapid screening of atoxigenic isolates for developing biocontrol agents.
Collapse
Affiliation(s)
- Y Yin
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
8
|
Georgianna DR, Payne GA. Genetic regulation of aflatoxin biosynthesis: from gene to genome. Fungal Genet Biol 2008; 46:113-25. [PMID: 19010433 DOI: 10.1016/j.fgb.2008.10.011] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 10/10/2008] [Accepted: 10/10/2008] [Indexed: 01/12/2023]
Abstract
Aflatoxins are notorious toxic secondary metabolites known for their impacts on human and animal health, and their effects on the marketability of key grain and nut crops. Understanding aflatoxin biosynthesis is the focus of a large and diverse research community. Concerted efforts by this community have led not only to a well-characterized biosynthetic pathway, but also to the discovery of novel regulatory mechanisms. Common to secondary metabolism is the clustering of biosynthetic genes and their regulation by pathway specific as well as global regulators. Recent data show that arrangement of secondary metabolite genes in clusters may allow for an important global regulation of secondary metabolism based on physical location along the chromosome. Available genomic and proteomic tools are now allowing us to examine aflatoxin biosynthesis more broadly and to put its regulation in context with fungal development and fungal ecology. This review covers our current understanding of the biosynthesis and regulation of aflatoxin and highlights new and emerging information garnered from structural and functional genomics. The focus of this review will be on studies in Aspergillus flavus and Aspergillus parasiticus, the two agronomically important species that produce aflatoxin. Also covered will be the important contributions gained by studies on production of the aflatoxin precursor sterigmatocystin in Aspergillus nidulans.
Collapse
Affiliation(s)
- D Ryan Georgianna
- Department of Plant Pathology, North Carolina State University, 851 Main Campus, Dr. Partners III Suite 267, Raleigh, NC 27606, Campus Box 7244, USA
| | | |
Collapse
|
9
|
Cleveland TE, Yu J, Bhatnagar D, Chen Z, Brown RL, Chang P, Cary JW. Progress in Elucidating the Molecular Basis of the Host Plant—AspergillusFlavusInteraction, a Basis for Devising Strategies to Reduce Aflatoxin Contamination in Crops. ACTA ACUST UNITED AC 2008. [DOI: 10.1081/txr-200027892] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Du W, Obrian GR, Payne GA. Function and regulation of aflJ in the accumulation of aflatoxin early pathway intermediate in Aspergillus flavus. ACTA ACUST UNITED AC 2008; 24:1043-50. [PMID: 17886176 DOI: 10.1080/02652030701513826] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
aflJ resides within the aflatoxin biosynthetic gene cluster adjacent to the pathway regulatory gene aflR and is involved in aflatoxin production, but its function is unknown. Over-expression of aflJ in the aflatoxin-producing strain 86-10 resulted in increased aflatoxin. In an effort to study the function and regulation of aflJ, strain 649-1 lacking the entire biosynthetic cluster was transformed with either reporter constructs, expression constructs, or cosmid clones and analysed for gene expression or metabolite accumulation. Over-expression of aflJ did not result in elevated transcription of ver-1, omtA or aflR. To determine if over-expression of aflJ leads to an increase in early pathway intermediates, strain 649-1 was transformed with cosmid 5E6 and either gpdA::aflJ alone, gpdA::aflR alone, or aflJ and aflR together. Cosmid 5E6 contains the genes pksA, nor-1, fas-1, and fas-2, which are required for the biosynthesis of the early pathway intermediate averantin. 649-1 transformants containing 5E6 alone produced no detectable averantin. In contrast, 5E6 transformants with gpdA::aflR produced averantin, but only half as much as those transformants containing both aflR and aflJ. Northern blot analysis showed that 5E6 transformants containing both aflR and aflJ had five times more pksA transcripts and four times more nor-1 transcripts than 5E6 transformants containing gpdA::aflR alone. Further, aflJ transcription was regulated by aflR. Over-expression of aflR resulted in elevated aflJ transcription. aflJ appears to modulate the regulation of early genes in aflatoxin biosynthesis.
Collapse
Affiliation(s)
- W Du
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695-7616, USA
| | | | | |
Collapse
|
11
|
Smith CA, Woloshuk CP, Robertson D, Payne GA. Silencing of the aflatoxin gene cluster in a diploid strain of Aspergillus flavus is suppressed by ectopic aflR expression. Genetics 2007; 176:2077-86. [PMID: 17565943 PMCID: PMC1950615 DOI: 10.1534/genetics.107.073460] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aflatoxins are toxic secondary metabolites produced by a 70-kb cluster of genes in Aspergillus flavus. The cluster genes are coordinately regulated and reside as a single copy within the genome. Diploids between a wild-type strain and a mutant (649) lacking the aflatoxin gene cluster fail to produce aflatoxin or transcripts of the aflatoxin pathway genes. This dominant phenotype is rescued in diploids between a wild-type strain and a transformant of the mutant containing an ectopic copy of aflR, the transcriptional regulator of the aflatoxin biosynthetic gene cluster. Further characterization of the mutant showed that it is missing 317 kb of chromosome III, including the known genes for aflatoxin biosynthesis. In addition, 939 kb of chromosome II is present as a duplication on chromosome III in the region previously containing the aflatoxin gene cluster. The lack of aflatoxin production in the diploid was not due to a unique or a mis-expressed repressor of aflR. Instead a form of reversible silencing based on the position of aflR is likely preventing the aflatoxin genes from being expressed in 649 x wild-type diploids. Gene expression analysis revealed the silencing effect is specific to the aflatoxin gene cluster.
Collapse
Affiliation(s)
- Carrie A. Smith
- Department of Genetics, Department of Plant Biology and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Charles P. Woloshuk
- Department of Genetics, Department of Plant Biology and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Dominique Robertson
- Department of Genetics, Department of Plant Biology and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Gary A. Payne
- Department of Genetics, Department of Plant Biology and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Corresponding author: Center for Integrated Fungal Research and Department of Plant Pathology, North Carolina State University, Box 7567, Raleigh, NC 27695-7567.E-mail:
| |
Collapse
|
12
|
Chang PK, Horn BW, Dorner JW. Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet Biol 2005; 42:914-23. [PMID: 16154781 DOI: 10.1016/j.fgb.2005.07.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 07/15/2005] [Accepted: 07/22/2005] [Indexed: 10/25/2022]
Abstract
Aspergillus flavus populations are genetically diverse. Isolates that produce either, neither, or both aflatoxins and cyclopiazonic acid (CPA) are present in the field. We investigated defects in the aflatoxin gene cluster in 38 nonaflatoxigenic A. flavus isolates collected from southern United States. PCR assays using aflatoxin-gene-specific primers grouped these isolates into eight (A-H) deletion patterns. Patterns C, E, G, and H, which contain 40 kb deletions, were examined for their sequence breakpoints. Pattern C has one breakpoint in the cypA 3' untranslated region (UTR) and another in the verA coding region. Pattern E has a breakpoint in the amdA coding region and another in the ver1 5'UTR. Pattern G contains a deletion identical to the one found in pattern C and has another deletion that extends from the cypA coding region to one end of the chromosome as suggested by the presence of telomeric sequence repeats, CCCTAATGTTGA. Pattern H has a deletion of the entire aflatoxin gene cluster from the hexA coding region in the sugar utilization gene cluster to the telomeric region. Thus, deletions in the aflatoxin gene cluster among A. flavus isolates are not rare, and the patterns appear to be diverse. Genetic drift may be a driving force that is responsible for the loss of the entire aflatoxin gene cluster in nonaflatoxigenic A. flavus isolates when aflatoxins have lost their adaptive value in nature.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | | | | |
Collapse
|
13
|
Wen Y, Hatabayashi H, Arai H, Kitamoto HK, Yabe K. Function of the cypX and moxY genes in aflatoxin biosynthesis in Aspergillus parasiticus. Appl Environ Microbiol 2005; 71:3192-8. [PMID: 15933021 PMCID: PMC1151844 DOI: 10.1128/aem.71.6.3192-3198.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The pathway oxoaverantin (OAVN) --> averufin (AVR) --> hydroxyversicolorone (HVN) --> versiconal hemiacetal acetate (VHA) is involved in aflatoxin biosynthesis, and the cypX and moxY genes, which are present in the aflatoxin gene cluster, have been previously suggested to be involved in this pathway. To clarify the function of these two genes in more detail, we disrupted the genes in aflatoxigenic Aspergillus parasiticus NRRL 2999. The cypX-deleted mutant lost aflatoxin productivity and accumulated AVR in the mycelia. Although this mutant converted HVN, versicolorone (VONE), VHA, and versiconol acetate (VOAc) to aflatoxins in feeding experiments, it could not produce aflatoxins from either OAVN or AVR. The moxY-deleted mutant also lost aflatoxin productivity, whereas it newly accumulated HVN and VONE. In feeding experiments, this mutant converted either VHA or VOAc to aflatoxins but did not convert OAVN, AVR, HVN, or VONE to aflatoxins. These results demonstrated that cypX encodes AVR monooxygenase, catalyzing the reaction from AVR to HVN, and moxY encodes HVN monooxygenase, catalyzing a Baeyer-Villiger reaction from HVN to VHA as well as from VONE to VOAc. In this work, we devised a simple and rapid method to extract DNA from many fungi for PCR analyses in which cell disruption with a shaker and phenol extraction were combined.
Collapse
Affiliation(s)
- Ying Wen
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | |
Collapse
|
14
|
Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW. Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 2004; 70:1253-62. [PMID: 15006741 PMCID: PMC368384 DOI: 10.1128/aem.70.3.1253-1262.2004] [Citation(s) in RCA: 553] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jiujiang Yu
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, Louisiana 70124, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chang PK. Lack of interaction between AFLR and AFLJ contributes to nonaflatoxigenicity of Aspergillus sojae. J Biotechnol 2004; 107:245-53. [PMID: 14736460 DOI: 10.1016/j.jbiotec.2003.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aspergillus sojae, which is believed to be a domesticated strain of Aspergillus parasiticus, contains all of the aflatoxin biosynthetic genes but is unable to produce aflatoxins and is generally recognized as safe (GRAS) for producing fermented foods. In A. parasiticus both aflR, the aflatoxin pathway-specific regulatory gene, and aflJ, a co-activator gene, are necessary for transcription of genes encoding the aflatoxin biosynthetic enzymes. A. sojae aflR differs from A. parasiticus aflR in that it encodes extra His and Ala, and has a pretermination defect that causes truncation of the carboxyl terminus of the predicted protein. A. sojae aflJ differs from A. parasiticus aflJ in that it encodes a predicted protein with Ser39 replaced by Ala and Ser283 replaced by Pro. Steady-state levels of aflatoxin biosynthetic gene transcripts of aflR, aflJ, pksA, nor1, ver1 and omtA in A. sojae as determined by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) were much lower than those of A. parasiticus. Yeast two-hybrid assays showed that the truncated A. sojae AFLR did not interact with AFLJ of A. sojae and A. parasiticus but that an A. sojae AFLR reverted to the putative ancestral form interacted normally with AFLJ of A. sojae and A. parasiticus. Deletion analysis showed that both amino- and carboxy-terminal regions of the A. sojae AFLJ were important for the R-J interaction. The truncated A. sojae AFLR thus not only was impaired in its ability to activate transcription of aflatoxin biosynthetic genes, but also was unable to interact with AFLJ, in A. parasiticus both of which are required for normal expression of the aflatoxin biosynthetic genes. Consequently, the lack of aflatoxin-producing ability of A. sojae resulted primarily from two defects in the regulatory mechanism responsible for gene transcription.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA.
| |
Collapse
|
16
|
Scheidegger KA, Payne GA. Unlocking the Secrets Behind Secondary Metabolism: A Review ofAspergillus flavusfrom Pathogenicity to Functional Genomics. ACTA ACUST UNITED AC 2003. [DOI: 10.1081/txr-120024100] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Sakuno E, Yabe K, Nakajima H. Involvement of two cytosolic enzymes and a novel intermediate, 5'-oxoaverantin, in the pathway from 5'-hydroxyaverantin to averufin in aflatoxin biosynthesis. Appl Environ Microbiol 2003; 69:6418-26. [PMID: 14602595 PMCID: PMC262255 DOI: 10.1128/aem.69.11.6418-6426.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During aflatoxin biosynthesis, 5'-hydroxyaverantin (HAVN) is converted to averufin (AVR). Although we had previously suggested that this occurs in one enzymatic step, we demonstrate here that this conversion is composed of two enzymatic steps by showing that the two enzyme activities in the cytosol fraction of Aspergillus parasiticus were clearly separated by Mono Q column chromatography. An enzyme, HAVN dehydrogenase, catalyzes the first reaction from HAVN to a novel intermediate, another new enzyme catalyzes the next reaction from the intermediate to AVR, and the intermediate is a novel substance, 5'-oxoaverantin (OAVN), which was determined by physicochemical methods. We also purified both of the enzymes, HAVN dehydrogenase and OAVN cyclase, from the cytosol fraction of A. parasiticus by using ammonium sulfate fractionation and successive chromatographic steps. The HAVN dehydrogenase is a homodimer composed of 28-kDa subunits, and it requires NAD, but not NADP, as a cofactor for its activity. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of tryptic peptides of the purified HAVN dehydrogenase revealed that this enzyme coincides with a protein deduced from the adhA gene in the aflatoxin gene cluster of A. parasiticus. Also, the OAVN cyclase enzyme is a homodimer composed of 79-kDa subunits which does not require any cofactor for its activity. Further characterizations of both enzymes were performed.
Collapse
Affiliation(s)
- Emi Sakuno
- Faculty of Agriculture, Tottori University, Koyama, Tottori 680-8553, Japan
| | | | | |
Collapse
|
18
|
Brown RL, Brown-Jenco CS, Bhatnagar D, Payne GA. Construction and preliminary evaluation of an Aspergillus flavus reporter gene construct as a potential tool for screening aflatoxin resistance. J Food Prot 2003; 66:1927-31. [PMID: 14572235 DOI: 10.4315/0362-028x-66.10.1927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Effective preharvest strategies to eliminate aflatoxin accumulation in crops are not presently available. The molecular biology of aflatoxin biosynthesis has been extensively studied, and genetic and molecular tools such as reporter gene systems for the measurement of fungal growth have been developed. A reporter construct containing the Aspergillus flavus beta-tubulin gene promoter fused to Escherichia coli beta-glucuronidase (GUS) has been shown to be a reliable tool for the indirect measurement of fungal growth in maize kernels. Since cost-saving alternative methods for the direct measurement of aflatoxin levels are needed to facilitate more widespread field and laboratory screening of maize lines, a new reporter gene construct involving the promoter region of the omtA gene of the aflatoxin biosynthetic pathway was constructed and tested. Expression of GUS activity by this construct (omtA::GUS) was correlated with aflatoxin accumulation in culture. In the fungal transformant GAP26-1, which harbors this construct, aflatoxin production and GUS expression on sucrose-containing medium showed the same temporal pattern of toxin induction. Furthermore, GUS expression by GAP26-1 was shown to be associated with aflatoxin accumulation in maize kernels inoculated with this strain. Our results suggest that this and other reporter gene pathway promoter constructs may provide superior alternatives to direct aflatoxin quantification with respect to time, labor, and materials for the screening of maize lines for resistance to aflatoxin accumulation.
Collapse
Affiliation(s)
- Robert L Brown
- Southern Regional Research Center, USDA Agricultural Research Service, New Orleans, Louisiana 70179, USA
| | | | | | | |
Collapse
|
19
|
OBrian GR, Fakhoury AM, Payne GA. Identification of genes differentially expressed during aflatoxin biosynthesis in Aspergillus flavus and Aspergillus parasiticus. Fungal Genet Biol 2003; 39:118-27. [PMID: 12781670 DOI: 10.1016/s1087-1845(03)00014-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A complex regulatory network governs the biosynthesis of aflatoxin. While several genes involved in aflatoxin production are known, their action alone cannot account for its regulation. Arrays of clones from an Aspergillus flavus cDNA library and glass slide microarrays of ESTs were screened to identify additional genes. An initial screen of the cDNA clone arrays lead to the identification of 753 unique ESTs. Many showed sequence similarity to known metabolic and regulatory genes; however, no function could be ascribed to over 50% of the ESTs. Gene expression analysis of Aspergillus parasiticus grown under conditions conducive and non-conductive for aflatoxin production was evaluated using glass slide microarrays containing the 753 ESTs. Twenty-four genes were more highly expressed during aflatoxin biosynthesis and 18 genes were more highly expressed prior to aflatoxin biosynthesis. No predicted function could be ascribed to 18 of the 24 genes whose elevated expression was associated with aflatoxin biosynthesis.
Collapse
Affiliation(s)
- Gregory R OBrian
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
20
|
Chang PK, Yu J, Ehrlich KC, Boue SM, Montalbano BG, Bhatnagar D, Cleveland TE. adhA in Aspergillus parasiticus is involved in conversion of 5'-hydroxyaverantin to averufin. Appl Environ Microbiol 2000; 66:4715-9. [PMID: 11055914 PMCID: PMC92370 DOI: 10.1128/aem.66.11.4715-4719.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two routes for the conversion of 5'-hydroxyaverantin (HAVN) to averufin (AVF) in the synthesis of aflatoxin have been proposed. One involves the dehydration of HAVN to the lactone averufanin (AVNN), which is then oxidized to AVF. Another requires dehydrogenation of HAVN to 5'-ketoaverantin, the open-chain form of AVF, which then cyclizes spontaneously to AVF. We isolated a gene, adhA, from the aflatoxin gene cluster of Aspergillus parasiticus SU-1. The deduced ADHA amino acid sequence contained two conserved motifs found in short-chain alcohol dehydrogenases-a glycine-rich loop (GXXXGXG) that is necessary for interaction with NAD(+)-NADP(+), and the motif YXXXK, which is found at the active site. A. parasiticus SU-1, which produces aflatoxins, has two copies of adhA (adhA1), whereas A. parasiticus SRRC 2043, a strain that accumulates O-methylsterigmatocystin (OMST), has only one copy. Disruption of adhA in SRRC 2043 resulted in a strain that accumulates predominantly HAVN. This result suggests that ADHA is involved in the dehydrogenation of HAVN to AVF. Those adhA disruptants that still made small amounts of OMST also accumulated other metabolites, including AVNN, after prolonged culture.
Collapse
Affiliation(s)
- P K Chang
- Southern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, New Orleans, Louisiana 70124, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Yu J, Woloshuk CP, Bhatnagar D, Cleveland TE. Cloning and characterization of avfA and omtB genes involved in aflatoxin biosynthesis in three Aspergillus species. Gene 2000; 248:157-67. [PMID: 10806361 DOI: 10.1016/s0378-1119(00)00126-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The biosynthesis of aflatoxins (B(1), G(1), B(2), and G(2)) is a multi-enzyme process controlled genetically by over 20 genes. In this study, we report the identification and characterization of the avfA gene, which was found to be involved in the conversion of averufin (AVF) to versiconal hemiacetal acetate (VHA), in Aspergillus parasiticus and A. flavus; a copy of avfA gene was also cloned from a non-aflatoxin producing strain A. sojae. Complementation of an averufin-accumulating, non-aflatoxigenic mutant strain of A. parasiticus, SRRC 165, with the avfA gene cloned from A. flavus, restored the ability of the mutant to convert AVF to VHA and to produce aflatoxins B(1), G(1), B(2), and G(2). Sequence analysis revealed that a single amino acid replacement from aspartic acid to asparagine disabled the function of the enzyme in the mutant strain SRRC 165. The A. parasiticus avfA was identified to be a homolog of previously sequenced, but functionally unassigned transcript, stcO, in A. nidulans based on sequence homology at both nucleotide (57%) and amino acid (55%) levels. In addition to avfA, another aflatoxin pathway gene, omtB, encoding for an O-methyltransferase involved in the conversion of demethylsterigmatocystin (DMST) to sterigmatocystin (ST) and dihydrodemethylsterigmatocystin (DHDMST) to dihydrosterigmatocystin (DHST), was cloned from A. parasiticus, A. flavus, and A. sojae. The omtB gene was found to be highly homologous to stcP from A. nidulans, which has been reported earlier to be involved in a similar enzymatic step for the sterigmatocystin formation in that species. RT-PCR data demonstrated that both the avfA and avfA1 as well as omtB genes in A. parasiticus were expressed only in the aflatoxin-conducive medium. An analysis of the degrees of homology for the two reported genes between the Aspergillus species A. parasiticus, A. flavus, A. nidulans and A. sojae was conducted.
Collapse
Affiliation(s)
- J Yu
- Southern Regional Research Center, USDA, Agricultural Research Service, New Orleans, LA 70179, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
Mycotoxins are secondary metabolites produced by many important phytopathogenic and food spoilage fungi including Aspergillus, Fusarium and Penicillium species. The toxicity of four of the most agriculturally important mycotoxins (the trichothecenes, and the polyketide-derived mycotoxins; aflatoxins, fumonisins and sterigmatocystin) are discussed and their chemical structure described. The steps involved in the biosynthesis of aflatoxin and sterigmatocystin and the experimental techniques used in the cloning and molecular characterisation of the genes involved in the pathway are described in detail. The biosynthetic genes involved in the fumonisin and trichothecene biosynthetic pathways are also outlined. The potential benefits gained from an increased knowledge of the molecular organisation of these pathways together with the mechanisms involved in their regulation are also discussed.
Collapse
Affiliation(s)
- M J Sweeney
- Microbiology Department, University College Cork, Ireland
| | | |
Collapse
|
23
|
Brown MP, Brown-Jenco CS, Payne GA. Genetic and molecular analysis of aflatoxin biosynthesis. Fungal Genet Biol 1999; 26:81-98. [PMID: 10328980 DOI: 10.1006/fgbi.1998.1114] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M P Brown
- InterLink Associates, 11930 Heritage Oak Place, Suite 4, Auburn, California 95603, USA
| | | | | |
Collapse
|
24
|
Meyers DM, Obrian G, Du WL, Bhatnagar D, Payne GA. Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Appl Environ Microbiol 1998; 64:3713-7. [PMID: 9758789 PMCID: PMC106528 DOI: 10.1128/aem.64.10.3713-3717.1998] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes encoding the aflatoxin biosynthetic pathway enzymes have been localized as a cluster to a 75-kb DNA fragment. The enzymatic functions of the products of most of the genes in the cluster are known, but there are a few genes that have not yet been characterized. We report here the characterization of one of these genes, a gene designated aflJ. This gene resides in the cluster adjacent to the pathway regulatory gene, aflR, and the two genes are divergently transcribed. Disruption of aflJ in Aspergillus flavus results in a failure to produce aflatoxins and a failure to convert exogenously added pathway intermediates norsolorinic acid, sterigmatocystin, and O-methylsterigmatocystin to aflatoxin. The disrupted strain does, however, accumulate pksA, nor-1, ver-1, and omtA transcripts under conditions conducive to aflatoxin biosynthesis. Therefore, disruption of aflJ does not affect transcription of these genes, and aflJ does not appear to have a regulatory function similar to that of aflR. Sequence analysis of aflJ and its putative peptide, AflJ, did not reveal any enzymatic domains or significant similarities to proteins of known function. The putative peptide does contain three regions predicted to be membrane-spanning domains and a microbodies C-terminal targeting signal.
Collapse
Affiliation(s)
- D M Meyers
- North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | |
Collapse
|
25
|
Ehrlich KC, Montalbano BG, Bhatnagar D, Cleveland TE. Alteration of different domains in AFLR affects aflatoxin pathway metabolism in Aspergillus parasiticus transformants. Fungal Genet Biol 1998; 23:279-87. [PMID: 9680958 DOI: 10.1006/fgbi.1998.1045] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AFLR, a zinc binuclear cluster DNA-binding protein, is required for activation of genes comprising the aflatoxin biosynthetic pathway in Aspergillus spp. Transformation of Aspergillus parasiticus with plasmids containing the intact aflR gene gave clones that produced fivefold more aflatoxin pathway metabolites than did the untransformed strain. When a 13-bp region in the aflR promoter (position -102 to -115 with respect to the ATG) was deleted, including a portion of a palindromic site previously shown to bind recombinant AFLR, metabolite production was 40% that of transformants with intact aflR. This result provides further evidence that this site may be involved in the autoregulation of aflR. Overexpression of pathway genes could also result from increased quantities of AFLR titrating out a putative repressor protein. In AFLR, a 20-amino-acid acidic region near its carboxy-terminus resembles the region in yeast GAL4 required for GAL80 repressor binding. When 3 of the acidic amino acids in this region were deleted, levels of metabolites were even higher than those produced by transformants with intact aflR, as would be expected if repressor binding was suppressed in transformants containing this altered protein. Transformation with plasmids mutated at the AFLR zinc cluster (Cys to Trp at amino acid position 49) or at a putative nuclear localization signal region (RRARK deleted) gave clones with one-fifth the metabolite production of the untransformed fungus in spite of the transformants making the same or more aflR mRNA. Since these transformants retained a copy of intact aflR, the latter results can be explained best by assuming that AFLR activates genes involved in aflatoxin production as a dimeric protein and that heterodimers containing both mutant and intact AFLR strands are inactive.
Collapse
Affiliation(s)
- K C Ehrlich
- Southern Regional Research Center, USDA, New Orleans, Louisiana 70179, USA.
| | | | | | | |
Collapse
|
26
|
Woloshuk CP, Prieto R. Genetic organization and function of the aflatoxin B1 biosynthetic genes. FEMS Microbiol Lett 1998; 160:169-76. [PMID: 9532734 DOI: 10.1111/j.1574-6968.1998.tb12907.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Aflatoxins are secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus. Most of the genes involved in the biosynthesis of aflatoxin are contained within a single cluster in the genome of these filamentous fungi. Studies directed toward understanding the molecular biology of aflatoxin biosynthesis have led to a number of important discoveries. A pair of fatty acid synthase genes were identified that are involved uniquely in aflatoxin biosynthesis. Two genes were also characterized that represent new families of cytochrome P450 monooxygenases. Gene expression is coordinated during aflatoxin production and is under the control of a positive regulatory gene belonging to a family of fungal transcriptional activators associated with various metabolic pathways in fungi.
Collapse
Affiliation(s)
- C P Woloshuk
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
27
|
Payne GA, Brown MP. Genetics and physiology of aflatoxin biosynthesis. ANNUAL REVIEW OF PHYTOPATHOLOGY 1998; 36:329-62. [PMID: 15012504 DOI: 10.1146/annurev.phyto.36.1.329] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Aflatoxins are the most thoroughly studied mycotoxins. Elegant early research on the biosynthetic scheme of the pathway has allowed a molecular characterization of aflatoxin biosynthesis and its regulation. Genetic studies on aflatoxin biosynthesis in Aspergillus flavus and A. parasiticus, and sterigmatocystin biosynthesis in A. nidulans, led to the cloning of 17 genes responsible for 12 enzymatic conversions in the AF/ST pathways. Pathway-specific regulation is by a Zn(II)2Cys6 DNA-binding protein that regulates the transcription of all pathway genes. Less is known about the global factors that regulate aflatoxin biosynthesis, but there is a clear link between development and aflatoxin biosynthesis. There is also a large body of information on physiological factors involved in aflatoxin biosynthesis, but it has been difficult to understand their role in the regulation of this pathway. This chapter discusses current knowledge on the molecular biology and genetics of the pathway, and provides a summary of the physiological factors known to influence aflatoxin formation.
Collapse
Affiliation(s)
- G A Payne
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616, USA.
| | | |
Collapse
|
28
|
Minto RE, Townsend CA. Enzymology and Molecular Biology of Aflatoxin Biosynthesis. Chem Rev 1997; 97:2537-2556. [PMID: 11851470 DOI: 10.1021/cr960032y] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert E. Minto
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
29
|
Prieto R, Woloshuk CP. ord1, an oxidoreductase gene responsible for conversion of O-methylsterigmatocystin to aflatoxin in Aspergillus flavus. Appl Environ Microbiol 1997; 63:1661-6. [PMID: 9143099 PMCID: PMC168459 DOI: 10.1128/aem.63.5.1661-1666.1997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Among the enzymatic steps in the aflatoxin biosynthetic pathway, the conversion of O-methylsterigmatocystin to aflatoxin has been proposed to be catalyzed by an oxidoreductase. Transformants of Aspergillus flavus 649WAF2 containing a 3.3-kb genomic DNA fragment and the aflatoxin biosynthesis regulatory gene aflR converted exogenously supplied O-methylsterigmatocystin to aflatoxin B1. A gene, ord1, corresponding to a transcript of about 2 kb was identified within the 3.3-kb DNA fragment. The promoter region presented a putative AFLR binding site and a TATA sequence. The nucleotide sequence of the gene revealed an open reading frame encoding a protein of 528 amino acids with a deduced molecular mass of 60.2 kDa. The gene contained six introns and seven exons. Heterologous expression of the ord1 open reading frame under the transcriptional control of the Saccharomyces cerevisiae galactose-inducible gal1 promoter results in the ability to convert O-methylsterigmatocystin to aflatoxin B1. The data indicate that ord1 is sufficient to accomplish the last step of the aflatoxin biosynthetic pathway. A search of various databases for similarity indicated that ord1 encodes a cytochrome P-450-type monooxygenase, and the gene has been assigned to a new P-450 gene family named CYP64.
Collapse
Affiliation(s)
- R Prieto
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
30
|
Yu J, Chang PK, Cary JW, Bhatnagar D, Cleveland TE. avnA, a gene encoding a cytochrome P-450 monooxygenase, is involved in the conversion of averantin to averufin in aflatoxin biosynthesis in Aspergillus parasiticus. Appl Environ Microbiol 1997; 63:1349-56. [PMID: 9097431 PMCID: PMC168428 DOI: 10.1128/aem.63.4.1349-1356.1997] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recent studies have shown that at least 17 genes involved in the aflatoxin biosynthetic pathway are clustered within a 75-kb DNA fragment in the genome of Aspergillus parasiticus. Several additional transcripts have also been mapped to this gene cluster. A gene, avnA (previously named ord-1), corresponding to one of the two transcripts identified earlier between the ver-1 and omtA genes on the gene cluster was sequenced. The nucleotide sequence of the avnA gene contains a coding region for a protein of 495 amino acids with a calculated molecular mass of 56.3 kDa. The gene consists of three exons and two introns. Disruption of the avnA gene in the wild-type aflatoxigenic A. parasiticus strain (SU1-N3) resulted in a nonaflatoxigenic mutant which accumulated a bright yellow pigment. Thin-layer chromatographic studies with six different solvent systems showed that the migration patterns of the accumulated metabolite were identical to those of averantin, a known aflatoxin precursor. Precursor feeding studies with this mutant showed that norsolorinic acid and averantin were not converted to aflatoxin whereas 5'-hydroxyaverantin, averufanin, averufin, versicolorin A. sterigmatocystin, and O-methylsterigmatocystin were converted to aflatoxins. Southern blot analysis of the wild-type strain and avnA-disrupted mutant strain indicated that the avnA gene was disrupted in the mutant strain. A search of the GenBank database for similarity indicated that the avnA gene encodes a cytochrome P-450-type monooxygenase, and it has been assigned to a new P-450 gene family named CYP60A1. We have therefore concluded that the avnA gene encodes a fungal cytochrome P-450-type enzyme which is involved in the conversion of averantin to averufin in the aflatoxin biosynthetic pathway in A. parasiticus.
Collapse
Affiliation(s)
- J Yu
- Southern Regional Research Center, USDA Agricultural Research Service, New Orleans, Louisiana 70179, USA
| | | | | | | | | |
Collapse
|