1
|
Wang Y, Wang Y, Ma S, Zhao K, Ding F, Liu X. Exploring metal(loid)s dynamics and bacterial community shifts in contaminated paddy soil: Impact of MgO-laden biochar under different water conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123416. [PMID: 38278407 DOI: 10.1016/j.envpol.2024.123416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
In this study, a soil incubation experiment was conducted to explore the influence MgO-treated corn straw biochar (MCB) on the bioavailability and chemical forms of cadmium (Cd), lead (Pb), and arsenic (As), alongside the impact on the bacterial community within paddy soil subjected to both flooded and non-flooded conditions. Raw corn straw biochar (CB) served as the unmodified biochar control, aiding in the understanding of the biochar's role within the composite. The results showed that even at a minimal concentration of 0.5 %, MCB exhibited higher effectiveness in reducing the bioavailability of Pb and Cd compared to 1 % CB. In non-flooded conditions, 0.5 % MCB reduced the bioavailable Pb and Cd by 99.7 % and 87.4 %, respectively, while NaH2PO4-extracted As displayed a 14.5 % increase. With increasing MCB concentrations (from 0.5 % to 1.5 %), soil pH, DOC, EC, available phosphorus, and bioavailable As increased, while bioavailable Pb and Cd exhibited declining tendencies. Flooding did not notably alter MCB's role in reducing Pb and Cd bioavailability, yet it systematically amplified As release. Heavy metal fractions extracted by acetic acid increased in the MCB groups under flooding conditions, especially for As. The inclusion of 0.5 % MCB did not noticeably affect bacterial diversity, whereas higher doses led to reduced diversity and substantial changes in community composition. Specifically, the groups with MCB showed an increase in the Bacteroidetes and Proteobacteria phyla, accompanied by a decrease in Acidobacteria. These alterations were primarily attributed to the increased pH and EC resulting from MgO hydrolysis. Consequently, for Pb/Cd stabilization and soil bacterial diversity, a low dosage of MgO-treated biochar is recommended. However, caution is advised when employing MgO-treated biochar in soils with elevated arsenic levels, particularly under flooded conditions.
Collapse
Affiliation(s)
- Yan Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yichen Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Suhan Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kankan Zhao
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fenghua Ding
- Institute of Ecology, Lishui University, Lishui, Zhejiang, 323000, China
| | - Xingmei Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Zheng F, Zhang T, Yin S, Qin G, Chen J, Zhang J, Zhao D, Leng X, An S, Xia L. Comparison and interpretation of freshwater bacterial structure and interactions with organic to nutrient imbalances in restored wetlands. Front Microbiol 2022; 13:946537. [PMID: 36212857 PMCID: PMC9533089 DOI: 10.3389/fmicb.2022.946537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023] Open
Abstract
Chemical oxygen demand to nitrogen (COD/N) and nitrogen to phosphorus (N/P) ratios have distinct effects on bacterial community structure and interactions. However, how organic to nutrient imbalances affect the structure of freshwater bacterial assemblages in restored wetlands remains poorly understood. Here, the composition and dominant taxa of bacterial assemblages in four wetlands [low COD/N and high N/P (LH), low COD/N and low N/P (LL), high COD/N and high N/P (HH), and high COD/N and low N/P (HL)] were investigated. A total of 7,709 operational taxonomic units were identified by high throughput sequencing, and Actinobacteria, Proteobacteria, and Cyanobacteria were the most abundant phyla in the restored wetlands. High COD/N significantly increased bacterial diversity and was negatively correlated with N/P (R 2 = 0.128; p = 0.039), and the observed richness (Sobs) indices ranged from 860.77 to 1314.66. The corresponding Chao1 and phylogenetic diversity (PD) values ranged from 1533.42 to 2524.56 and 127.95 to 184.63. Bacterial beta diversity was negatively related to COD/N (R 2 = 0.258; p < 0.001). The distribution of bacterial assemblages was mostly driven by variations in ammonia nitrogen (NH4 +-N, p < 0.01) and electrical conductivity (EC, p < 0.01), which collectively explained more than 80% of the variation in bacterial assemblages. However, the dominant taxa Proteobacteria, Firmicutes, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Chloroflexi, and Deinococcus-Thermus were obviously affected by variation in COD/N and N/P (p < 0.05). The highest node and edge numbers and average degree were observed in the LH group. The co-occurrence networkindicated that LH promoted bacterial network compactness and bacterial interaction consolidation. The relationships between organic to nutrient imbalances and bacterial assemblages may provide a theoretical basis for the empirical management of wetland ecosystems.
Collapse
Affiliation(s)
- Fuchao Zheng
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Tiange Zhang
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Shenglai Yin
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ge Qin
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Jun Chen
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Jinghua Zhang
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Dehua Zhao
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Leng
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Shuqing An
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Lu Xia
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Shamim A, Sanka Loganathachetti D, Chandran S, Masmoudi K, Mundra S. Salinity of irrigation water selects distinct bacterial communities associated with date palm (Phoenix dactylifera L.) root. Sci Rep 2022; 12:12733. [PMID: 35882908 PMCID: PMC9325759 DOI: 10.1038/s41598-022-16869-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023] Open
Abstract
Saline water irrigation has been used in date palm (Phoenix dactylifera L.) agriculture as an alternative to non-saline water due to water scarcity in hyper-arid environments. However, the knowledge pertaining to saline water irrigation impact on the root-associated bacterial communities of arid agroecosystems is scarce. In this study, we investigated the effect of irrigation sources (non-saline freshwater vs saline groundwater) on date palm root-associated bacterial communities using 16S rDNA metabarcoding. The bacterial richness, Shannon diversity and evenness didn't differ significantly between the irrigation sources. Soil electrical conductivity (EC) and irrigation water pH were negatively related to Shannon diversity and evenness respectively, while soil organic matter displayed a positive correlation with Shannon diversity. 40.5% of total Operational Taxonomic Units were unique to non-saline freshwater irrigation, while 26% were unique to saline groundwater irrigation. The multivariate analyses displayed strong structuring of bacterial communities according to irrigation sources, and both soil EC and irrigation water pH were the major factors affecting bacterial communities. The genera Bacillus, Micromonospora and Mycobacterium were dominated while saline water irrigation whereas contrasting pattern was observed for Rhizobium, Streptomyces and Acidibacter. Taken together, we suggest that date-palm roots select specific bacterial taxa under saline groundwater irrigation, which possibly help in alleviating salinity stress and promote growth of the host plant.
Collapse
Affiliation(s)
- Azra Shamim
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE
| | | | - Subha Chandran
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE.
| | - Sunil Mundra
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE.
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
4
|
Sivasubramanian R, Chen GH, Mackey HR. The effectiveness of divalent cation addition for highly saline activated sludge cultures: Influence of monovalent/divalent ratio and specific cations. CHEMOSPHERE 2021; 274:129864. [PMID: 33979942 DOI: 10.1016/j.chemosphere.2021.129864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Saline wastewaters are prevalent in various industries and pose challenges to stable biological treatment. Increasing monovalent cation concentrations are commonly reported to deteriorate treatment and settling performance, while divalent cations can enhance flocculation and settling. However, many previous studies were performed at relatively low salinities and reports conflict on whether concentrations of monovalent cations, divalent cations, or their ratio (M/D) are most critical. This study investigates whether addition of divalent cations shows the same benefits at high salinity (∼40 g NaCl.L-1) and whether divalent ion concentration or M/D is a better predictor of enhancement. Nine sequencing batch reactors were operated at 0.8 M NaCl or KCl monovalent salt concentration, and the concentration of divalent cations (Ca2+ and Mg2+) was varied. M/D was found to be the critical factor that consistently influenced sludge characteristics. It was particularly important in describing hydrophobicity, sludge volume index (SVI) and specific oxygen uptake rate (SOUR), with rpartial of -0.879, 0.971 and 0.966 respectively in models that had an r2adj greater than 0.93. Lower M/D also increased biomass concentrations and reduced extracellular polysaccharides, the latter which in turn correlated strongly with many shape and surface charge measures. The specific monovalent salt (Na+ or K+) influenced treatment performance, biomass concentrations, hydrophobicity, SOUR, extracellular protein and SVI. The specific divalent cation was only important in describing SVI, where Mg2+ was beneficial. Overall, this study shows that addition of divalent cations can greatly benefit high salinity activated sludge systems by improving the sludge structure, settling and organic removal.
Collapse
Affiliation(s)
- Raghavendran Sivasubramanian
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hamish Robert Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
5
|
Dadkhodazade E, Khanniri E, Khorshidian N, Hosseini SM, Mortazavian AM, Moghaddas Kia E. Yeast cells for encapsulation of bioactive compounds in food products: A review. Biotechnol Prog 2021; 37:e3138. [PMID: 33634951 DOI: 10.1002/btpr.3138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022]
Abstract
Nowadays bioactive compounds have gained great attention in food and drug industries owing to their health aspects as well as antimicrobial and antioxidant attributes. Nevertheless, their bioavailability, bioactivity, and stability can be affected in different conditions and during storage. In addition, some bioactive compounds have undesirable flavor that restrict their application especially at high dosage in food products. Therefore, food industry needs to find novel techniques to overcome these problems. Microencapsulation is a technique, which can fulfill the mentioned requirements. Also, there are many wall materials for use in encapsulation procedure such as proteins, carbohydrates, lipids, and various kinds of polymers. The utilization of food-grade and safe carriers have attracted great interest for encapsulation of food ingredients. Yeast cells are known as a novel carrier for microencapsulation of bioactive compounds with benefits such as controlled release, protection of core substances without a significant effect on sensory properties of food products. Saccharomyces cerevisiae was abundantly used as a suitable carrier for food ingredients. Whole cells as well as cell particles like cell wall and plasma membrane can act as a wall material in encapsulation process. Compared to other wall materials, yeast cells are biodegradable, have better protection for bioactive compounds and the process of microencapsulation by them is relatively simple. The encapsulation efficiency can be improved by applying some pretreatments of yeast cells. In this article, the potential application of yeast cells as an encapsulating material for encapsulation of bioactive compounds is reviewed.
Collapse
Affiliation(s)
- Elahe Dadkhodazade
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Khanniri
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Seyede Marziyeh Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M Mortazavian
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Moghaddas Kia
- Department of Food Science and Technology, Maragheh University of Medical Science, Maragheh, Iran
| |
Collapse
|
6
|
Ultee E, Zhong X, Shitut S, Briegel A, Claessen D. Formation of wall-less cells in Kitasatospora viridifaciens requires cytoskeletal protein FilP in oxygen-limiting conditions. Mol Microbiol 2020; 115:1181-1190. [PMID: 33278050 PMCID: PMC8359286 DOI: 10.1111/mmi.14662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
The cell wall is considered an essential component for bacterial survival, providing structural support, and protection from environmental insults. Under normal growth conditions, filamentous actinobacteria insert new cell wall material at the hyphal tips regulated by the coordinated activity of cytoskeletal proteins and cell wall biosynthetic enzymes. Despite the importance of the cell wall, some filamentous actinobacteria can produce wall‐deficient S‐cells upon prolonged exposure to hyperosmotic stress. Here, we performed cryo‐electron tomography and live cell imaging to further characterize S‐cell extrusion in Kitasatospora viridifaciens. We show that exposure to hyperosmotic stress leads to DNA compaction, membrane and S‐cell extrusion, and thinning of the cell wall at hyphal tips. Additionally, we find that the extrusion of S‐cells is abolished in a cytoskeletal mutant strain that lacks the intermediate filament‐like protein FilP. Furthermore, micro‐aerobic culturing promotes the formation of S‐cells in the wild type, but the limited oxygen still impedes S‐cell formation in the ΔfilP mutant. These results demonstrate that S‐cell formation is stimulated by oxygen‐limiting conditions and dependent on functional cytoskeleton remodeling.
Collapse
Affiliation(s)
- Eveline Ultee
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Xiaobo Zhong
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Shraddha Shitut
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Masoura M, Passaretti P, Overton TW, Lund PA, Gkatzionis K. Use of a model to understand the synergies underlying the antibacterial mechanism of H 2O 2-producing honeys. Sci Rep 2020; 10:17692. [PMID: 33077785 PMCID: PMC7573686 DOI: 10.1038/s41598-020-74937-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
Honey has been valued as a powerful antimicrobial since ancient times. However, the understanding of the underlying antibacterial mechanism is incomplete. The complexity and variability of honey composition represent a challenge to this scope. In this study, a simple model system was used to investigate the antibacterial effect of, and possible synergies between, the three main stressors present in honey: sugars, gluconic acid, and hydrogen peroxide (H2O2), which result from the enzymatic conversion of glucose on honey dilution. Our results demonstrated that the synergy of H2O2 and gluconic acid is essential for the antibacterial activity of honey. This synergy caused membrane depolarization, destruction of the cell wall, and eventually growth inhibition of E. coli K-12. The presence of H2O2 stimulated the generation of other long-lived ROS in a dose-dependent manner. Sugars caused osmosis-related morphological changes, however, decreased the toxicity of the H2O2/gluconic acid. The susceptibility of catalase and general stress response sigma factor mutants confirmed the synergy of the three stressors, which is enhanced at higher H2O2 concentrations. By monitoring cellular phenotypic changes caused by model honey, we explained how this can be bactericidal even though the antimicrobial compounds which it contains are at non-inhibitory concentrations.
Collapse
Affiliation(s)
- Maria Masoura
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2SA, UK.,Institute of Microbiology and Infection (IMI), University of Birmingham, Birmingham, B15 2SA, UK
| | - Paolo Passaretti
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2SA, UK
| | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2SA, UK
| | - Pete A Lund
- Institute of Microbiology and Infection (IMI), University of Birmingham, Birmingham, B15 2SA, UK
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2SA, UK. .,Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Lemnos, Greece.
| |
Collapse
|
8
|
Wang A, Lin J, Zhong Q. Physical and microbiological properties of powdered Lactobacillus salivarius NRRL B-30514 as affected by relative amounts of dairy proteins and lactose. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Godard T, Zühlke D, Richter G, Wall M, Rohde M, Riedel K, Poblete-Castro I, Krull R, Biedendieck R. Metabolic Rearrangements Causing Elevated Proline and Polyhydroxybutyrate Accumulation During the Osmotic Adaptation Response of Bacillus megaterium. Front Bioeng Biotechnol 2020; 8:47. [PMID: 32161752 PMCID: PMC7053513 DOI: 10.3389/fbioe.2020.00047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
For many years now, Bacillus megaterium serves as a microbial workhorse for the high-level production of recombinant proteins in the g/L-scale. However, efficient and stable production processes require the knowledge of the molecular adaptation strategies of the host organism to establish optimal environmental conditions. Here, we interrogated the osmotic stress response of B. megaterium using transcriptome, proteome, metabolome, and fluxome analyses. An initial transient adaptation consisted of potassium import and glutamate counterion synthesis. The massive synthesis of the compatible solute proline constituted the second longterm adaptation process. Several stress response enzymes involved in iron scavenging and reactive oxygen species (ROS) fighting proteins showed higher levels under prolonged osmotic stress induced by 1.8 M NaCl. At the same time, the downregulation of the expression of genes of the upper part of glycolysis resulted in the activation of the pentose phosphate pathway (PPP), generating an oversupply of NADPH. The increased production of lactate accompanied by the reduction of acetate secretion partially compensate for the unbalanced (NADH/NAD+) ratio. Besides, the tricarboxylic acid cycle (TCA) mainly supplies the produced NADH, as indicated by the higher mRNA and protein levels of involved enzymes, and further confirmed by 13C flux analyses. As a consequence of the metabolic flux toward acetyl-CoA and the generation of an excess of NADPH, B. megaterium redirected the produced acetyl-CoA toward the polyhydroxybutyrate (PHB) biosynthetic pathway accumulating around 30% of the cell dry weight (CDW) as PHB. This direct relation between osmotic stress and intracellular PHB content has been evidenced for the first time, thus opening new avenues for synthesizing this valuable biopolymer using varying salt concentrations under non-limiting nutrient conditions.
Collapse
Affiliation(s)
- Thibault Godard
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Daniela Zühlke
- Institute of Microbiology, Universität Greifswald, Greifswald, Germany
| | - Georg Richter
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melanie Wall
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katharina Riedel
- Institute of Microbiology, Universität Greifswald, Greifswald, Germany
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Rebekka Biedendieck
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
10
|
Zhang H, Zhao Y, Gong C, Jiao S. Effect of radio frequency heating stress on sublethal injury of Salmonella Typhimurium in red pepper powder. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
|
12
|
De Leersnyder I, De Gelder L, Van Driessche I, Vermeir P. Influence of growth media components on the antibacterial effect of silver ions on Bacillus subtilis in a liquid growth medium. Sci Rep 2018; 8:9325. [PMID: 29921908 PMCID: PMC6008294 DOI: 10.1038/s41598-018-27540-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
Numerous studies have investigated the antibacterial effect of both silver ions and silver nanomaterials on a large diversity of environmentally and clinically relevant bacteria. However, contradictory results are reported in which inhibition concentrations were varying by a 10-fold. This study investigated whether this variance in results could be attributed to the difference in experimental conditions, especially the microbial growth medium. B. subtilis was exposed to 500 µg L-1 Ag+ in liquid growth media with different concentrations of some commonly used media components: tryptone, yeast extract, Cl-, and S2-. The toxic effect was investigated by means of three complementary analysis techniques: (i) analyzing the growth curves obtained by optical density measurements, (ii) using flow cytometry, and (iii) by transmission electron microscopy. The silver ion toxicity towards B. subtilis decreased as more tryptone, yeast extract, or S2- was present. This study demonstrates that the medium composition, rarely acknowledged as an important experimental factor in bacterial toxicity studies, has a profound impact on the observed silver toxicity towards B. subtilis.
Collapse
Affiliation(s)
- Ilse De Leersnyder
- Department of Green Chemistry and Technology, Laboratory of Chemical Analysis (LCA), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Leen De Gelder
- Department of Biotechnology, Laboratory for Environmental Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Isabel Van Driessche
- Department of Inorganic and Physical Chemistry, Sol-gel Center for Research on Inorganic Powders and Thin film Synthesis (SCRiPTS), Faculty of Science, Ghent University, Ghent, Belgium
| | - Pieter Vermeir
- Department of Green Chemistry and Technology, Laboratory of Chemical Analysis (LCA), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Obruca S, Sedlacek P, Mravec F, Krzyzanek V, Nebesarova J, Samek O, Kucera D, Benesova P, Hrubanova K, Milerova M, Marova I. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. N Biotechnol 2017; 39:68-80. [DOI: 10.1016/j.nbt.2017.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/03/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022]
|
14
|
Michael E, Nitzan Y, Langzam Y, Luboshits G, Cahan R. Effect of toluene on Pseudomonas stutzeri ST-9 morphology - plasmolysis, cell size, and formation of outer membrane vesicles. Can J Microbiol 2016; 62:682-91. [PMID: 27256870 DOI: 10.1139/cjm-2016-0099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isolated toluene-degrading Pseudomonas stutzeri ST-9 bacteria were grown in a minimal medium containing toluene (100 mg·L(-1)) (MMT) or glucose (MMG) as the sole carbon source, with specific growth rates of 0.019 h(-1) and 0.042 h(-1), respectively. Scanning (SEM) as well as transmission (TEM) electron microscope analyses showed that the bacterial cells grown to mid-log phase in the presence of toluene possess a plasmolysis space. TEM analysis revealed that bacterial cells that were grown in MMT were surrounded by an additional "material" with small vesicles in between. Membrane integrity was analyzed by leakage of 260 nm absorbing material and demonstrated only 7% and 8% leakage from cultures grown in MMT compared with MMG. X-ray microanalysis showed a 4.3-fold increase in Mg and a 3-fold increase in P in cells grown in MMT compared with cells grown in MMG. Fluorescence-activated cell sorting (FACS) analysis indicated that the permeability of the membrane to propidium iodide was 12.6% and 19.6% when the cultures were grown in MMG and MMT, respectively. The bacterial cell length increased by 8.5% ± 0.1% and 17% ± 2%, as measured using SEM images and FACS analysis, respectively. The results obtained in this research show that the presence of toluene led to morphology changes, such as plasmolysis, cell size, and formation of outer membrane vesicles. However, it does not cause significant damage to membrane integrity.
Collapse
Affiliation(s)
- Esti Michael
- a Department of Chemical Engineering, Ariel University, Ariel 40700, Israel.,b The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yeshayahu Nitzan
- b The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yakov Langzam
- b The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Galia Luboshits
- a Department of Chemical Engineering, Ariel University, Ariel 40700, Israel
| | - Rivka Cahan
- a Department of Chemical Engineering, Ariel University, Ariel 40700, Israel
| |
Collapse
|
15
|
Kolderman E, Bettampadi D, Samarian D, Dowd SE, Foxman B, Jakubovics NS, Rickard AH. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva. PLoS One 2015; 10:e0121835. [PMID: 25946040 PMCID: PMC4422691 DOI: 10.1371/journal.pone.0121835] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/04/2015] [Indexed: 01/08/2023] Open
Abstract
The amino acid L-arginine inhibits bacterial coaggregation, is involved in cell-cell signaling, and alters bacterial metabolism in a broad range of species present in the human oral cavity. Given the range of effects of L-arginine on bacteria, we hypothesized that L-arginine might alter multi-species oral biofilm development and cause developed multi-species biofilms to disassemble. Because of these potential biofilm-destabilizing effects, we also hypothesized that L-arginine might enhance the efficacy of antimicrobials that normally cannot rapidly penetrate biofilms. A static microplate biofilm system and a controlled-flow microfluidic system were used to develop multi-species oral biofilms derived from pooled unfiltered cell-containing saliva (CCS) in pooled filter-sterilized cell-free saliva (CFS) at 37oC. The addition of pH neutral L-arginine monohydrochloride (LAHCl) to CFS was found to exert negligible antimicrobial effects but significantly altered biofilm architecture in a concentration-dependent manner. Under controlled flow, the biovolume of biofilms (μm3/μm2) developed in saliva containing 100-500 mM LAHCl were up to two orders of magnitude less than when developed without LAHCI. Culture-independent community analysis demonstrated that 500 mM LAHCl substantially altered biofilm species composition: the proportion of Streptococcus and Veillonella species increased and the proportion of Gram-negative bacteria such as Neisseria and Aggregatibacter species was reduced. Adding LAHCl to pre-formed biofilms also reduced biovolume, presumably by altering cell-cell interactions and causing cell detachment. Furthermore, supplementing 0.01% cetylpyridinium chloride (CPC), an antimicrobial commonly used for the treatment of dental plaque, with 500 mM LAHCl resulted in greater penetration of CPC into the biofilms and significantly greater killing compared to a non-supplemented 0.01% CPC solution. Collectively, this work demonstrates that LAHCl moderates multi-species oral biofilm development and community composition and enhances the activity of CPC. The incorporation of LAHCl into oral healthcare products may be useful for enhanced biofilm control.
Collapse
Affiliation(s)
- Ethan Kolderman
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Deepti Bettampadi
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Derek Samarian
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Scot E. Dowd
- Molecular Research LP (MR DNA), Shallowater, TX, United States of America
| | - Betsy Foxman
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Nicholas S. Jakubovics
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, NE2 4BW, United States of America
| | - Alexander H. Rickard
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
16
|
Noriega E, Velliou EG, Van Derlinden E, Mertens L, Van Impe JFM. Role of growth morphology in the formulation of NaCl-based selective media for injury detection of Escherichia coli, Salmonella Typhimurium and Listeria innocua. Food Res Int 2014; 64:402-411. [PMID: 30011667 DOI: 10.1016/j.foodres.2014.06.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 11/26/2022]
Abstract
Sublethal injury (SI) poses major public health concerns since injured cells are responsible for serious limitations in food diagnostics and are susceptible to recovery, often developing adaptive stress responses. Detection of SI is based on the difference in plate counts between non-selective media, which represent the total cell population, and selective media, to which injured cells become sensitive. Selective media for detection of sublethal membrane damage are often based on NaCl supplement, although there is a lack of consensus in the literature about appropriate levels. Planktonic cells are generally used to investigate SI mechanisms, although they often exhibit different stress tolerance than cell colonies in/on solid food (model) systems. In this work, the effect of growth morphology, colony size and concentration of the gelling agent in the growth media, on the maximum non-inhibitory NaCl concentration in the plating medium was assessed for Escherichia coli, Salmonella Typhimurium and Listeria innocua. Stationary phase cultures of planktonic cells and large and small colonies grown in either 1.5% (w/v) xanthan gum-based system or 2.5% (w/v) xanthan gum-based system exhibited significantly different viable counts and osmotolerance. The effect of cell arrangement and xanthan gum percentage in the growth media depended on the microorganism under investigation. Additionally, differences in the maximum non-inhibitory concentration were evident, with 5.0% (w/v) NaCl for the Gram-negative bacteria and 6.5% (w/v), for L. innocua. Different extent of colony shrinkage and morphological damage was observed as NaCl concentration in the plating medium increased. This information will contribute to define NaCl-based selective media for accurate SI detection under realistic scenarios.
Collapse
Affiliation(s)
- Estefanía Noriega
- CPMF(2) - Flemish Cluster Predictive Microbiology in Foods, http://www.cpmf2.be, Belgium; BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| | - Eirini G Velliou
- CPMF(2) - Flemish Cluster Predictive Microbiology in Foods, http://www.cpmf2.be, Belgium; BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| | - Eva Van Derlinden
- CPMF(2) - Flemish Cluster Predictive Microbiology in Foods, http://www.cpmf2.be, Belgium; BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| | - Laurence Mertens
- CPMF(2) - Flemish Cluster Predictive Microbiology in Foods, http://www.cpmf2.be, Belgium; BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| | - Jan F M Van Impe
- CPMF(2) - Flemish Cluster Predictive Microbiology in Foods, http://www.cpmf2.be, Belgium; BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Pilizota T, Shaevitz JW. Plasmolysis and cell shape depend on solute outer-membrane permeability during hyperosmotic shock in E. coli. Biophys J 2014; 104:2733-42. [PMID: 23790382 DOI: 10.1016/j.bpj.2013.05.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022] Open
Abstract
The concentration of chemicals inside the bacterial cytoplasm generates an osmotic pressure, termed turgor, which inflates the cell and is necessary for cell growth and survival. In Escherichia coli, a sudden increase in external concentration causes a pressure drop across the cell envelope that drives changes in cell shape, such as plasmolysis, where the inner and outer membranes separate. Here, we use fluorescence imaging of single cells during hyperosmotic shock with a time resolution on the order of seconds to examine the response of cells to a range of different conditions. We show that shock using an outer-membrane impermeable solute results in total cell volume reduction with no plasmolysis, whereas a shock caused by outer-membrane permeable ions causes plasmolysis immediately upon shock. Slowly permeable solutes, such as sucrose, which cross the membrane in minutes, cause plasmolysis to occur gradually as the chemical potential equilibrates. In addition, we quantify the detailed morphological changes to cell shape during osmotic shock. Nonplasmolyzed cells shrink in length with an additional lateral size reduction as the magnitude of the shock increases. Quickly plasmolyzing cells shrink largely at the poles, whereas gradually plasmolyzing cells invaginate along the cell cylinder. Our results give a comprehensive picture of the initial response of E. coli to hyperosmotic shock and offer explanations for seemingly opposing results that have been reported previously.
Collapse
Affiliation(s)
- Teuta Pilizota
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
18
|
Netuschil L, Auschill TM, Sculean A, Arweiler NB. Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms--which stain is suitable? BMC Oral Health 2014; 14:2. [PMID: 24410850 PMCID: PMC3898065 DOI: 10.1186/1472-6831-14-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is confusion over the definition of the term "viability state(s)" of microorganisms. "Viability staining" or "vital staining techniques" are used to distinguish live from dead bacteria. These stainings, first established on planctonic bacteria, may have serious shortcomings when applied to multispecies biofilms. Results of staining techniques should be compared with appropriate microbiological data. DISCUSSION Many terms describe "vitality states" of microorganisms, however, several of them are misleading. Authors define "viable" as "capable to grow". Accordingly, staining methods are substitutes, since no staining can prove viability.The reliability of a commercial "viability" staining assay (Molecular Probes) is discussed based on the corresponding product information sheet: (I) Staining principle; (II) Concentrations of bacteria; (III) Calculation of live/dead proportions in vitro. Results of the "viability" kit are dependent on the stains' concentration and on their relation to the number of bacteria in the test. Generally this staining system is not suitable for multispecies biofilms, thus incorrect statements have been published by users of this technique.To compare the results of the staining with bacterial parameters appropriate techniques should be selected. The assessment of Colony Forming Units is insufficient, rather the calculation of Plating Efficiency is necessary. Vital fluorescence staining with Fluorescein Diacetate and Ethidium Bromide seems to be the best proven and suitable method in biofilm research.Regarding the mutagenicity of staining components users should be aware that not only Ethidium Bromide might be harmful, but also a variety of other substances of which the toxicity and mutagenicity is not reported. SUMMARY - The nomenclature regarding "viability" and "vitality" should be used carefully.- The manual of the commercial "viability" kit itself points out that the kit is not suitable for natural multispecies biofilm research, as supported by an array of literature.- Results obtained with various stains are influenced by the relationship between bacterial counts and the amount of stain used in the test. Corresponding vitality data are prone to artificial shifting.- As microbiological parameter the Plating Efficiency should be used for comparison.- Ethidium Bromide is mutagenic. Researchers should be aware that alternative staining compounds may also be or even are mutagenic.
Collapse
Affiliation(s)
- Lutz Netuschil
- Department of Periodontology, Dental School, Philipps-University Marburg, Marburg, Germany.
| | | | | | | |
Collapse
|
19
|
Salari R, Bazzaz BSF, Rajabi O, Khashyarmanesh Z. New aspects of Saccharomyces cerevisiae as a novel carrier for berberine. ACTA ACUST UNITED AC 2013; 21:73. [PMID: 24359687 PMCID: PMC3901020 DOI: 10.1186/2008-2231-21-73] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 08/31/2013] [Indexed: 11/10/2022]
Abstract
Background Berberine was encapsulated in yeast cells of Saccharomyces cerevisiae as novel carriers to be used in different food and drug industries. The microcapsules were characterized by differential scanning calorimetry (DSC), fourier transform infra red spectroscopy (FT-IR) and fluorescence microscopy. The encapsulation factors such as plasmolysis of yeast cells which affects the % encapsulation yield were studied. Results Fluorescence microscopy showed the yeast cells became fluorescent after encapsulation process. DSC diagram was representing of new peak for microcapsule which was not the same as berberine and the empty yeast cells peaks, separately. FTIR spectrums of microcapsules and yeast cells were almost the same. The plasmolysed and non plasmolysed microcapsules were loaded with berberine up to about 40.2 ± 0.2% w/w. Conclusion Analytical methods proved that berberine was encapsulated in the yeast cells. Fluorescence microscopy and FTIR results showed the entrance of berberine inside the yeasts. DSC diagram indicated the appearance of new peak which is due to the synthesis of new product. Although plasmolysis caused changes in yeast cell structure and properties, it did not enhance berberine loading in the cells. The results confirmed that Saccharomyces cerevisiae could be an efficient and safe carrier for active materials.
Collapse
Affiliation(s)
| | | | | | - Zahra Khashyarmanesh
- Department of Drug and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Gabriel AA. Influences of simultaneous physicochemical stresses on injury and subsequent heat and acid resistances of Salmonella Enteritidis in apple juice. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Gong Y, Ebrahim A, Feist AM, Embree M, Zhang T, Lovley D, Zengler K. Sulfide-driven microbial electrosynthesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:568-73. [PMID: 23252645 DOI: 10.1021/es303837j] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microbial electrosynthesis, the conversion of carbon dioxide to organic molecules using electricity, has recently been demonstrated for acetogenic microorganisms, such as Sporomusa ovata. The energy for reduction of carbon dioxide originates from the hydrolysis of water on the anode, requiring a sufficiently low potential. Here we evaluate the use of sulfide as an electron source for microbial electrosynthesis. Abiotically oxidation of sulfide on the anode yields two electrons. The oxidation product, elemental sulfur, can be further oxidized to sulfate by Desulfobulbus propionicus, generating six additional electrons in the process. The eight electrons generated from the combined abiotic and biotic steps were used to reduce carbon dioxide to acetate on a graphite cathode by Sporomusa ovata at a rate of 24.8 mmol/day · m(2). Using a strain of Desulfuromonas as biocatalyst on the anode resulted in an acetate production rate of 49.9 mmol/day · m(2), with a Coulombic efficiency of over 90%. These results demonstrate that sulfide can serve effectively as an alternative electron donor for microbial electrosynthesis.
Collapse
Affiliation(s)
- Yanming Gong
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | | | | | | | | | | | | |
Collapse
|
22
|
Brachkova MI, Duarte A, Pinto JF. Alginate films containing viable Lactobacillus plantarum: preparation and in vitro evaluation. AAPS PharmSciTech 2012; 13:357-63. [PMID: 22302607 DOI: 10.1208/s12249-012-9753-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/12/2012] [Indexed: 11/30/2022] Open
Abstract
The objective of the study was to develop calcium alginate films, containing Lactobacillus plantarum ATCC 8040 with preserved and stable viability and antibacterial activity. L. plantarum-loaded films containing different calcium concentrations were physically characterized for mechanical and bioadhesive properties and lactobacilli release. The viability and antibacterial activity of L. plantarum was studied before and after processing, and during 6 months of storage. A multiresistant clinical isolate, VIM-2-metalo-β-lactamase producing Pseudomonas aeruginosa, was used as an indicator strain. Interference between L. plantarum and films enhanced films elasticity, water absorption ability, release of lactobacilli, and decreased films adherence. A decrease of L. plantarum viability in alginate films (≤1 log unit) was observed after freeze drying. L. plantarum, at cell concentrations of 108 cfu/ml, was inhibitory active. The viability and antibacterial activity of the immobilized lactobacilli remained stable during 6 months of storage. The study has proved the potential of alginate films to deliver L. plantarum in high numbers to individuals.
Collapse
|
23
|
Pilizota T, Shaevitz JW. Fast, multiphase volume adaptation to hyperosmotic shock by Escherichia coli. PLoS One 2012; 7:e35205. [PMID: 22514721 PMCID: PMC3325977 DOI: 10.1371/journal.pone.0035205] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 03/10/2012] [Indexed: 11/25/2022] Open
Abstract
All living cells employ an array of different mechanisms to help them survive changes in extra cellular osmotic pressure. The difference in the concentration of chemicals in a bacterium's cytoplasm and the external environment generates an osmotic pressure that inflates the cell. It is thought that the bacterium Escherichia coli use a number of interconnected systems to adapt to changes in external pressure, allowing them to maintain turgor and live in surroundings that range more than two-hundred-fold in external osmolality. Here, we use fluorescence imaging to make the first measurements of cell volume changes over time during hyperosmotic shock and subsequent adaptation on a single cell level in vivo with a time resolution on the order of seconds. We directly observe two previously unseen phases of the cytoplasmic water efflux upon hyperosmotic shock. Furthermore, we monitor cell volume changes during the post-shock recovery and observe a two-phase response that depends on the shock magnitude. The initial phase of recovery is fast, on the order of 15–20 min and shows little cell-to-cell variation. For large sucrose shocks, a secondary phase that lasts several hours adds to the recovery. We find that cells are able to recover fully from shocks as high as 1 Osmol/kg using existing systems, but that for larger shocks, protein synthesis is required for full recovery.
Collapse
Affiliation(s)
- Teuta Pilizota
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Joshua W. Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
24
|
Paramera EI, Konteles SJ, Karathanos VT. Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.09.063] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Gabriel AA, Nakano H. Influences of simultaneous physicochemical stress exposures on injury and subsequent responses of E. coli O157:H7 to resuscitative and inactivative challenges. Int J Food Microbiol 2010; 139:182-92. [DOI: 10.1016/j.ijfoodmicro.2010.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/25/2010] [Accepted: 02/28/2010] [Indexed: 11/27/2022]
|
26
|
Mangalappalli-Illathu AK, Lawrence JR, Swerhone GD, Korber DR. Architectural adaptation and protein expression patterns of Salmonella enterica serovar Enteritidis biofilms under laminar flow conditions. Int J Food Microbiol 2008; 123:109-20. [DOI: 10.1016/j.ijfoodmicro.2007.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 12/04/2007] [Accepted: 12/18/2007] [Indexed: 09/30/2022]
|
27
|
Lanthier M, Gregory KB, Lovley DR. Growth with high planktonic biomass in Shewanella oneidensis fuel cells. FEMS Microbiol Lett 2007; 278:29-35. [PMID: 17995953 PMCID: PMC2228398 DOI: 10.1111/j.1574-6968.2007.00964.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Shewanella oneidensis MR-1 grew for over 50 days in microbial fuel cells, incompletely oxidizing lactate to acetate with high recovery of the electrons derived from this reaction as electricity. Electricity was produced with lactate or hydrogen and current was comparable to that of electricigens which completely oxidize organic substrates. However, unlike fuel cells with previously described electricigens, in which cells are primarily attached to the anode, at least as many of the S. oneidensis cells were planktonic as were attached to the anode. These results demonstrate that S. oneidensis may conserve energy for growth with an electrode serving as an electron acceptor and suggest that multiple strategies for electron transfer to fuel cell anodes exist.
Collapse
Affiliation(s)
- Martin Lanthier
- Eastern Cereal and Oilseed Research Center, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | | | | |
Collapse
|
28
|
Filoche SK, Coleman MJ, Angker L, Sissons CH. A fluorescence assay to determine the viable biomass of microcosm dental plaque biofilms. J Microbiol Methods 2007; 69:489-96. [PMID: 17408789 DOI: 10.1016/j.mimet.2007.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 02/21/2007] [Accepted: 02/26/2007] [Indexed: 11/16/2022]
Abstract
Dental plaque bacteria form complex and robust cell aggregates which cannot be counted accurately using epifluorescence microscopy. This causes a significant problem for quantifying their viability. The aim of the investigation was to develop a fluorescence assay to quantify the viable biomass of dental plaque biofilms. Using an artificial mouth system, microcosm plaques were grown under a range of fluoride and mineralizing conditions, and were treated with the oral antiseptics chlorhexidine (CHX) and Listerine. Plaques were harvested, made into suspension and stained in microtitre plates with a di-chromatic fluorescent stain (Live/Dead BacLight). The percentage of viable biomass was calculated from the regression data generated from a viability standard. The standard was constructed using different proportions of viable (green fluorescence) and non-viable (red fluorescence) plaque bacteria, and growth conditions for optimizing green fluorescence were investigated. The results from the assay showed that fluoride at 1000 and 3000 ppm promoted plaque viability by at least 15%, from approximately 45 to 60%, and at 5000 ppm to approximately 87% (P<0.05). Plaques treated with Listerine and CHX from d 0 yielded insufficient biomass to be tested for viability, however 14 d post-treatment, viability was comparable to untreated plaques (approximately 55%, P>0.05). Treatment with Listerine and CHX from d 3 reduced biomass but not viability. Development of this assay enabled viability of plaque bacteria which cannot be resolved with epifluorescence microscopy to be evaluated. It offers a rapid alternative to epifluorescence microscopy and could be applied to nonoral bacteria.
Collapse
Affiliation(s)
- Sara K Filoche
- Dental Research Group, Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, University of Otago, Mein Street, 6242, Wellington, New Zealand.
| | | | | | | |
Collapse
|
29
|
Mangalappalli-Illathu AK, Korber DR. Adaptive resistance and differential protein expression of Salmonella enterica serovar Enteritidis biofilms exposed to benzalkonium chloride. Antimicrob Agents Chemother 2006; 50:3588-96. [PMID: 16940079 PMCID: PMC1635200 DOI: 10.1128/aac.00573-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/02/2006] [Accepted: 08/18/2006] [Indexed: 01/05/2023] Open
Abstract
The development of adaptive resistance of Salmonella enterica serovar Enteritidis ATCC 4931 biofilms following exposure to benzalkonium chloride (BC) either continuously (1 microg ml(-1)) or intermittently (10 microg ml(-1) for 10 min daily) was examined. Biofilms adapted to BC over a 144-h period could survive a normally lethal BC challenge (500 microg ml(-1) for 10 min) and then regrow, as determined by increases in biofilm thickness, total biomass, and the ratio of the viable biomass to the nonviable biomass. Exposure of untreated control biofilms to the lethal BC challenge resulted in biofilm erosion and cell death. Proteins found to be up-regulated following BC adaptation were those involved in energy metabolism (TpiA and Eno), amino acid and protein biosynthesis (WrbA, TrxA, RplL, Tsf, Tuf, DsbA, and RpoZ), nutrient binding (FruB), adaptation (CspA), detoxification (Tpx, SodB, and a probable peroxidase), and degradation of 1,2-propanediol (PduJ and PduA). A putative universal stress protein (YnaF) was also found to be up-regulated. Proteins involved in proteolysis (DegQ), cell envelope formation (RfbH), adaptation (UspA), heat shock response (DnaK), and broad regulatory functions (Hns) were found to be down-regulated following adaptation. An overall increase in cellular protein biosynthesis was deduced from the significant up-regulation of ribosomal subunit proteins, translation elongation factors, and amino acid biosynthesis protein and down-regulation of serine endoprotease. The cold shock response, stress response, and detoxification are suggested to play roles in the adaptive resistance of Salmonella serovar Enteritidis biofilms to BC.
Collapse
Affiliation(s)
- Anil K Mangalappalli-Illathu
- Department of Applied Microbiology and Food Science, 51 Campus Dr., University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | | |
Collapse
|
30
|
Adviento-Borbe MAA, Doran JW, Drijber RA, Dobermann A. Soil electrical conductivity and water content affect nitrous oxide and carbon dioxide emissions in intensively managed soils. JOURNAL OF ENVIRONMENTAL QUALITY 2006; 35:1999-2010. [PMID: 17071868 DOI: 10.2134/jeq2006.0109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Accumulation of soluble salts resulting from fertilizer N may affect microbial production of N(2)O and CO(2) in soils. This study was conducted to determine the effects of electrical conductivity (EC) and water content on N(2)O and CO(2) production in five soils under intensive cropping. Surface soils from maize fields were washed, repacked and brought to 60% or 90% water-filled pore space (WFPS). Salt mixtures were added to achieve an initial in situ soil EC of 0.5, 1.0, 1.5 and 2.0 dS m(-1). The soil cores were incubated at 25 degrees C for 10 d. Average CO(2) production decreased with increasing EC at both soil water contents, indicating a general reduction in microbial respiration with increasing EC. Average cumulative N(2)O production at 60% WFPS decreased from 2.0 mg N(2)O-N m(-2) at an initial EC of 0.5 dS m(-1) to 0.86 mg N(2)O-N m(-2) at 2.0 dS m(-1). At 90% WFPS, N(2)O production was 2 to 40 times greater than that at 60% WFPS and maximum N(2)O losses occurred at the highest EC level of 2.0 dS m(-1). Differences in the magnitude of gas emissions at varying WFPS were due to available substrate N and the predominance of nitrification under aerobic conditions (60% WFPS) and denitrification when oxygen was limited (90% WFPS). Differences in gas emissions at varying soil EC may be due to changes in mechanisms of adjustment to salt stress and ion toxicities by microbial communities. Direct effects of EC on microbial respiration and N(2)O emissions need to be accounted for in ecosystems models for predicting soil greenhouse gas emissions.
Collapse
Affiliation(s)
- M A A Adviento-Borbe
- Department of Agronomy and Horticulture, University of Nebraska, P.O. Box 830915, Lincoln, NE 68586-0915, USA
| | | | | | | |
Collapse
|
31
|
Bester E, Wolfaardt G, Joubert L, Garny K, Saftic S. Planktonic-cell yield of a pseudomonad biofilm. Appl Environ Microbiol 2006; 71:7792-8. [PMID: 16332753 PMCID: PMC1317325 DOI: 10.1128/aem.71.12.7792-7798.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm cells differ phenotypically from their free-floating counterparts. Differential growth rates in biofilms are often referred to, particularly in response to limited diffusion of oxygen and nutrients. We observed growth rates of attached Pseudomonas sp. strain CT07 cells that were notably higher than the maximum specific growth rate measured in batch culture. Despite dilution rates in continuous flow cells that exceeded the maximum planktonic specific growth rate by 58 times, sampling of the effluent revealed >10(9) cells ml(-1), suggesting that biofilms function as a source of planktonic cells through high cell yield and detachment. Further investigation demonstrated considerable planktonic cell yield from biofilms as young as 6 h, indicating that detachment is not limited to established biofilms. These biofilm-detached cells were more sensitive to a commercial biocide than associated biofilm- and chemostat-cultivated populations, implying that detached biofilm cells exhibit a character that is distinct from that of attached and planktonic cell populations.
Collapse
Affiliation(s)
- Elanna Bester
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | | | | | | | | |
Collapse
|
32
|
Pagán R, Mañas P. Fundamental Aspects of Microbial Membrane Electroporation. PULSED ELECTRIC FIELDS TECHNOLOGY FOR THE FOOD INDUSTRY 2006. [DOI: 10.1007/978-0-387-31122-7_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Duque E, García V, de la Torre J, Godoy P, Bernal P, Ramos JL. Plasmolysis induced by toluene in a cyoB mutant of Pseudomonas putida. Environ Microbiol 2004; 6:1021-31. [PMID: 15344927 DOI: 10.1111/j.1462-2920.2004.00621.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The cyoABCDE gene cluster of Pseudomonas putida DOT-T1E encodes a terminal cytochrome oxidase. A 500-bp 'cyoB' DNA fragment was cloned in pCHESI Omega Km and used to generate a cyoB knock-out mutant in vivo. The mutant strain was not limited in the generation of proton-motif force, although when grown on minimal medium with glucose or citrate, the CyoB mutant exhibited a slight increase in duplication time with respect to the wild-type strain. This effect was even more pronounced when toluene was supplied in the gas phase. In consonance with the negative effect of toluene on the growth was the finding that the CyoB mutant was hypersensitive to sudden 0.3% (v/v) toluene shocks, in contrast with the wild-type strain. This effect was particularly exacerbated in cells that reached the stationary phase. The increased sensitivity to solvents of the CyoB mutant did not appear to be related to the inability of the cells to strengthen the membrane package or to induce the efflux pumps in response to the solvent, but rather to solvent-induced plasmolysis that may be triggered by wrinkles in the cytoplasmic membrane at the poles of the mutant cells, and invagination of the outer membranes, which eventually lead to cell death.
Collapse
Affiliation(s)
- Estrella Duque
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Plant Biochemistry and Molecular and Cellular Biology, E-18008 Granada, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Johnson SA, Nicolson SW, Jackson S. The effect of different oral antibiotics on the gastrointestinal microflora of a wild rodent (Aethomys namaquensis). Comp Biochem Physiol A Mol Integr Physiol 2004; 138:475-83. [PMID: 15369837 DOI: 10.1016/j.cbpb.2004.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 06/15/2004] [Accepted: 06/15/2004] [Indexed: 01/13/2023]
Abstract
Gut sterilization via the oral administration of antibiotics facilitates physiological studies of the nutritionally important relationship between intestinal microflora and the host. However, the composition of gut flora is extremely variable, and as a result, the efficacy of antibiotics in achieving gut sterilization varies considerably between species. We tested the effectiveness of three antibiotic cocktails in sterilizing the gut of a rodent pollinator, the Namaqua rock mouse (Aethomys namaquensis). The cocktails were (1) streptomycin sulfate and bacitracin (previously used with domestic mice and rats), (2) chloramphenicol and bacitracin (based on antibiotic screening tests performed on faecal flora) and (3) Baytril 10% oral solution (a veterinary antimicrobial agent containing enrofloxacin). We tested for antibiotic inactivation by determining bacterial viability through fluorescence staining of faecal samples. We also tested techniques to maintain sterility during antibiotic treatment without the benefit of a laminar flow cabinet. Antibiotics were administered orally in food and water consumed ad libitum over 4 consecutive days. Antibiotic effectiveness was assessed by culturing anaerobic bacteria from faecal samples collected before and after each antibiotic treatment. Treatment with Baytril 10% oral solution eliminated or significantly reduced faecal flora, whereas other antibiotics did not. This study clearly demonstrates the importance of testing the effectiveness of antibiotics before their use in studies that involve antibiotic-treated subjects, particularly if these are species previously untested.
Collapse
Affiliation(s)
- S A Johnson
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa.
| | | | | |
Collapse
|
35
|
Sampathkumar B, Khachatourians GG, Korber DR. High pH during trisodium phosphate treatment causes membrane damage and destruction of Salmonella enterica serovar enteritidis. Appl Environ Microbiol 2003; 69:122-9. [PMID: 12513986 PMCID: PMC152405 DOI: 10.1128/aem.69.1.122-129.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2002] [Accepted: 10/18/2002] [Indexed: 11/20/2022] Open
Abstract
Trisodium phosphate (TSP) is now widely used during the processing of poultry and red meats, but the mechanism whereby it inactivates gram-negative bacteria such Salmonella spp. remains unclear. Thus, Salmonella enterica serovar Enteritidis (ATCC 4931) cells were treated with different concentrations of TSP (1.5, 2.0, and 2.5% [wt/vol]) and compared with (i) cells treated with the same pH as the TSP treatments (pH 10.0, 10.5, and 11.0, respectively) and (ii) cells treated with different concentrations of TSP (1.5, 2.0, and 2.5% [wt/vol]) adjusted to a pH of 7.0 +/- 0.2 (mean +/- standard deviation). Cell viability, loss of membrane integrity, cellular leakage, release of lipopolysaccharides, and cell morphology were accordingly examined and quantified under the above treatment conditions. Exposure of serovar Enteritidis cells to TSP or equivalent alkaline pH resulted in the loss of cell viability and membrane integrity in a TSP concentration- or alkaline pH-dependent manner. In contrast, cells treated with different concentrations of TSP whose pH was adjusted to 7.0 did not show any loss of cell viability or membrane integrity. A 30-min pretreatment with 1.0 mM EDTA significantly enhanced the loss of membrane integrity only when followed by TSP or alkaline pH treatments. Measuring the absorbance at 260 nm, agarose gel electrophoresis, Bradford assay, and Tricine-sodium dodecyl sulfate gel electrophoresis of filtrates of treated cell suspensions revealed considerable release of DNA, proteins, and lipopolysaccharides compared to controls and pH 7.0 TSP treatments. Electron microscopic examination of TSP- or alkaline pH-treated cells showed disfigured cell surface topology and wrinkled appearance and showed evidence of a TSP concentration- and pH-dependent disruption of the cytoplasmic and outer membranes. These results demonstrate that TSP treatment permeabilizes and disrupts the cytoplasmic and outer membranes of serovar Enteritidis cells because of the alkaline pH, which in turn leads to release of intracellular contents and eventual cell death.
Collapse
Affiliation(s)
- Balamurugan Sampathkumar
- Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | | | | |
Collapse
|
36
|
Mille Y, Beney L, Gervais P. Viability of Escherichia coli after combined osmotic and thermal treatment: a plasma membrane implication. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1567:41-8. [PMID: 12488036 DOI: 10.1016/s0005-2736(02)00565-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study investigates the influence of temperature (T) and osmotic pressure (Pi) on the viability of Escherichia coli K12 during an osmotic treatment. Osmotic shock (dehydration and rehydration within 1 s) in liquid media at different temperatures (4, 10, 30 and 37 degrees C) and different levels of osmotic pressure (26, 30, 35, 40, 82 and 133 MPa) were realized. Results show that a sudden dehydration, below 40 MPa, destroyed up to 80% of the bacterial population for each tested temperature, whereas viability was greater than 90% for an osmotic pressure less than 26 MPa. The influence of T and Pi on the membrane's physical structure is finally considered to explain the results in light of FTIR and electron microscopy study of the influence of temperature and osmotic pressure on E. coli membrane phospholipids conformation.
Collapse
Affiliation(s)
- Yannick Mille
- Laboratoire de Génie des Procédés Alimentaires et Biotechnologiques, Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation, 1 Esplanade Erasme, Dijon 21000, France
| | | | | |
Collapse
|
37
|
Karthikeyan S, Beveridge TJ. Pseudomonas aeruginosa biofilms react with and precipitate toxic soluble gold. Environ Microbiol 2002; 4:667-75. [PMID: 12460274 DOI: 10.1046/j.1462-2920.2002.00353.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interaction between biofilms of Pseudomonas aeruginosa PAO1 and 0.01-5 mM gold chloride was investigated using flow-cells. Scanning confocal laser microscopy (SCLM) of these biofilms revealed the formation of two distinct structural features: (i) confluent areas of uniform thickness and (ii) cell clusters which often emerged as 30-40 micro m, tall narrow pillars (or pedestals) of cells and exopolymeric substance (EPS). When 5-day-old, quasi-steady state biofilms (as indicated by the stability of film thickness and overall structure) were exposed to relatively high AuCl3 (i.e. 0.5-5 mM) for 30 min at 20 degrees C, reduction of the auric ion resulted in the formation of both extracellular and intracellular metallic gold colloids, as revealed by transmission electron microscopy (TEM). Most mineralization occurred on cell surfaces with lesser amounts within cells and little throughout the EPS. Little to no mineralization of gold was seen at 0.01-0.1 mM concentrations. As initial AuCl3 concentrations approached 0.5 mM or greater, more gold particles were seen and cell viability, as determined by a BacLight live/dead viability probe, approached zero. At an intermediate concentration of 0.1 mM, the live:dead ratio increased to 4:1. However, when planktonic cells were exposed to this same 0.1 mM concentration, it resulted in a 4-log reduction in viable counts as determined by plating. The higher resistance of biofilm cells to 0.1 mM gold can be attributed to its binding to the EPS and cell surfaces of the biofilm which ensured a (presumably) low effective cytoplasmic concentration of gold (i.e. no gold crystals were seen in cells by TEM). In addition, SCLM revealed the formation of larger extracellular gold crystals at the substratum (coverslip) level of the biofilms, with a higher proportion of crystals detected beneath pillars (cell cluster structures), suggesting the possibility of unique cell types, more reduced microenvironments at the base of each cluster, or a combination of both. These results suggest that the biomineralization of gold is impacted by biofilm structure.
Collapse
Affiliation(s)
- S Karthikeyan
- Department of Microbiology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
38
|
Korber DR, Greer GG, Wolfaardt GM, Kohlman S. Efficacy enhancement of trisodium phosphate against spoilage and pathogenic bacteria in model biofilms and on adipose tissue. J Food Prot 2002; 65:627-35. [PMID: 11952211 DOI: 10.4315/0362-028x-65.4.627] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A two-step approach for enhancing the efficacy of trisodium phosphate (TSP) was evaluated using meat spoilage and pathogenic bacteria in flow cell biofilms and adipose tissue model systems. The process was based on the plasmolysis of attached bacteria (biofilms) with a hyperosmotic solution (1.5 M NaCl) and the subsequent deplasmolysis of cells with a low-osmotic-strength solution containing different concentrations of TSP (0.1, 0.25, 0.5, 0.625, and 1.0 % [wt/vol]). Escherichia coli, Salmonella Enteritidis, Pseudomonas sp., Listeria monocytogenes, and Brochothrix thermosphacta strains were cultivated for 24 h as pure culture biofilms in glass flow cells with complex media and were then treated with either 0.1, 0.25, 0.5, 0.625, and 1.0% TSP, or the same TSP concentrations delivered in conjunction with plasmolysis-deplasmolysis (PDP). Confocal scanning laser microscopy, a commercial fluorescent viability probe, and image analysis were then used to quantify the relative abundances of living and dead cells remaining after the different treatment regimes. With the exception of L. monocytogenes (which was resistant to TSP concentrations of up to 5%), the PDP process increased the sensitivity of the test strains to TSP. However, when similar experiments were conducted with pork adipose tissue, it became evident that higher TSP concentrations were necessary to produce significant decreases in the number of viable cells and that the PDP process generally failed to enhance TSP efficacy. An exception was L. monocytogenes, which exhibited an increase in sensitivity to TSP when inoculated tissue was pretreated with 1.5 M NaCl. It is thought that factors contributing to the failure of the PDP process to enhance the activity of TSP in meat systems involves the mode of TSP antimicrobial activity, alkaline pH stress, and the chemically complex, buffered nature of meats. It remains to be determined whether the PDP process is suitable for use with other food grade antimicrobial agents or can be used in nonfood biofilm control applications.
Collapse
Affiliation(s)
- D R Korber
- Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, Canada.
| | | | | | | |
Collapse
|
39
|
Manz W, Wagner M, Kalmbach S. Assessment of metabolic potential of biofilm-associated bacteria. Methods Enzymol 2001; 336:265-76. [PMID: 11398404 DOI: 10.1016/s0076-6879(01)36595-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- W Manz
- Technical University Berlin, Microbial Ecology, D-10587, Berlin, Germany
| | | | | |
Collapse
|
40
|
Takenaka S, Iwaku M, Hoshino E. Artificial Pseudomonas aeruginosa biofilms and confocal laser scanning microscopic analysis. J Infect Chemother 2001; 7:87-93. [PMID: 11455498 DOI: 10.1007/s101560100014] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2000] [Accepted: 02/05/2001] [Indexed: 11/30/2022]
Abstract
Bacterial biofilms may be formed at various sites, including mucous membranes, teeth, and infectious lesions. To elucidate the structure and the function of biofilms, artificial biofilms of mucoid-type Pseudomonas aeruginosa organisms (strain PT1252) were made by centrifuging the organisms onto the surface of a coverglass and culturing further in broth media supplied continuously (45 ml/h). The biofilm structure at 4, 8, 12, and 24 h was visualized with fluorescent staining (SYTO9, propidium iodide [PI], and/or fluorescein isothiocyanate-concanavalin A [FITC-ConA]) by confocal laser scanning microscopy (CLSM). It was clearly demonstrated that the number of bacteria (10(4)--10(6)/ml) could be estimated by their fluorescence intensity. Sectional analysis of each biofilm layer (1-microm thickness) made it possible to demonstrate the three-dimensional development of biofilms, and revealed that the biofilms were 9 microm in height after 12 h. The live and dead organisms were differentiated by SYTO9 and PI, respectively, in situ in biofilms, and about 13% of the organisms were dead in 12-h-old biofilms. When 12-h-old biofilms were exposed to ciprofloxacin at minimum bactericidal concentration (6.26 microg/ml) for 90 min, all the organisms were killed, but some organisms (11 +/- 1.3%; n = 3) in 24-h-old biofilms with thicker and denser structure were still alive after exposure for 120 min. These results indicate that the CLSM analysis of artificial biofilms was useful for elucidating bacterial functions in biofilms, and may lead to a new quantitative system for estimating the bactericidal efficacy of antibacterial drugs in biofilms.
Collapse
Affiliation(s)
- S Takenaka
- Department of Oral Microbiology, Faculty of Dentistry, Niigata University, 5274 Gakkocho-dori 2-bancho, Niigata 951-8514, Japan
| | | | | |
Collapse
|
41
|
Lin CH, Chen BS, Yu CW, Chiang SW. A water-based triphenyltetrazolium chloride method for the evaluation of green plant tissue viability. PHYTOCHEMICAL ANALYSIS : PCA 2001; 12:211-213. [PMID: 11705029 DOI: 10.1002/pca.570] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A water-based 2,3,5-triphenyltetrazolium chloride (TTC) partitioning method using n-hexane for the evaluation of green plant tissue viability has been developed. Conventionally, the reduction of TTC to insoluble red-coloured triphenylformazan (TPF) has been used to detect seed, bud, leaf and cultured cell viability. However, the 95% ethanol used to extract TPF also extracts various pigments, such as chlorophyll, from plant tissues which interfere with the absorption of TPF at 485 nm. This new water-based method improves upon the current method by eliminating the interfering pigments in the hexane layer, and by minimising the non-enzymatic oxidation of the sample. When used to evaluate the tissue viability of chillstressed waxapple (Syzygium samarangense) plants, the refined method had a greater sensitivity than the electrolyte leakage method and thus provided a more precise assessment for the physiological state of various plant tissues.
Collapse
Affiliation(s)
- C H Lin
- Department of Botany, National Chung Hsing University, Taichung, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
42
|
Auschill TM, Arweiler NB, Netuschil L, Brecx M, Reich E, Sculean A, Artweiler NB. Spatial distribution of vital and dead microorganisms in dental biofilms. Arch Oral Biol 2001; 46:471-6. [PMID: 11286812 DOI: 10.1016/s0003-9969(00)00136-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine the spatial structure of dental biofilms a vital fluorescence technique was combined with optical analysis of sections in a confocal laser scanning microscope (CLSM). Enamel slaps were worn in intraoral splints by three volunteers for five days to accumulate smooth-surface plaque. After vital staining with fluorescein diacetate and ethidium bromide the specimens were processed for CLSM examination. Optical sections 1 microm apart were analysed in the z-axis of these dental biofilms. One of the films was 15 microm high, sparse and showed low vitality, i.e. <16%, while the others were taller (25 and 31 microm) and more vital, i.e. up to 30 and 69%, respectively. In all instances the bacterial vitality increased from the enamel surface to the central part of the plaque and decreased again in the outer parts of the biofilm. The spatial arrangement of the microorganisms in the biofilm showed voids outlined by layers of vital bacteria, which themselves were packed in layers of dead material.
Collapse
Affiliation(s)
- T M Auschill
- Department of Periodontology and Conservative Dentistry, Albert-Ludwigs-University of Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Han Y, Linton R, Nielsen S, Nelson P. Inactivation of Escherichia coli O157:H7 on surface-uninjured and -injured green pepper (Capsicum annuum L.) by chlorine dioxide gas as demonstrated by confocal laser scanning microscopy. Food Microbiol 2000. [DOI: 10.1006/fmic.2000.0357] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Walker JT, Bradshaw DJ, Bennett AM, Fulford MR, Martin MV, Marsh PD. Microbial biofilm formation and contamination of dental-unit water systems in general dental practice. Appl Environ Microbiol 2000; 66:3363-7. [PMID: 10919792 PMCID: PMC92156 DOI: 10.1128/aem.66.8.3363-3367.2000] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dental-unit water systems (DUWS) harbor bacterial biofilms, which may serve as a haven for pathogens. The aim of this study was to investigate the microbial load of water from DUWS in general dental practices and the biofouling of DUWS tubing. Water and tube samples were taken from 55 dental surgeries in southwestern England. Contamination was determined by viable counts on environmentally selective, clinically selective, and pathogen-selective media, and biofouling was determined by using microscopic and image analysis techniques. Microbial loading ranged from 500 to 10(5) CFU. ml(-1); in 95% of DUWS water samples, it exceeded European Union drinking water guidelines and in 83% it exceeded American Dental Association DUWS standards. Among visible bacteria, 68% were viable by BacLight staining, but only 5% of this "viable by BacLight" fraction produced colonies on agar plates. Legionella pneumophila, Mycobacterium spp., Candida spp., and Pseudomonas spp. were detected in one, five, two, and nine different surgeries, respectively. Presumptive oral streptococci and Fusobacterium spp. were detected in four and one surgeries, respectively, suggesting back siphonage and failure of antiretraction devices. Hepatitis B virus was never detected. Decontamination strategies (5 of 55 surgeries) significantly reduced biofilm coverage but significantly increased microbial numbers in the water phase (in both cases, P < 0.05). Microbial loads were not significantly different in DUWS fed with soft, hard, deionized, or distilled water or in different DUWS (main, tank, or bottle fed). Microbiologically, no DUWS can be considered "cleaner" than others. DUWS deliver water to patients with microbial levels exceeding those considered safe for drinking water.
Collapse
Affiliation(s)
- J T Walker
- CAMR, Porton Down, Salisbury, United Kingdom.
| | | | | | | | | | | |
Collapse
|
45
|
Pagán R, Mackey B. Relationship between membrane damage and cell death in pressure-treated Escherichia coli cells: differences between exponential- and stationary-phase cells and variation among strains. Appl Environ Microbiol 2000; 66:2829-34. [PMID: 10877775 PMCID: PMC92080 DOI: 10.1128/aem.66.7.2829-2834.2000] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2000] [Accepted: 05/02/2000] [Indexed: 11/20/2022] Open
Abstract
The relationship between membrane damage and loss of viability following pressure treatment was examined in Escherichia coli strains C9490, H1071, and NCTC 8003. These strains showed high, medium, and low resistance to pressure, respectively, in stationary phase but similar resistance to pressure in exponential phase. Loss of membrane integrity was measured as loss of osmotic responsiveness or as increased uptake of the fluorescent dye propidium iodide. In exponential-phase cells, loss of viability was correlated with a permanent loss of membrane integrity in all strains, whereas in stationary-phase cells, a more complicated picture emerged in which cell membranes became leaky during pressure treatment but resealed to a greater or lesser extent following decompression. Strain H1071 displayed a very unusual pressure response in stationary phase in which survival decreased to a minimum at 300 MPa but then increased at 400 to 500 MPa before decreasing again. Membranes were unable to reseal after treatment at 300 MPa but could do so after treatment at higher pressures. Membrane damage in this strain was thus typical of exponential-phase cells under low-pressure conditions but of stationary-phase cells under higher-pressure conditions. Heat shock treatment of strain H1071 cells increased pressure resistance under low-pressure conditions and also allowed membrane damage to reseal. Growth in the presence of IPTG (isopropyl-beta-D-thiogalactopyranoside) increased resistance under high-pressure conditions. The mechanisms of inactivation may thus differ at high and low pressures. These studies support the view that membrane damage is an important event in the inactivation of bacteria by high pressure, but the nature of membrane damage and its relation to cell death may differ between species and phases of growth.
Collapse
Affiliation(s)
- R Pagán
- Department of Food Science and Technology, University of Reading, Reading RG6 6AP, United Kingdom
| | | |
Collapse
|
46
|
Pons MN, Vivier H. Biomass quantification by image analysis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1999; 66:133-84. [PMID: 10592529 DOI: 10.1007/3-540-48773-5_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Microbiologists have always rely on microscopy to examine microorganisms. When microscopy, either optical or electron-based, is coupled to quantitative image analysis, the spectrum of potential applications is widened: counting, sizing, shape characterization, physiology assessment, analysis of visual texture, motility studies are now easily available for obtaining information on biomass. In this chapter the main tools used for cell visualization as well as the basic steps of image treatment are presented. General shape descriptors can be used to characterize the cell morphology, but special descriptors have been defined for filamentous microorganisms. Physiology assessment is often based on the use of fluorescent dyes. The quantitative analysis of visual texture is still limited in bioengineering but the characterization of the surface of microbial colonies may open new prospects, especially for cultures on solid substrates. In many occasions, the number of parameters extracted from images is so large that data-mining tools, such as Principal Components Analysis, are useful for summarizing the key pieces of information.
Collapse
Affiliation(s)
- M N Pons
- Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC-INPL, Nancy, France.
| | | |
Collapse
|
47
|
Lisle JT, Stewart PS, McFeters GA. Fluorescent probes applied to physiological characterization of bacterial biofilms. Methods Enzymol 1999; 310:166-78. [PMID: 10547791 DOI: 10.1016/s0076-6879(99)10015-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- J T Lisle
- Department of Microbiology, Montana State University, Bozeman 59717, USA
| | | | | |
Collapse
|
48
|
Korber DR, Wolfaardt GM, Brözel V, MacDonald R, Niepel T. Reporter systems for microscopic analysis of microbial biofilms. Methods Enzymol 1999; 310:3-20. [PMID: 10547779 DOI: 10.1016/s0076-6879(99)10003-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- D R Korber
- Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
49
|
Catala P, Parthuisot N, Bernard L, Baudart J, Lemarchand K, Lebaron P. Effectiveness of CSE to counterstain particles and dead bacterial cells with permeabilised membranes: application to viability assessment in waters. FEMS Microbiol Lett 1999; 178:219-26. [PMID: 10499271 DOI: 10.1111/j.1574-6968.1999.tb08680.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The CSE dye (Chemunex, Maisons-Alfort, France) was combined with an activity marker to improve bacterial activity assessment in natural waters. Its effectiveness to counterstain dead cells with permeabilised membranes was investigated on live and dead cells of a variety of strains from collections or isolated from the natural environment. Cells were killed by heat treatment. For all strains tested, the fluorescent dye showed an intense staining of killed cells having permeabilised membranes while no significant signal was detected when applied to live cells. Furthermore, the CSE dye had no toxicity on viable cells. Then, CSE was combined with the ChemChrome V6 dye (Chemunex) to assess the activity of bacterial cells in different waters. Both fluorescences were analysed simultaneously by solid-phase cytometry. The active cell counts were sometimes lower when both dyes were combined suggesting that CSE was able to counterstain cells having a residual esterase activity and compromised membranes. These cells were subtracted from the active cell counts determined with ChemChrome V6. In most samples, active cell counts were congruent with those determined by the direct viable count method.
Collapse
Affiliation(s)
- P Catala
- Observatoire Océanologique, Centre National de la Recherche Scientifique UMR7621, Institut National des Sciences de l'Univers et Université Pierre et Marie Curie, Banyuls-sur-Mer, France
| | | | | | | | | | | |
Collapse
|
50
|
Netuschil L, Reich E, Unteregger G, Sculean A, Brecx M. A pilot study of confocal laser scanning microscopy for the assessment of undisturbed dental plaque vitality and topography. Arch Oral Biol 1998; 43:277-85. [PMID: 9839703 DOI: 10.1016/s0003-9969(97)00121-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Confocal microscopy and vital fluorescence techniques were combined for the first time to investigate ex vivo human dental plaque. The vital fluorescence technique used discriminates vital from dead cells, while confocal laser scanning microscopy allows the optical sectioning of undisturbed biofilms leaving the samples intact during analysis. The concomitant use of both methods made an examination of the three-dimensional architecture of dental plaque possible. The topography of plaque biofilms that were allowed to accumulate in situ on glass and enamel was recorded. The distribution of plaque microflora vitality as well as its accumulation varied according to plaque age. A plaque thickness of up to 8, 35 and 45 microm was estimated ex vivo on enamel after 1, 2 and 3 days, respectively. Young and sparse plaque biofilms consisted mainly of dead material. Vital bacteria were observed on top of this dead layers.
Collapse
Affiliation(s)
- L Netuschil
- Dental School, University of the Saarland, Homburg, Germany
| | | | | | | | | |
Collapse
|