1
|
Mwenda GM, Hill YJ, O’Hara GW, Reeve WG, Howieson JG, Terpolilli JJ. Competition in the Phaseolus vulgaris- Rhizobium symbiosis and the role of resident soil rhizobia in determining the outcomes of inoculation. PLANT AND SOIL 2023; 487:61-77. [PMID: 37333056 PMCID: PMC10272266 DOI: 10.1007/s11104-023-05903-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/24/2023] [Indexed: 06/20/2023]
Abstract
Background and Aims Inoculation of legumes with effective N2-fixing rhizobia is a common practice to improve farming profitability and sustainability. To succeed, inoculant rhizobia must overcome competition for nodulation by resident soil rhizobia that fix N2 ineffectively. In Kenya, where Phaseolus vulgaris (common bean) is inoculated with highly effective Rhizobium tropici CIAT899 from Colombia, response to inoculation is low, possibly due to competition from ineffective resident soil rhizobia. Here, we evaluate the competitiveness of CIAT899 against diverse rhizobia isolated from cultivated Kenyan P. vulgaris. Methods The ability of 28 Kenyan P. vulgaris strains to nodulate this host when co-inoculated with CIAT899 was assessed. Rhizosphere competence of a subset of strains and the ability of seed inoculated CIAT899 to nodulate P. vulgaris when sown into soil with pre-existing populations of rhizobia was analyzed. Results Competitiveness varied widely, with only 27% of the test strains more competitive than CIAT899 at nodulating P. vulgaris. While competitiveness did not correlate with symbiotic effectiveness, five strains were competitive against CIAT899 and symbiotically effective. In contrast, rhizosphere competence strongly correlated with competitiveness. Soil rhizobia had a position-dependent numerical advantage, outcompeting seed-inoculated CIAT899 for nodulation of P. vulgaris, unless the resident strain was poorly competitive. Conclusion Suboptimally effective rhizobia can outcompete CIAT899 for nodulation of P. vulgaris. If these strains are widespread in Kenyan soils, they may largely explain the poor response to inoculation. The five competitive and effective strains characterized here are candidates for inoculant development and may prove better adapted to Kenyan conditions than CIAT899.
Collapse
Affiliation(s)
- George M. Mwenda
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
- Present Address: Department of Primary Industries and Regional Development, 75 York Road, Northam, WA 6401 Australia
| | - Yvette J. Hill
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Graham W. O’Hara
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Wayne G. Reeve
- Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - John G. Howieson
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Jason J. Terpolilli
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| |
Collapse
|
2
|
Mendoza-Suárez M, Andersen SU, Poole PS, Sánchez-Cañizares C. Competition, Nodule Occupancy, and Persistence of Inoculant Strains: Key Factors in the Rhizobium-Legume Symbioses. FRONTIERS IN PLANT SCIENCE 2021; 12:690567. [PMID: 34489993 PMCID: PMC8416774 DOI: 10.3389/fpls.2021.690567] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Biological nitrogen fixation by Rhizobium-legume symbioses represents an environmentally friendly and inexpensive alternative to the use of chemical nitrogen fertilizers in legume crops. Rhizobial inoculants, applied frequently as biofertilizers, play an important role in sustainable agriculture. However, inoculants often fail to compete for nodule occupancy against native rhizobia with inferior nitrogen-fixing abilities, resulting in low yields. Strains with excellent performance under controlled conditions are typically selected as inoculants, but the rates of nodule occupancy compared to native strains are rarely investigated. Lack of persistence in the field after agricultural cycles, usually due to the transfer of symbiotic genes from the inoculant strain to naturalized populations, also limits the suitability of commercial inoculants. When rhizobial inoculants are based on native strains with a high nitrogen fixation ability, they often have superior performance in the field due to their genetic adaptations to the local environment. Therefore, knowledge from laboratory studies assessing competition and understanding how diverse strains of rhizobia behave, together with assays done under field conditions, may allow us to exploit the effectiveness of native populations selected as elite strains and to breed specific host cultivar-rhizobial strain combinations. Here, we review current knowledge at the molecular level on competition for nodulation and the advances in molecular tools for assessing competitiveness. We then describe ongoing approaches for inoculant development based on native strains and emphasize future perspectives and applications using a multidisciplinary approach to ensure optimal performance of both symbiotic partners.
Collapse
Affiliation(s)
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
3
|
Westhoek A, Clark LJ, Culbert M, Dalchau N, Griffiths M, Jorrin B, Karunakaran R, Ledermann R, Tkacz A, Webb I, James EK, Poole PS, Turnbull LA. Conditional sanctioning in a legume- Rhizobium mutualism. Proc Natl Acad Sci U S A 2021; 118:e2025760118. [PMID: 33941672 PMCID: PMC8126861 DOI: 10.1073/pnas.2025760118] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Legumes are high in protein and form a valuable part of human diets due to their interaction with symbiotic nitrogen-fixing bacteria known as rhizobia. Plants house rhizobia in specialized root nodules and provide the rhizobia with carbon in return for nitrogen. However, plants usually house multiple rhizobial strains that vary in their fixation ability, so the plant faces an investment dilemma. Plants are known to sanction strains that do not fix nitrogen, but nonfixers are rare in field settings, while intermediate fixers are common. Here, we modeled how plants should respond to an intermediate fixer that was otherwise isogenic and tested model predictions using pea plants. Intermediate fixers were only tolerated when a better strain was not available. In agreement with model predictions, nodules containing the intermediate-fixing strain were large and healthy when the only alternative was a nonfixer, but nodules of the intermediate-fixing strain were small and white when the plant was coinoculated with a more effective strain. The reduction in nodule size was preceded by a lower carbon supply to the nodule even before differences in nodule size could be observed. Sanctioned nodules had reduced rates of nitrogen fixation, and in later developmental stages, sanctioned nodules contained fewer viable bacteria than nonsanctioned nodules. This indicates that legumes can make conditional decisions, most likely by comparing a local nodule-dependent cue of nitrogen output with a global cue, giving them remarkable control over their symbiotic partners.
Collapse
Affiliation(s)
- Annet Westhoek
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
- Systems Biology Doctoral Training Centre, Doctoral Training Centre, University of Oxford, OX1 3NP Oxford, United Kingdom
| | - Laura J Clark
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Michael Culbert
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Neil Dalchau
- Biological Computation, Microsoft Research Cambridge, CB1 2FB Cambridge, United Kingdom
| | - Megan Griffiths
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Beatriz Jorrin
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Ramakrishnan Karunakaran
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, United Kingdom
| | - Raphael Ledermann
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Andrzej Tkacz
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Isabel Webb
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Euan K James
- Ecological Sciences, The James Hutton Institute, DD2 5DA Invergowrie, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom;
| | - Lindsay A Turnbull
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom;
| |
Collapse
|
4
|
Rhizobium leguminosarum bv. trifolii NodD2 Enhances Competitive Nodule Colonization in the Clover-Rhizobium Symbiosis. Appl Environ Microbiol 2020; 86:AEM.01268-20. [PMID: 32651206 DOI: 10.1128/aem.01268-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023] Open
Abstract
Establishment of the symbiotic relationship that develops between rhizobia and their legume hosts is contingent upon an interkingdom signal exchange. In response to host legume flavonoids, NodD proteins from compatible rhizobia activate expression of nodulation genes that produce lipochitin oligosaccharide signaling molecules known as Nod factors. Root nodule formation commences upon legume recognition of compatible Nod factor. Rhizobium leguminosarum was previously considered to contain one copy of nodD; here, we show that some strains of the Trifolium (clover) microsymbiont R. leguminosarum bv. trifolii contain a second copy designated nodD2. nodD2 genes were present in 8 out of 13 strains of R. leguminosarum bv. trifolii, but were absent from the genomes of 16 R. leguminosarum bv. viciae strains. Analysis of single and double nodD1 and nodD2 mutants in R. leguminosarum bv. trifolii strain TA1 revealed that NodD2 was functional and enhanced nodule colonization competitiveness. However, NodD1 showed significantly greater capacity to induce nod gene expression and infection thread formation. Clover species are either annual or perennial and this phenological distinction is rarely crossed by individual R. leguminosarum bv. trifolii microsymbionts for effective symbiosis. Of 13 strains with genome sequences available, 7 of the 8 effective microsymbionts of perennial hosts contained nodD2, whereas the 3 microsymbionts of annual hosts did not. We hypothesize that NodD2 inducer recognition differs from NodD1, and NodD2 functions to enhance competition and effective symbiosis, which may discriminate in favor of perennial hosts.IMPORTANCE Establishment of the rhizobium-legume symbiosis requires a highly specific and complex signal exchange between both participants. Rhizobia perceive legume flavonoid compounds through LysR-type NodD regulators. Often, rhizobia encode multiple copies of nodD, which is one determinant of host specificity. In some species of rhizobia, the presence of multiple copies of NodD extends their symbiotic host-range. Here, we identified and characterized a second copy of nodD present in some strains of the clover microsymbiont Rhizobium leguminosarum bv. trifolii. The second nodD gene contributed to the competitive ability of the strain on white clover, an important forage legume. A screen for strains containing nodD2 could be utilized as one criterion to select strains with enhanced competitive ability for use as inoculants for pasture production.
Collapse
|
5
|
Mendoza-Suárez MA, Geddes BA, Sánchez-Cañizares C, Ramírez-González RH, Kirchhelle C, Jorrin B, Poole PS. Optimizing Rhizobium-legume symbioses by simultaneous measurement of rhizobial competitiveness and N 2 fixation in nodules. Proc Natl Acad Sci U S A 2020; 117:9822-9831. [PMID: 32317381 PMCID: PMC7211974 DOI: 10.1073/pnas.1921225117] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Legumes tend to be nodulated by competitive rhizobia that do not maximize nitrogen (N2) fixation, resulting in suboptimal yields. Rhizobial nodulation competitiveness and effectiveness at N2 fixation are independent traits, making their measurement extremely time-consuming with low experimental throughput. To transform the experimental assessment of rhizobial competitiveness and effectiveness, we have used synthetic biology to develop reporter plasmids that allow simultaneous high-throughput measurement of N2 fixation in individual nodules using green fluorescent protein (GFP) and barcode strain identification (Plasmid ID) through next generation sequencing (NGS). In a proof-of-concept experiment using this technology in an agricultural soil, we simultaneously monitored 84 different Rhizobium leguminosarum strains, identifying a supercompetitive and highly effective rhizobial symbiont for peas. We also observed a remarkable frequency of nodule coinfection by rhizobia, with mixed occupancy identified in ∼20% of nodules, containing up to six different strains. Critically, this process can be adapted to multiple Rhizobium-legume symbioses, soil types, and environmental conditions to permit easy identification of optimal rhizobial inoculants for field testing to maximize agricultural yield.
Collapse
Affiliation(s)
| | - Barney A Geddes
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | | | | | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Beatriz Jorrin
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom;
| |
Collapse
|
6
|
Geddes BA, Mendoza-Suárez MA, Poole PS. A Bacterial Expression Vector Archive (BEVA) for Flexible Modular Assembly of Golden Gate-Compatible Vectors. Front Microbiol 2019; 9:3345. [PMID: 30692983 PMCID: PMC6339899 DOI: 10.3389/fmicb.2018.03345] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/27/2018] [Indexed: 11/13/2022] Open
Abstract
We present a Bacterial Expression Vector Archive (BEVA) for the modular assembly of bacterial vectors compatible with both traditional and Golden Gate cloning, utilizing the Type IIS restriction enzyme Esp3I, and have demonstrated its use for Golden Gate cloning in Escherichia coli. Ideal for synthetic biology and other applications, this modular system allows a rapid, low-cost assembly of new vectors tailored to specific tasks. Using the principles outlined here, new modules (e.g., origin of replication for plasmids in other bacteria) can easily be designed for specific applications. It is hoped that this vector construction system will be expanded by the scientific community over time by creation of novel modules through an open source approach. To demonstrate the potential of the system, three example vectors were constructed and tested. The Golden Gate level 1 vector pOGG024 (pBBR1-based broad-host range and medium copy number) was used for gene expression in laboratory-cultured Rhizobium leguminosarum. The Golden Gate level 1 vector pOGG026 (RK2-based broad-host range, lower copy number and stable in the absence of antibiotic selection) was used to demonstrate bacterial gene expression in nitrogen-fixing nodules on pea plant roots formed by R. leguminosarum. Finally, the level 2 cloning vector pOGG216 (RK2-based broad-host range, medium copy number) was used to construct a dual reporter plasmid expressing green and red fluorescent proteins.
Collapse
Affiliation(s)
| | | | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Westhoek A, Field E, Rehling F, Mulley G, Webb I, Poole PS, Turnbull LA. Policing the legume-Rhizobium symbiosis: a critical test of partner choice. Sci Rep 2017; 7:1419. [PMID: 28469244 PMCID: PMC5431162 DOI: 10.1038/s41598-017-01634-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/03/2017] [Indexed: 11/29/2022] Open
Abstract
In legume-Rhizobium symbioses, specialised soil bacteria fix atmospheric nitrogen in return for carbon. However, ineffective strains can arise, making discrimination essential. Discrimination can occur via partner choice, where legumes prevent ineffective strains from entering, or via sanctioning, where plants provide fewer resources. Several studies have inferred that legumes exercise partner choice, but the rhizobia compared were not otherwise isogenic. To test when and how plants discriminate ineffective strains we developed sets of fixing and non-fixing strains that differed only in the expression of nifH - essential for nitrogen fixation - and could be visualised using marker genes. We show that the plant is unable to select against the non-fixing strain at the point of entry, but that non-fixing nodules are sanctioned. We also used the technique to characterise mixed nodules (containing both a fixing and a non-fixing strain), whose frequency could be predicted using a simple diffusion model. We discuss that sanctioning is likely to evolve in preference to partner choice in any symbiosis where partner quality cannot be adequately assessed until goods or services are actively exchanged.
Collapse
Affiliation(s)
- Annet Westhoek
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
- Systems Biology Doctoral Training Centre, University of Oxford, Oxford, OX1 3RQ, UK
| | - Elsa Field
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Finn Rehling
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
- Department of Ecology, Philipps-University Marburg, Marburg, D-35043, Germany
| | - Geraldine Mulley
- School of Biological Sciences, University of Reading, Reading, RG6 6AJ, UK
| | - Isabel Webb
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| | - Lindsay A Turnbull
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
8
|
Sánchez-Cañizares C, Palacios J. Construction of a marker system for the evaluation of competitiveness for legume nodulation in Rhizobium strains. J Microbiol Methods 2013; 92:246-9. [PMID: 23305927 DOI: 10.1016/j.mimet.2012.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 11/21/2022]
Abstract
A marker system has been set up for the analysis of competitiveness of Rhizobium leguminosarum strains for legume nodulation. The strains generated incorporate gusA and celB marker genes at identical positions and allow efficient scoring of single and double infections. Based on this system, we have found that strain UPM791 outcompetes 3841 for nodulation in pea. This technique will be useful to determine the effect of different traits on competitiveness.
Collapse
Affiliation(s)
- Carmen Sánchez-Cañizares
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.), and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40-km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain
| | | |
Collapse
|
9
|
Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 2005; 71:1685-93. [PMID: 15811990 PMCID: PMC1082517 DOI: 10.1128/aem.71.4.1685-1693.2005] [Citation(s) in RCA: 355] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patterns of colonization of Vitis vinifera L. cv. Chardonnay plantlets by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN, were studied under gnotobiotic conditions. Wild-type strain PsJN and genetically engineered derivatives of this strain tagged with gfp (PsJN::gfp2x) or gusA (PsJN::gusA11) genes were used to enumerate and visualize tissue colonization. The rhizospheres of 4- to 5-week-old plantlets with five developed leaves were inoculated with bacterial suspensions. Epiphytic and endophytic colonization patterns were then monitored by dilution plating assays and microscopic observation of organ sections. Bacteria were chronologically detected first on root surfaces, then in root internal tissues, and finally in the fifth internode and the tissues of the fifth leaf. Analysis of the PsJN colonization patterns showed that this strain colonizes grapevine root surfaces, as well as cell walls and the whole surface of some rhizodermal cells. Cells were also abundant at lateral root emergence sites and root tips. Furthermore, cell wall-degrading endoglucanase and endopolygalacturonase secreted by PsJN explained how the bacterium gains entry into root internal tissues. Host defense reactions were observed in the exodermis and in several cortical cell layers. Bacteria were not observed on stem and leaf surfaces but were found in xylem vessels of the fifth internode and the fifth leaf of plantlets. Moreover, bacteria were more abundant in the fifth leaf than in the fifth internode and were found in substomatal chambers. Thus, it seems that Burkholderia sp. strain PsJN induces a local host defense reaction and systemically spreads to aerial parts through the transpiration stream.
Collapse
Affiliation(s)
- Stéphane Compant
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UPRES EA 2069, UFR Sciences, Université de Reims Champagne-Ardenne, Reims, France
| | | | | | | | | | | |
Collapse
|
10
|
Kaper T, Verhees CH, Lebbink JH, van Lieshout JF, Kluskens LD, Ward DE, Kengen SW, Beerthuyzen MM, de Vos WM, van der Oost J. Characterization of beta-glycosylhydrolases from Pyrococcus furiosus. Methods Enzymol 2001; 330:329-46. [PMID: 11210512 DOI: 10.1016/s0076-6879(01)30386-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- T Kaper
- Laboratory of Microbiology, Wageningen Agricultural University, Wageningen, NL-6703 CT, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lebbink JH, Kaper T, Kengen SW, van der Oost J, de Vos WM. beta-Glucosidase CelB from Pyrococcus furiosus: production by Escherichia coli, purification, and in vitro evolution. Methods Enzymol 2001; 330:364-79. [PMID: 11210515 DOI: 10.1016/s0076-6879(01)30389-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- J H Lebbink
- Laboratory of Microbiology, Wageningen Agricultural University, Wageningen, NL-6703 CT, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Denison RF. Legume Sanctions and the Evolution of Symbiotic Cooperation by Rhizobia. Am Nat 2000; 156:567-576. [DOI: 10.1086/316994] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Castro S, Carrera I, Martínez-Drets G. Methods to evaluate nodulation competitiveness between Sinorhizobium meliloti strains using melanin production as a marker. J Microbiol Methods 2000; 41:173-7. [PMID: 10889314 DOI: 10.1016/s0167-7012(00)00151-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Three methods to evaluate the relative ability of different strains of Sinorhizobium meliloti to occupy nodules formed on alfalfa after co-inoculation were compare in this study. Results obtained using the three methods of evaluation together, provided insight into the relative nodulation competitiveness between two given sinorhizobial strains. A simple visual phenotypic marker, i.e., melanin production was used to distinguish individual strains in a given assay. As such, melanin producing strains were compared with melanin non-producing strains throughout this study. Method 1 required the use of an ELISA plate, took 35 min for the analysis of 40 nodules, and allowed strain identification by melanin production 2 days after nodule harvest. Method 2 required 3 h for the analysis of 40 nodules, used an ELISA plate, growth of bacteria on Petri dishes, and melanin production was analysed after 48 h of cell culture. Finally, method 3 involved the whole nodulated plant root, required less material than the above methods, and results were obtained after 24 h. Only method 2 was useful in determining if both a melanin producing strain and a melanin non-producing strain had occupied an individual nodule. Each of the three methods represented a rapid way of studying strain competition for field studies, using a natural trait as a marker.
Collapse
Affiliation(s)
- S Castro
- División de Bioquímica, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, CP 11600, Montevideo, Uruguay.
| | | | | |
Collapse
|
14
|
|