1
|
Khlystov NA, Yoshikuni Y, Deutsch S, Sattely ES. A plant host, Nicotiana benthamiana, enables the production and study of fungal lignin-degrading enzymes. Commun Biol 2021; 4:1027. [PMID: 34471192 PMCID: PMC8410833 DOI: 10.1038/s42003-021-02464-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Lignin has significant potential as an abundant and renewable source for commodity chemicals yet remains vastly underutilized. Efforts towards engineering a biochemical route to the valorization of lignin are currently limited by the lack of a suitable heterologous host for the production of lignin-degrading enzymes. Here, we show that expression of fungal genes in Nicotiana benthamiana enables production of members from seven major classes of enzymes associated with lignin degradation (23 of 35 tested) in soluble form for direct use in lignin activity assays. We combinatorially characterized a subset of these enzymes in the context of model lignin dimer oxidation, revealing that fine-tuned coupling of peroxide-generators to peroxidases results in more extensive C-C bond cleavage compared to direct addition of peroxide. Comparison of peroxidase isoform activity revealed that the extent of C-C bond cleavage depends on peroxidase identity, suggesting that peroxidases are individually specialized in the context of lignin oxidation. We anticipate the use of N. benthamiana as a platform to rapidly produce a diverse array of fungal lignin-degrading enzymes will facilitate a better understanding of their concerted role in nature and unlock their potential for lignin valorization, including within the plant host itself.
Collapse
Affiliation(s)
- Nikita A Khlystov
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Yasuo Yoshikuni
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Samuel Deutsch
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Patil P, Yadav GD. Comparative Studies of White-Rot Fungal Strains ( Trametes hirsuta MTCC-1171 and Phanerochaete chrysosporium NCIM-1106) for Effective Degradation and Bioconversion of Ferulic Acid. ACS OMEGA 2018; 3:14858-14868. [PMID: 30555994 PMCID: PMC6289575 DOI: 10.1021/acsomega.8b01614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/22/2018] [Indexed: 05/31/2023]
Abstract
Biodegradation of ferulic acid, by two white-rot fungal strains (Trametes hirsuta MTCC-1171 and Phanerochaete chrysosporium NCIM-1106) was investigated in this study. Both strains could use ferulic acid as a sole carbon source when provided with basal mineral salt medium. T. hirsuta achieved complete degradation of ferulic acid (350 mg L-1) in 20 h, whereas P. chrysosporium degraded it (250 mg L-1) in 28 h. The metabolites produced during degradation were distinguished by gas chromatography-mass spectrometry. Bioconversion of ferulic acid to vanillin by P. chrysosporium was also investigated. The optimum experimental conditions for bioconversion to vanillin can be summarized as follows: ferulic acid concentration 250 mg L-1, temperature 35 °C, initial pH 5.0, mycelial inoculum 0.32 ± 0.01 g L-1 dry weight, and shaking speed 150 rpm. At optimized conditions, the maximum molar yield obtained was 3.4 ± 0.1%, after 20 h of bioconversion. Considering that the degradation of ferulic acid was determined by laccase and lignin peroxidase to some extent, the possible role of ligninolytic enzymes in overall bioconversion process was also studied. These results illustrate that both strains have the potential of utilizing ferulic acid as a sole carbon source. Moreover, P. chrysosporium can also be explored for its ability to transform ferulic acid into value-added products.
Collapse
Affiliation(s)
| | - Ganapati D. Yadav
- E-mail: , . Phone: +91-22-3361-1001/1111/2222. Fax: +91-22-33611002/1020
| |
Collapse
|
3
|
Fernández-Fueyo E, Ruiz-Dueñas FJ, Martínez MJ, Romero A, Hammel KE, Medrano FJ, Martínez AT. Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:2. [PMID: 24387130 PMCID: PMC3902061 DOI: 10.1186/1754-6834-7-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/16/2013] [Indexed: 05/23/2023]
Abstract
BACKGROUND The genome of Pleurotus ostreatus, an important edible mushroom and a model ligninolytic organism of interest in lignocellulose biorefineries due to its ability to delignify agricultural wastes, was sequenced with the purpose of identifying and characterizing the enzymes responsible for lignin degradation. RESULTS Heterologous expression of the class II peroxidase genes, followed by kinetic studies, enabled their functional classification. The resulting inventory revealed the absence of lignin peroxidases (LiPs) and the presence of three versatile peroxidases (VPs) and six manganese peroxidases (MnPs), the crystal structures of two of them (VP1 and MnP4) were solved at 1.0 to 1.1 Å showing significant structural differences. Gene expansion supports the importance of both peroxidase types in the white-rot lifestyle of this fungus. Using a lignin model dimer and synthetic lignin, we showed that VP is able to degrade lignin. Moreover, the dual Mn-mediated and Mn-independent activity of P. ostreatus MnPs justifies their inclusion in a new peroxidase subfamily. The availability of the whole POD repertoire enabled investigation, at a biochemical level, of the existence of duplicated genes. Differences between isoenzymes are not limited to their kinetic constants. Surprising differences in their activity T50 and residual activity at both acidic and alkaline pH were observed. Directed mutagenesis and spectroscopic/structural information were combined to explain the catalytic and stability properties of the most interesting isoenzymes, and their evolutionary history was analyzed in the context of over 200 basidiomycete peroxidase sequences. CONCLUSIONS The analysis of the P. ostreatus genome shows a lignin-degrading system where the role generally played by LiP has been assumed by VP. Moreover, it enabled the first characterization of the complete set of peroxidase isoenzymes in a basidiomycete, revealing strong differences in stability properties and providing enzymes of biotechnological interest.
Collapse
Affiliation(s)
- Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Francisco J Ruiz-Dueñas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Antonio Romero
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Kenneth E Hammel
- US Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Francisco Javier Medrano
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| |
Collapse
|
4
|
Sakamoto T, Kitaura H, Minami M, Honda Y, Watanabe T, Ueda A, Suzuki K, Irie T. Transcriptional effect of a calmodulin inhibitor, W-7, on the ligninolytic enzyme genes in Phanerochaete chrysosporium. Curr Genet 2010; 56:401-10. [PMID: 20532887 DOI: 10.1007/s00294-010-0309-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/15/2010] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
Abstract
We investigated the effects of a calmodulin (CaM) inhibitor, W-7, on the expression of lignin peroxidase (LiP) and manganese peroxidase (MnP) genes in Phanerochaete chrysosporium to consider the role of cam gene, which was upregulated in parallel with the total activities of LiP and MnP in our previous transcriptomic analysis. The addition of 100 μM W-7 to the fungal cultures repressed the total activities of LiP and MnP, whereas the addition of 100 μM W-5, which is a control drug of W-7, retained approximately half of them, indicating that the effect of W-7 was attributable to CaM inhibition. Real-time reverse transcription polymerase chain reaction analysis revealed that most of lip and mnp isozyme genes predicted from whole-genome data were significantly inhibited by W-7 at the transcription level (P ≤ 0.05). These results suggest that CaM has an important role for the expression of isozyme genes of LiP and MnP at the transcription level.
Collapse
|
5
|
Kersten P, Cullen D. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 2007; 44:77-87. [PMID: 16971147 DOI: 10.1016/j.fgb.2006.07.007] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 07/20/2006] [Indexed: 11/17/2022]
Abstract
The US Department of Energy has assembled a high quality draft genome of Phanerochaete chrysosporium, a white rot Basidiomycete capable of completely degrading all major components of plant cell walls including cellulose, hemicellulose and lignin. Hundreds of sequences are predicted to encode extracellular enzymes including an impressive number of oxidative enzymes potentially involved in lignocellulose degradation. Herein, we summarize the number, organization, and expression of genes encoding peroxidases, copper radical oxidases, FAD-dependent oxidases, and multicopper oxidases. Possibly relevant to extracellular oxidative systems are genes involved in posttranslational processes and a large number of hypothetical proteins.
Collapse
Affiliation(s)
- Phil Kersten
- Forest Products Laboratory, USDA, One Gifford Pinchot Drive, Madison, WI 53705, USA
| | | |
Collapse
|
6
|
Vanden Wymelenberg A, Minges P, Sabat G, Martinez D, Aerts A, Salamov A, Grigoriev I, Shapiro H, Putnam N, Belinky P, Dosoretz C, Gaskell J, Kersten P, Cullen D. Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet Biol 2006; 43:343-56. [PMID: 16524749 DOI: 10.1016/j.fgb.2006.01.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 12/30/2005] [Accepted: 01/11/2006] [Indexed: 11/28/2022]
Abstract
The white-rot basidiomycete Phanerochaete chrysosporium employs extracellular enzymes to completely degrade the major polymers of wood: cellulose, hemicellulose, and lignin. Analysis of a total of 10,048 v2.1 gene models predicts 769 secreted proteins, a substantial increase over the 268 models identified in the earlier database (v1.0). Within the v2.1 'computational secretome,' 43% showed no significant similarity to known proteins, but were structurally related to other hypothetical protein sequences. In contrast, 53% showed significant similarity to known protein sequences including 87 models assigned to 33 glycoside hydrolase families and 52 sequences distributed among 13 peptidase families. When grown under standard ligninolytic conditions, peptides corresponding to 11 peptidase genes were identified in culture filtrates by mass spectrometry (LS-MS/MS). Five peptidases were members of a large family of aspartyl proteases, many of which were localized to gene clusters. Consistent with a role in dephosphorylation of lignin peroxidase, a mannose-6-phosphatase (M6Pase) was also identified in carbon-starved cultures. Beyond proteases and M6Pase, 28 specific gene products were identified including several representatives of gene families. These included 4 lignin peroxidases, 3 lipases, 2 carboxylesterases, and 8 glycosyl hydrolases. The results underscore the rich genetic diversity and complexity of P. chrysosporium's extracellular enzyme systems.
Collapse
|
7
|
Phanerochaete chrysosporium Genomics. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Ward G, Hadar Y, Bilkis I, Dosoretz CG. Mechanistic features of lignin peroxidase-catalyzed oxidation of substituted phenols and 1,2-dimethoxyarenes. J Biol Chem 2003; 278:39726-34. [PMID: 12857756 DOI: 10.1074/jbc.m303918200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The steady state kinetic parameters Km and kcat for the oxidation of phenolic substrates by lignin peroxidase correlated with the presteady state kinetic parameters Kd and k for the reaction of the enzyme intermediate compound II with the substrates, indicating that the latter is the rate-limiting step in the catalytic cycle. ln Km and ln Kd values for phenolic substrates correlated with redox properties, unlike ln kcat and ln k. This finding suggests that in contrast to horseradish peroxidase, electron transfer is not the rate-limiting step during oxidation by lignin peroxidase compound II. A mechanism is proposed for lignin peroxidase compound II reactions consisting of an equilibrium electron transfer step followed by a subsequent rate-limiting step. Analysis of the correlation coefficients for linear relationships between ln Kd and ln Km and different calculated redox parameters supports a mechanism in which the acidic forms of phenols are oxidized by lignin peroxidase and electron transfer is coupled with proton transfer. 1,2-Dimethoxyarenes did not comply with the trend for phenolic substrates, which may be a result of more than one substrate binding site on lignin peroxidase and/or alternative binding modes. This behavior was supported by analogue studies with the 1,2-dimethoxyarenes veratric acid and veratryl aldehyde, both of which are not oxidized by lignin peroxidase. Inclusion of either had little effect on the rate of oxidation of phenolic substrates yet resulted in a decrease in the oxidation rate of 1,2-dimethoxyarene substrates, which was considerable for veratryl alcohol and less pronounced for 3,4-dimethoxyphenethylalcohol and 3,4-dimethoxycinnamic acid, in particular in the presence of veratric acid.
Collapse
Affiliation(s)
- Gary Ward
- Division of Environmental Engineering and Science, Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
9
|
Ligninolytic enzymes of the fungus Irpex lacteus (Polyporus tulipiferae): isolation and characterization of lignin peroxidase. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00171-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
The influence of non-phenolic mediators and phenolic co-substrates on the oxidation of 4-bromophenol by lignin peroxidase. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(01)00526-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Martı́nez AT. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(01)00521-x] [Citation(s) in RCA: 321] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Ward G, Hadar Y, Dosoretz CG. Inactivation of lignin peroxidase during oxidation of the highly reactive substrate ferulic acid. Enzyme Microb Technol 2001; 29:34-41. [PMID: 11427233 DOI: 10.1016/s0141-0229(01)00336-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ferulic acid (4-hydroxy-3-methoxycinnamic acid) (FA) was found to be a highly reactive substrate for lignin peroxidase (LIP), exhibiting a k(cat) of 41.7 s(-1). Despite the high reactivity, two modes of inactivation prevailed during the oxidation of FA. The first, H(2)O(2)-dependent inactivation, was evidenced by incomplete substrate oxidation and accumulation of LIP compound III (LIPIII), even at relatively low H(2)O(2) concentrations. This was attributed to the high turnover rate along with the inability of FA to revert LIPIII to the native state, as evidenced by pre-steady-state kinetics. H(2)O(2)-dependent inactivation could be avoided by inclusion of veratryl alcohol (VA), which efficiently reverts LIPIII to the native state. However, VA also mediated FA oxidation, and significantly decreased the reaction rate, which is unlike for previously reported VA-mediated reactions. The second mechanism of LIP inactivation was attributed to binding of phenoxy radicals or oxidation products to the enzyme and its extent directly correlated with the amount of FA consumed. This inactivation could be considerably suppressed by inclusion of gelatin. Therefore, during the oxidation of highly reactive phenolics, different kinds of protectors are required for efficient oxidation and maintaining LIP activity over time. This is of importance when considering emerging biotechnological applications for LIP.
Collapse
Affiliation(s)
- G Ward
- MIGAL-Galilee Technology Center, South Industrial Zone, 10200, Kiryat Shmona, Israel
| | | | | |
Collapse
|
13
|
Ward G, Hadar Y, Bilkis I, Konstantinovsky L, Dosoretz CG. Initial steps of ferulic acid polymerization by lignin peroxidase. J Biol Chem 2001; 276:18734-41. [PMID: 11278569 DOI: 10.1074/jbc.m009785200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major products of the initial steps of ferulic acid polymerization by lignin peroxidase included three dehydrodimers resulting from beta-5' and beta-beta'coupling and two trimers resulting from the addition of ferulic acid moieties to decarboxylated derivatives of beta-O-4'- and beta-5'-coupled dehydrodimers. This is the first time that trimers have been identified from peroxidase-catalyzed oxidation of ferulic acid, and their formation appears to be favored by decarboxylation of dehydrodimer intermediates. After initial oxidation, the coupling reactions appear to be determined by the chemistry of ferulic acid phenoxy radicals, regardless of the enzyme and of whether the reaction is performed in vitro or in vivo. This claim is supported by our finding that horseradish peroxidase provides a similar product profile. Furthermore, two of the dehydrodimers were the two products obtained from laccase-catalyzed oxidation (Tatsumi, K. S., Freyer, A., Minard, R. D., and Bollag, J.-M. (1994) Environ. Sci. Technol. 28, 210-215), and the most abundant dehydrodimer is the most prominent in grass cell walls (Ralph, J., Quideau, S., Grabber, J. H., and Hatfield, R. D. (1994) J. Chem. Soc. Perkin Trans. 1, 3485-3498). Our results also indicate that the dehydrodimers and trimers are further oxidized by lignin peroxidase, suggesting that they are only intermediates in the polymerization of ferulic acid. The extent of polymerization appears to be dependent on the ionization potential of formed intermediates, H(2)O(2) concentration, and, probably, enzyme stability.
Collapse
Affiliation(s)
- G Ward
- Department of Environmental Biotechnology, MIGAL-Galilee Technology Center, South Industrial Zone, Kiryat Shmona 10200, Israel
| | | | | | | | | |
Collapse
|
14
|
Palma C, Martínez AT, Lema JM, Martínez MJ. Different fungal manganese-oxidizing peroxidases: a comparison between Bjerkandera sp. and Phanerochaete chrysosporium. J Biotechnol 2000; 77:235-45. [PMID: 10682282 DOI: 10.1016/s0168-1656(99)00218-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two manganese-oxidizing peroxidases differing in glycosylation degree were purified from fermenter cultures of Bjerkandera sp. They were characterized and compared with the three manganese-oxidizing peroxidase isoenzymes obtained from the well-known ligninolytic fungus Phanerochaete chrysosporium. All the enzymes showed similar molecular masses but those from P. chrysosporium had less acidic isoelectric point. Moreover, the latter strictly required Mn2+ to oxidize phenolic substrates whereas the Bjerkandera peroxidases had both Mn-mediated and Mn-independent activity on phenolic and non-phenolic aromatic substrates. Taking into account these results, and those reported for Bjerkandera adusta and different Pleurotus species, we concluded that two different types of Mn(2+)-oxidizing peroxidases are secreted by ligninolytic fungi.
Collapse
Affiliation(s)
- C Palma
- Department of Chemical Engineering, University of Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
15
|
Rothschild N, Levkowitz A, Hadar Y, Dosoretz C. Extracellular mannose-6-phosphatase of Phanerochaete chrysosporium: a lignin peroxidase-modifying enzyme. Arch Biochem Biophys 1999; 372:107-11. [PMID: 10562422 DOI: 10.1006/abbi.1999.1474] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lignin peroxidase (LIP) isozyme profile of the white-rot fungus Phanerochaete chrysosporium changes markedly with culture age. This change occurs extracellularly and results from enzymatic dephosphorylation of LIP isozymes. In this study, a novel mannose 6-phosphatase (M6Pase) from extracellular culture fluid filtrate of P. chrysosporium, shown to be responsible for the extracellular postranslational modification of LIP, was purified and characterized. In vitro incubation of the purified M6Pase with purified LIP isozyme H2 resulted in its conversion to isozyme H1, with an equimolar release of orthophosphate. Using different sugar phosphates as substrate, the enzyme exhibited narrow specificity, showing activity mostly for mannose 6-phosphate (K(m) = 0.483 mM). The enzyme displayed a molecular mass of 82 kDa, as determined by gel filtration, and 40.4 and 39.1 kDa, on SDS-PAGE, suggesting that the native form is a dimer. The N-terminal sequence of the enzyme has no homology with that of other reported phosphatases. M6Pase is a metalloprotein with manganese and cobalt as the preferred metal ions. It is N-glycosylated proteins with an isoelectric point of 4. 7-4.8 and a pH optimum of 5. Based on its characteristics, M6Pase from P. chrysosporium seems to be a unique phosphatase responsible for posttranslation modification of LIP isozymes.
Collapse
Affiliation(s)
- N Rothschild
- MIGAL-Galilee Technology Center, Kiryat Shmona, South Industrial Zone, 10200, Israel
| | | | | | | |
Collapse
|
16
|
Rothschild N, Levkowitz A, Hadar Y, Dosoretz CG. Manganese deficiency can replace high oxygen levels needed for lignin peroxidase formation by Phanerochaete chrysosporium. Appl Environ Microbiol 1999; 65:483-8. [PMID: 9925572 PMCID: PMC91051 DOI: 10.1128/aem.65.2.483-488.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/1998] [Accepted: 11/10/1998] [Indexed: 11/20/2022] Open
Abstract
The combined effects of Mn and oxygen on lignin peroxidase (LIP) activity and isozyme composition in Phanerochaete chrysosporium were studied by using shallow stationary cultures grown in the presence of limited or excess N. When no Mn was added, LIP was formed in both N-limited and N-excess cultures exposed to air, but no LIP activity was observed at Mn concentrations greater than 13 mg/liter. In oxygen-flushed, N-excess cultures, LIP was formed at all Mn concentrations, and the peak LIP activity values in the extracellular fluid were nearly identical in the presence of Mn concentrations ranging from 3 to 1,500 mg/liter. When the availability of oxygen to cultures exposed to air was increased by growing the fungus under nonimmersed liquid conditions, higher levels of Mn were needed to suppress LIP formation compared with the levels needed in shallow stationary cultures. The composition of LIP isozymes was affected by the levels of N and Mn. Addition of veratryl alcohol to cultures exposed to air did not eliminate the suppressive effect of Mn on LIP formation. A deficiency of Mn in N-excess cultures resulted in lower biomass and a lower rate of glucose consumption than in the presence of Mn. In addition, almost no activity of the antioxidant enzyme Mn superoxide dismutase was observed in Mn-deficient, N-excess cultures, but the activity of this enzyme increased as the Mn concentration increased from 3 to 13 mg/liter. No Zn/Cu superoxide dismutase activity was observed in N-excess cultures regardless of the Mn concentration.
Collapse
Affiliation(s)
- N Rothschild
- MIGAL, South Industrial Zone, Kiryat Shmona 10200, Israel
| | | | | | | |
Collapse
|
17
|
Gordillo MA, Sanz A, Sánchez A, Valero F, Montesinos JL, Lafuente J, Solà C. Enhancement ofCandida rugosa lipase production by using different control fed-batch operational strategies. Biotechnol Bioeng 1998. [DOI: 10.1002/(sici)1097-0290(19981020)60:2<156::aid-bit3>3.0.co;2-m] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|