1
|
Spohner SC, Schaum V, Quitmann H, Czermak P. Kluyveromyces lactis: An emerging tool in biotechnology. J Biotechnol 2016; 222:104-16. [DOI: 10.1016/j.jbiotec.2016.02.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 02/04/2023]
|
2
|
Zhan FX, Wang QH, Jiang SJ, Zhou YL, Zhang GM, Ma YH. Developing a xylanase XYNZG from Plectosphaerella cucumerina for baking by heterologously expressed in Kluyveromyces lactis. BMC Biotechnol 2014; 14:107. [PMID: 25511290 PMCID: PMC4297440 DOI: 10.1186/s12896-014-0107-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/09/2014] [Indexed: 11/30/2022] Open
Abstract
Background Xylanase can replace chemical additives to improve the volume and sensory properties of bread in the baking. Suitable baking xylanase with improved yield will promote the application of xylanase in baking industry. The xylanase XYNZG from the Plectosphaerella cucumerina has been previously characterized by heterologous expression in Pichia pastoris. However, P. pastoris is not a suitable host for xylanase to be used in the baking process since P. pastoris does not have GRAS (Generally Regarded As Safe) status and requires large methanol supplement during the fermentation in most conditions, which is not allowed to be used in the food industry. Kluyveromyces lactis, as another yeast expression host, has a GRAS status, which has been successfully used in food and feed applications. No previous work has been reported concerning the heterologous expression of xylanase gene xynZG in K. lactis with an aim for application in baking. Results The xylanase gene xynZG from the P. cucumerina was heterologously expressed in K. lactis. The recombinant protein XYNZG in K. lactis presented an approximately 19 kDa band on SDS-PAGE and zymograms analysis. Transformant with the highest halo on the plate containing the RBB-xylan (Remazol Brilliant Blue-xylan) was selected for the flask fermentation in different media. The results indicated that the highest activity of 115 U/ml at 72 h was obtained with the YLPU medium. The mass spectrometry analysis suggested that the hydrolytic products of xylan by XYNZG were mainly xylobiose and xylotriose. The results of baking trials indicated that the addition of XYNZG could reduce the kneading time of dough, increase the volume of bread, improve the texture, and have more positive effects on the sensory properties of bread. Conclusions Xylanase XYNZG is successfully expressed in K. lactis, which exhibits the highest activity among the published reports of the xylanase expression in K. lactis. The recombinant XYNZG can be used to improve the volume and sensory properties of bread. Therefore, the expression yield of recombinant XYNZG can be further improved through engineered strain containing high copy numbers of the XYNZG, and optimized fermentation condition, making bread-baking application possible.
Collapse
Affiliation(s)
- Fei Xiang Zhan
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Qin Hong Wang
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China.
| | - Si Jing Jiang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Yu Ling Zhou
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Gui Min Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Yan He Ma
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China.
| |
Collapse
|
3
|
Production of recombinant proteins by yeast cells. Biotechnol Adv 2012; 30:1108-18. [DOI: 10.1016/j.biotechadv.2011.09.011] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/12/2011] [Accepted: 09/17/2011] [Indexed: 01/14/2023]
|
4
|
High-level expression of a hyperthermostable Thermotoga maritima xylanase in Pichia pastoris by codon optimization. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Cloning and constitutive expression of His-tagged xylanase GH 11 from Penicillium occitanis Pol6 in Pichia pastoris X33: Purification and characterization. Protein Expr Purif 2012; 83:8-14. [DOI: 10.1016/j.pep.2012.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/18/2012] [Accepted: 02/20/2012] [Indexed: 11/18/2022]
|
6
|
Rocha SN, Abrahão-Neto J, Cerdán ME, Gombert AK, González-Siso MI. Heterologous expression of a thermophilic esterase in Kluyveromyces yeasts. Appl Microbiol Biotechnol 2010; 89:375-85. [PMID: 20862582 DOI: 10.1007/s00253-010-2869-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/13/2010] [Accepted: 09/07/2010] [Indexed: 11/26/2022]
Abstract
In the present work, a thermophilic esterase from Thermus thermophilus HB27 was cloned into Kluyveromyces marxianus and into Kluyveromyces lactis using two different expression systems, yielding four recombinant strains. K. lactis showed the highest esterase expression levels (294 units per gram dry cell weight, with 65% of cell-bound enzyme) using an episomal system with the PGK promoter and terminator from Saccharomyces cerevisiae combined with the K. lactis k1 secretion signal. K. marxianus showed higher secretion efficiency of the heterologous esterase (56.9 units per gram dry cell weight, with 34% of cell-bound enzyme) than K. lactis. Hydrolytic activities for the heterologous esterases were maximum at pH values between 8.0 and 9.0 for both yeast species and at temperatures of 50 °C and 45 °C for K. marxianus and K. lactis, respectively. When compared to previously published data on this same esterase produced in the original host or in S. cerevisiae, our results indicate that Kluyveromyces yeasts can be considered good hosts for the heterologous secretion of thermophilic esterases, which have a potential application in biodiesel production or in resolving racemates.
Collapse
Affiliation(s)
- Saul Nitsche Rocha
- Department of Chemical Engineering, University of São Paulo, C.P. 61548, 05424-970 São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
7
|
Colussi PA, Taron CH. Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Appl Environ Microbiol 2005; 71:7092-8. [PMID: 16269745 PMCID: PMC1287696 DOI: 10.1128/aem.71.11.7092-7098.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The strong LAC4 promoter (P(LAC4)) from Kluyveromyces lactis has been extensively used to drive expression of heterologous proteins in this industrially important yeast. A drawback of this expression method is the serendipitous ability of P(LAC4) to promote gene expression in Escherichia coli. This can interfere with the process of assembling expression constructs in E. coli cells prior to their introduction into yeast cells, especially if the cloned gene encodes a protein that is detrimental to bacteria. In this study, we created a series of P(LAC4) variants by targeted mutagenesis of three DNA sequences (PBI, PBII, and PBIII) that resemble the E. coli Pribnow box element of bacterial promoters and that reside immediately upstream of two E. coli transcription initiation sites associated with P(LAC4). Mutation of PBI reduced the bacterial expression of a reporter protein (green fluorescent protein [GFP]) by approximately 87%, whereas mutation of PBII and PBIII had little effect on GFP expression. Deletion of all three sequences completely eliminated GFP expression. Additionally, each promoter variant expressed human serum albumin in K. lactis cells to levels comparable to wild-type P(LAC4). We created a novel integrative expression vector (pKLAC1) containing the P(LAC4) variant lacking PBI and used it to successfully clone and express the catalytic subunit of bovine enterokinase, a protease that has historically been problematic in E. coli cells. The pKLAC1 vector should aid in the cloning of other potentially toxic genes in E. coli prior to their expression in K. lactis.
Collapse
Affiliation(s)
- Paul A Colussi
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | | |
Collapse
|
8
|
Chantasingh D, Pootanakit K, Champreda V, Kanokratana P, Eurwilaichitr L. Cloning, expression, and characterization of a xylanase 10 from Aspergillus terreus (BCC129) in Pichia pastoris. Protein Expr Purif 2005; 46:143-9. [PMID: 16275128 DOI: 10.1016/j.pep.2005.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 08/11/2005] [Accepted: 09/16/2005] [Indexed: 11/17/2022]
Abstract
A full-length xylanase gene, encoding 326 amino acids belonging to the fungal glycosyl hydrolase family 10, from Aspergillus terreus BCC129 was cloned and sequenced. Sequence analysis suggested that the first 25 amino acids of this enzyme is the signal peptide. Therefore, only the mature xylanase gene of 906 bp was cloned into a yeast expression vector, pPICZalphaA, for heterologous expression in Pichia pastoris. A band of approximately, 33 kDa was observed on the SDS-PAGE gel after one day of methanol induction. The expressed enzyme was purified by gel filtration chromatography. The purified recombinant xylanase demonstrated optimal activity at 60 degrees C, pH 5.0 and a Km of 4.8 +/- 0.07 mg/ml and a Vmax of 757 +/- 14.54 micromol/min mg, using birchwood xylan as a substrate. Additionally, the purified enzyme demonstrated broad pH stability from 4 to 10 when incubated at 40 degrees C for 4 h. It also showed a moderate thermal stability since it retained 90% of its activity when incubated at 50 degrees C, 30 min, making this enzyme a potential use in the animal feed and paper and pulp industries.
Collapse
Affiliation(s)
- Duriya Chantasingh
- BIOTEC Central Research Unit, 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand
| | | | | | | | | |
Collapse
|
9
|
Salani F, Bianchi MM. Production of glucoamylase in pyruvate decarboxylase deletion mutants of the yeast Kluyveromyces lactis. Appl Microbiol Biotechnol 2005; 69:564-72. [PMID: 16175368 DOI: 10.1007/s00253-005-0148-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 08/18/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Yeasts are widely used as hosts for the production of diverse heterologous proteins ranging from laboratory scale to industrial scale. The aim of this work is to provide new tools for the production of heterologous proteins in the yeast Kluyveromyces lactis. The promoter of the single gene (KlPDC1) encoding pyruvate decarboxylase is strong, inducible, and responsive to the presence of fermentable sugars and anoxic conditions in this yeast. Expression of KlPDC1 is repressed by ethanol and by autoregulation, a mechanism that involves protein KlPdc1. We constructed a heterologous gene expression cassette for a secreted protein (glucoamylase, GAM) under the control of the KlPDC1 promoter on a stable multicopy plasmid. GAM production by wild-type transformed strains was compared with that of klpdc1-deleted transformants. We obtained higher GAM production in the latter strains, which was due to continued expression of the GAM gene during the stationary phase rather than due to GAM transcription levels higher than the wild-type strains during growth phase. This finding opens new perspectives on the physiology of the stationary phase in K. lactis and suggests the possibility of using high-cell-density approaches for the efficient production of heterologous proteins with this yeast.
Collapse
Affiliation(s)
- Francesca Salani
- Centre of Excellence in Molecular Biology and Medicine, University of Rome La Sapienza, Rome, 00185, Italy
| | | |
Collapse
|
10
|
Colussi PA, Specht CA, Taron CH. Characterization of a nucleus-encoded chitinase from the yeast Kluyveromyces lactis. Appl Environ Microbiol 2005; 71:2862-9. [PMID: 15932978 PMCID: PMC1151841 DOI: 10.1128/aem.71.6.2862-2869.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 12/18/2004] [Indexed: 11/20/2022] Open
Abstract
Endogenous proteins secreted from Kluyveromyces lactis were screened for their ability to bind to or to hydrolyze chitin. This analysis resulted in identification of a nucleus-encoded extracellular chitinase (KlCts1p) with a chitinolytic activity distinct from that of the plasmid-encoded killer toxin alpha-subunit. Sequence analysis of cloned KlCTS1 indicated that it encodes a 551-amino-acid chitinase having a secretion signal peptide, an amino-terminal family 18 chitinase catalytic domain, a serine-threonine-rich domain, and a carboxy-terminal type 2 chitin-binding domain. The association of purified KlCts1p with chitin is stable in the presence of high salt concentrations and pH 3 to 10 buffers; however, complete dissociation and release of fully active KlCts1p occur in 20 mM NaOH. Similarly, secreted human serum albumin harboring a carboxy-terminal fusion with the chitin-binding domain derived from KlCts1p also dissociates from chitin in 20 mM NaOH, demonstrating the domain's potential utility as an affinity tag for reversible chitin immobilization or purification of alkaliphilic or alkali-tolerant recombinant fusion proteins. Finally, haploid K. lactis cells harboring a cts1 null mutation are viable but exhibit a cell separation defect, suggesting that KlCts1p is required for normal cytokinesis, probably by facilitating the degradation of septum-localized chitin.
Collapse
Affiliation(s)
- Paul A Colussi
- New England Biolabs, 32 Tozer Road, Beverly, Massachusetts 01915, USA
| | | | | |
Collapse
|
11
|
Gibbs MD, Reeves RA, Sunna A, Bergquist PL. A yeast intron as a translational terminator in a plasmid shuttle vector. FEMS Yeast Res 2004; 4:573-7. [PMID: 15040944 DOI: 10.1016/j.femsyr.2003.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 11/17/2003] [Accepted: 11/18/2003] [Indexed: 10/26/2022] Open
Abstract
Plasmid shuttle vectors that contain both prokaryotic (Escherichia coli) and eukaryotic origins of replication are routinely used in molecular biology since E. coli is generally the organism of choice for manipulation of recombinant DNA. Initial transformation of the shuttle vector into E. coli allows production of microgram quantities of DNA suitable for transformation of low-transformation-efficiency hosts. A shuttle/expression vector for the yeast Kluyveromyces lactis, pCWK1, allows recombinant protein fused to the killer toxin signal sequence to be secreted to the medium. The heterologous genes are transcribed under the control of the K. lactis LAC4 promoter, which is tightly regulated in K. lactis. However, in E. coli the LAC4 promoter functions constitutively, and as a result, uncontrolled transcription and translation of genes that are toxic in E. coli can result in cell death, and subsequent failure to recover intact E. coli transformants. We have constructed and tested a modified shuttle vector that contains a K. lactis ribosomal intron that acts as a translational terminator in E. coli, preventing or reducing the expression of recombinant proteins and avoiding toxicity. When transcribed in K. lactis, the intron is spliced from the mRNA allowing the translation of intact full-length, active recombinant gene product.
Collapse
Affiliation(s)
- Moreland D Gibbs
- Biotechnology Research Institute and Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | |
Collapse
|
12
|
Damaso MCT, Almeida MS, Kurtenbach E, Martins OB, Pereira N, Andrade CMMC, Albano RM. Optimized expression of a thermostable xylanase from Thermomyces lanuginosus in Pichia pastoris. Appl Environ Microbiol 2004; 69:6064-72. [PMID: 14532063 PMCID: PMC201252 DOI: 10.1128/aem.69.10.6064-6072.2003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly efficient production of a Thermomyces lanuginosus IOC-4145 beta-1,4-xylanase was achieved in Pichia pastoris under the control of the AOX1 promoter. P. pastoris colonies expressing recombinant xylanase were selected by enzymatic activity plate assay, and their ability to secrete high levels of the enzyme was evaluated in small-scale cultures. Furthermore, an optimization of enzyme production was carried out with a 2(3) factorial design. The influence of initial cell density, methanol, and yeast nitrogen base concentration was evaluated, and initial cell density was found to be the most important parameter. A time course profile of recombinant xylanase production in 1-liter flasks with the optimized conditions was performed and 148 mg of xylanase per liter was achieved. Native and recombinant xylanases were purified by gel filtration and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, circular dichroism spectroscopy, matrix-assisted laser desorption ionization-time of flight-mass spectrometry and physicochemical behavior. Three recombinant protein species of 21.9, 22.1, and 22.3 kDa were detected in the mass spectrum due to variability in the amino terminus. The optimum temperature, thermostability, and circular dichroic spectra of the recombinant and native xylanases were identical. For both enzymes, the optimum temperature was 75 degrees C, and they retained 60% of their original activity after 80 min at 70 degrees C or 40 min at 80 degrees C. The high level of fully active recombinant xylanase obtained in P. pastoris makes this expression system attractive for fermentor growth and industrial applications.
Collapse
Affiliation(s)
- Mônica C Triches Damaso
- Departamento de Engenharia Bioquímica, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Robin S, Petrov K, Dintinger T, Kujumdzieva A, Tellier C, Dion M. Comparison of three microbial hosts for the expression of an active catalytic scFv. Mol Immunol 2003; 39:729-38. [PMID: 12531284 DOI: 10.1016/s0161-5890(02)00253-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Antibodies represent an interesting protein framework on which catalytic functions can be grafted. In previous studies, we have reported the characterization of the catalytic antibody 4B2 obtained on the basis of the "bait and switch" strategy which catalyzes two different chemical reactions: the allylic isomerization of beta,gamma-unsaturated ketones and the Kemp elimination. We have cloned the antibody 4B2 and expressed it as a single-chain Fv (scFv) fragment in different expression systems, Escherichia coli and two yeasts species, in order to elicit the most suitable system to study its catalytic activity. The scFv4B2 was secreted as an active form in the culture medium of Pichia pastoris and Kluyveromyces lactis, which led respectively to 4 and 1.3mg/l after purification. In E. coli, different strategies were investigated to increase the cytoplasmic soluble fraction, which resulted, in all cases, in the expression of a low amount of functional antibodies. By contrast, substantial amount of scFv4B2 could be purified when it was expressed as inclusion bodies (12mg/l) and submitted to an in vitro refolding process. Its catalytic activity was measured and proved to be comparable to that of the whole IgG. However, the instability of the scFv4B2 in solution prevented from an exhaustive characterization of its activity and stabilization of this protein appears to be essential before designing strategies to improve its catalytic activity.
Collapse
Affiliation(s)
- Sylvain Robin
- FRE-CNRS no. 2230 Biocatalyse, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 03, France
| | | | | | | | | | | |
Collapse
|
14
|
Bergquist PL, Gibbs MD, Morris DD, Thompson DR, Uhl AM, Daniel RM. Hyperthermophilic xylanases. Methods Enzymol 2001; 330:301-19. [PMID: 11210509 DOI: 10.1016/s0076-6879(01)30384-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- P L Bergquist
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Morlino GB, Tizzani L, Fleer R, Frontali L, Bianchi MM. Inducible amplification of gene copy number and heterologous protein production in the yeast Kluyveromyces lactis. Appl Environ Microbiol 1999; 65:4808-13. [PMID: 10543790 PMCID: PMC91648 DOI: 10.1128/aem.65.11.4808-4813.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterologous protein production can be doubled by increasing the copy number of the corresponding heterologous gene. We constructed a host-vector system in the yeast Kluyveromyces lactis that was able to induce copy number amplification of pKD1 plasmid-based vectors upon expression of an integrated copy of the plasmid recombinase gene. We increased the production and secretion of two heterologous proteins, glucoamylase from the yeast Arxula adeninivorans and mammalian interleukin-1beta, following gene dosage amplification when the heterologous genes were carried by pKD1-based vectors. The choice of the promoters for expression of the integrated recombinase gene and of the episomal heterologous genes are critical for the mitotic stability of the host-vector system.
Collapse
Affiliation(s)
- G B Morlino
- Department of Cell and Developmental Biology, University of Rome "La Sapienza," Rome 00185, Italy
| | | | | | | | | |
Collapse
|
16
|
Abstract
A novel P-type Ca(2+)-ATPase gene has been cloned and sequenced in the yeast Kluyveromyces lactis. The gene has been named KlPMR1 and is localized on chromosome I. The putative gene product contains 936 residues and has a calculated molecular weight of 102,437 Da. Analysis of deduced amino acid sequence (KlPmr1p) indicated that the encoded protein retains all the highly conserved domains characterizing the P-type ATPases. KlPmr1p shares 71% amino acid identity with Pmr1p of S. cerevisiae, 62% with HpPmr1p of Hansenula polymorpha, 56% with Y1Pmr1p of Yarrowia lipolytica and 52% with the Ca(2+)-ATPase encoded for by the SPCA1 gene of Rattus norvegicus; these similarities place KlPmr1p in the SPCA group (secretory pathway Ca(2+)-ATPase) of the P-type ATPases. The K. lactis strain harbouring the Klpmr1 disrupted gene is not able to grow in presence of low calcium concentrations and shows hypersensitivity to high concentrations of EGTA in the medium. These defects are relieved by PMR1 of S. cerevisiae on a centromeric plasmid, demonstrating that KlPMR1 encodes for a functional Pmr1p homologue.
Collapse
Affiliation(s)
- D Uccelletti
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Cell and Developmental Biology, University of Rome La Sapienza, Italy
| | | | | |
Collapse
|
17
|
Uccelletti D, Farina F, Morlupi A, Palleschi C. Mutants of Kluyveromyces lactis with altered protein glycosylation are affected in cell wall morphogenesis. Res Microbiol 1999; 150:5-12. [PMID: 10096129 DOI: 10.1016/s0923-2508(99)80041-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We isolated spontaneous mutants resistant to sodium orthovanadate in the biotechnologically significant yeast Kluyveromyces lactis. Resistance behaved as a recessive character in all mutants analyzed. Four genes were defined by complementation analysis, from vga1 to vga4. These mutants showed defects in N-linked as well as O-linked glycosylation processes. In addition, the mutants exhibited sensitivity to the aminoglycoside hygromycin B and to calcofluor white, with the exception of vga4; this mutant grew in the presence of the antibiotic as well as the parental wild type and was resistant to calcofluor. The mutations were accompanied by alterations in the cell wall structure, as revealed by the delocalization of chitin, changes in cell shape and size and by the clumpy aspect of the cultures. The mutants isolated provide basic tools for molecular and cellular analysis of glycosylation processes in K. lactis.
Collapse
Affiliation(s)
- D Uccelletti
- Foundation Institut Pasteur-Fondazione Cenci-Bolognetti, Department of Developmental and Cell Biology, University of Rome La Sapienza, Italy
| | | | | | | |
Collapse
|