1
|
Penicillium roqueforti: an overview of its genetics, physiology, metabolism and biotechnological applications. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Coton M, Bregier T, Poirier E, Debaets S, Arnich N, Coton E, Dantigny P. Production and migration of patulin in Penicillium expansum molded apples during cold and ambient storage. Int J Food Microbiol 2020; 313:108377. [DOI: 10.1016/j.ijfoodmicro.2019.108377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 11/25/2022]
|
3
|
Coton M, Auffret A, Poirier E, Debaets S, Coton E, Dantigny P. Production and migration of ochratoxin A and citrinin in Comté cheese by an isolate of Penicillium verrucosum selected among Penicillium spp. mycotoxin producers in YES medium. Food Microbiol 2019; 82:551-559. [DOI: 10.1016/j.fm.2019.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/28/2022]
|
4
|
Dubey MK, Aamir M, Kaushik MS, Khare S, Meena M, Singh S, Upadhyay RS. PR Toxin - Biosynthesis, Genetic Regulation, Toxicological Potential, Prevention and Control Measures: Overview and Challenges. Front Pharmacol 2018; 9:288. [PMID: 29651243 PMCID: PMC5885497 DOI: 10.3389/fphar.2018.00288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/13/2018] [Indexed: 01/28/2023] Open
Abstract
Out of the various mycotoxigenic food and feed contaminant, the fungal species belonging to Penicillium genera, particularly Penicillium roqueforti is of great economic importance, and well known for its crucial role in the manufacturing of Roquefort and Gorgonzola cheese. The mycotoxicosis effect of this mold is due to secretion of several metabolites, of which PR toxin is of considerable importance, with regard to food quality and safety challenges issues. The food products and silages enriched with PR toxin could lead into damage to vital internal organs, gastrointestinal perturbations, carcinogenicity, immunotoxicity, necrosis, and enzyme inhibition. Moreover, it also has the significant mutagenic potential to disrupt/alter the crucial processes like DNA replication, transcription, and translation at the molecular level. The high genetic diversities in between the various strains of P. roqueforti persuaded their nominations with Protected Geographical Indication (PGI), accordingly to the cheese type, they have been employed. Recently, the biosynthetic mechanism and toxicogenetic studies unraveled the role of ari1 and prx gene clusters that cross-talk with the synthesis of other metabolites or involve other cross-regulatory pathways to negatively regulate/inhibit the other biosynthetic route targeted for production of a strain-specific metabolites. Interestingly, the chemical conversion that imparts toxic properties to PR toxin is the substitution/oxidation of functional hydroxyl group (-OH) to aldehyde group (-CHO). The rapid conversion of PR toxin to the other derivatives such as PR imine, PR amide, and PR acid, based on conditions available reflects their unstability and degradative aspects. Since the PR toxin-induced toxicity could not be eliminated safely, the assessment of dose-response and other pharmacological aspects for its safe consumption is indispensable. The present review describes the natural occurrences, diversity, biosynthesis, genetics, toxicological aspects, control and prevention strategies, and other management aspects of PR toxin with paying special attention on economic impacts with intended legislations for avoiding PR toxin contamination with respect to food security and other biosafety purposes.
Collapse
Affiliation(s)
- Manish K. Dubey
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mohd Aamir
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Manish S. Kaushik
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saumya Khare
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mukesh Meena
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Centre for Transgenic Plant Development, Department of Biotechnology, Faculty of Science, Hamdard University, New Delhi, India
| | - Surendra Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ram S. Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Functional diversity within the Penicillium roqueforti species. Int J Food Microbiol 2017; 241:141-150. [DOI: 10.1016/j.ijfoodmicro.2016.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/29/2016] [Accepted: 10/01/2016] [Indexed: 11/22/2022]
|
6
|
Hidalgo PI, Poirier E, Ullán RV, Piqueras J, Meslet-Cladière L, Coton E, Coton M. Penicillium roqueforti PR toxin gene cluster characterization. Appl Microbiol Biotechnol 2016; 101:2043-2056. [PMID: 27921136 DOI: 10.1007/s00253-016-7995-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 11/30/2022]
Abstract
PR toxin is a well-known isoprenoid mycotoxin almost solely produced by Penicillium roqueforti after growth on food or animal feed. This mycotoxin has been described as the most toxic produced by this species. In this study, an in silico analysis allowed identifying for the first time a 22.4-kb biosynthetic gene cluster involved in PR toxin biosynthesis in P. roqueforti. The pathway contains 11 open reading frames encoding for ten putative proteins including the major fungal terpene cyclase, aristolochene synthase, involved in the first farnesyl-diphosphate cyclization step as well as an oxidoreductase, an oxidase, two P450 monooxygenases, a transferase, and two dehydrogenase enzymes. Gene silencing was used to study three genes (ORF5, ORF6, and ORF8 encoding for an acetyltransferase and two P450 monooxygenases, respectively) and resulted in 20 to 40% PR toxin production reductions in all transformants proving the involvement of these genes and the corresponding enzyme activities in PR toxin biosynthesis. According to the considered silenced gene target, eremofortin A and B productions were also affected suggesting their involvement as biosynthetic intermediates in this pathway. A PR toxin biosynthesis pathway is proposed based on the most recent and available data.
Collapse
Affiliation(s)
- Pedro I Hidalgo
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, Plouzané, 29280, Brest, France
| | - Elisabeth Poirier
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, Plouzané, 29280, Brest, France
| | - Ricardo V Ullán
- mAbxience, Upstream Production, Parque Tecnológico de León, Julia Morros s/n, Armunia, 24009, León, Spain
| | - Justine Piqueras
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, Plouzané, 29280, Brest, France
| | - Laurence Meslet-Cladière
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, Plouzané, 29280, Brest, France
| | - Emmanuel Coton
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, Plouzané, 29280, Brest, France
| | - Monika Coton
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, Plouzané, 29280, Brest, France.
| |
Collapse
|
7
|
Gillot G, Jany JL, Dominguez-Santos R, Poirier E, Debaets S, Hidalgo PI, Ullán RV, Coton E, Coton M. Genetic basis for mycophenolic acid production and strain-dependent production variability in Penicillium roqueforti. Food Microbiol 2016; 62:239-250. [PMID: 27889155 DOI: 10.1016/j.fm.2016.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/29/2016] [Accepted: 10/03/2016] [Indexed: 11/16/2022]
Abstract
Mycophenolic acid (MPA) is a secondary metabolite produced by various Penicillium species including Penicillium roqueforti. The MPA biosynthetic pathway was recently described in Penicillium brevicompactum. In this study, an in silico analysis of the P. roqueforti FM164 genome sequence localized a 23.5-kb putative MPA gene cluster. The cluster contains seven genes putatively coding seven proteins (MpaA, MpaB, MpaC, MpaDE, MpaF, MpaG, MpaH) and is highly similar (i.e. gene synteny, sequence homology) to the P. brevicompactum cluster. To confirm the involvement of this gene cluster in MPA biosynthesis, gene silencing using RNA interference targeting mpaC, encoding a putative polyketide synthase, was performed in a high MPA-producing P. roqueforti strain (F43-1). In the obtained transformants, decreased MPA production (measured by LC-Q-TOF/MS) was correlated to reduced mpaC gene expression by Q-RT-PCR. In parallel, mycotoxin quantification on multiple P. roqueforti strains suggested strain-dependent MPA-production. Thus, the entire MPA cluster was sequenced for P. roqueforti strains with contrasted MPA production and a 174bp deletion in mpaC was observed in low MPA-producers. PCRs directed towards the deleted region among 55 strains showed an excellent correlation with MPA quantification. Our results indicated the clear involvement of mpaC gene as well as surrounding cluster in P. roqueforti MPA biosynthesis.
Collapse
Affiliation(s)
- Guillaume Gillot
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jean-Luc Jany
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Rebeca Dominguez-Santos
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain; Instituto de Biotecnología de León (INBIOTEC), Avenida Real n°1, Parque Científico de León, 24006 León, Spain
| | - Elisabeth Poirier
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Stella Debaets
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Pedro I Hidalgo
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Ricardo V Ullán
- mAbxience, Upstream Production, Parque Tecnológico de León, Julia Morros s/n, Armunia, 24009, León, Spain
| | - Emmanuel Coton
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Monika Coton
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
8
|
García-Estrada C, Martín JF. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. Appl Microbiol Biotechnol 2016; 100:8303-13. [PMID: 27554495 DOI: 10.1007/s00253-016-7788-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
Ripening of blue-veined cheeses, such as the French Bleu and Roquefort, the Italian Gorgonzola, the English Stilton, the Danish Danablu or the Spanish Cabrales, Picón Bejes-Tresviso, and Valdeón, requires the growth and enzymatic activity of the mold Penicillium roqueforti, which is responsible for the characteristic texture, blue-green spots, and aroma of these types of cheeses. This filamentous fungus is able to synthesize different secondary metabolites, including andrastins, mycophenolic acid, and several mycotoxins, such as roquefortines C and D, PR-toxin and eremofortins, isofumigaclavines A and B, and festuclavine. This review provides a detailed description of the main secondary metabolites produced by P. roqueforti in blue cheese, giving a special emphasis to roquefortine, PR-toxin and mycophenolic acid, and their biosynthetic gene clusters and pathways. The knowledge of these clusters and secondary metabolism pathways, together with the ability of P. roqueforti to produce beneficial secondary metabolites, is of interest for commercial purposes.
Collapse
Affiliation(s)
| | - Juan-Francisco Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071, León, Spain
| |
Collapse
|
9
|
Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways. Fungal Genet Biol 2013; 62:11-24. [PMID: 24239699 DOI: 10.1016/j.fgb.2013.10.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/03/2013] [Accepted: 10/17/2013] [Indexed: 11/22/2022]
Abstract
The PR-toxin is a potent mycotoxin produced by Penicillium roqueforti in moulded grains and grass silages and may contaminate blue-veined cheese. The PR-toxin derives from the 15 carbon atoms sesquiterpene aristolochene formed by the aristolochene synthase (encoded by ari1). We have cloned and sequenced a four gene cluster that includes the ari1 gene from P. roqueforti. Gene silencing of each of the four genes (named prx1 to prx4) resulted in a reduction of 65-75% in the production of PR-toxin indicating that the four genes encode enzymes involved in PR-toxin biosynthesis. Interestingly the four silenced mutants overproduce large amounts of mycophenolic acid, an antitumor compound formed by an unrelated pathway suggesting a cross-talk of PR-toxin and mycophenolic acid production. An eleven gene cluster that includes the above mentioned four prx genes and a 14-TMS drug/H(+) antiporter was found in the genome of Penicillium chrysogenum. This eleven gene cluster has been reported to be very poorly expressed in a transcriptomic study of P. chrysogenum genes under conditions of penicillin production (strongly aerated cultures). We found that this apparently silent gene cluster is able to produce PR-toxin in P. chrysogenum under static culture conditions on hydrated rice medium. Noteworthily, the production of PR-toxin was 2.6-fold higher in P. chrysogenum npe10, a strain deleted in the 56.8kb amplifiable region containing the pen gene cluster, than in the parental strain Wisconsin 54-1255 providing another example of cross-talk between secondary metabolite pathways in this fungus. A detailed PR-toxin biosynthesis pathway is proposed based on all available evidence.
Collapse
|
10
|
Jeleń HH. Volatile sesquiterpene hydrocarbons characteristic for Penicillium roqueforti strains producing PR toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:6569-6574. [PMID: 12381151 DOI: 10.1021/jf020311o] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Volatile metabolites that might accompany production of PR toxin by Penicillium roqueforti were investigated. Volatiles and PR toxin were evaluated for 16 strains of P. roqueforti. Solid phase microextraction was used for isolation of volatiles. Thirteen strains produced PR toxin, and all of them produced a specific set of sesquiterpene hydrocarbons including (+)-aristolochene-an intermediate in PR toxin biosynthesis, beta-bisabolene, alpha-chamigrene, diepi-alpha-cedrene, beta-elemene isomer, beta-elemene, beta-gurjunene, beta-himachalene, alpha-panasinsene, beta-patchoulene, beta-patchoulene isomer, alpha-selinene, and valencene. Aristolochene and the remainder of the sesquiterpene hydrocarbon profile were unique for P. roqueforti producing PR toxin. They were absent in nontoxigenic P. roqueforti and in 40 strains of other Penicillium species. Volatile compounds, sesquiterpene hydrocarbons, and aristolochene paralleled PR toxin synthesis. Incubation temperature (20, 24, or 27 degrees C) and water content in the medium (20, 30, or 40%) influenced the amount of produced sesquiterpenes, but not their profile, suggesting it is species specific. The sesquiterpene hydrocarbon pattern and especially aristolochene can be used as volatile markers for detecting the process of undergoing biosynthesis of PR toxin by P. roqueforti.
Collapse
Affiliation(s)
- Henryk H Jeleń
- Institute of Food Technology, Agricultural University of Poznań, Wojska Polskiego 31, 60-624 Poznań, Poland.
| |
Collapse
|