1
|
Sheppard RJ, Barraclough TG, Jansen VAA. The Evolution of Plasmid Transfer Rate in Bacteria and Its Effect on Plasmid Persistence. Am Nat 2021; 198:473-488. [PMID: 34559608 DOI: 10.1086/716063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractPlasmids are extrachromosomal segments of DNA that can transfer genes between bacterial cells. Many plasmid genes benefit bacteria but cause harm to human health by granting antibiotic resistance to pathogens. Transfer rate is a key parameter for predicting plasmid dynamics, but observed rates are highly variable, and the effects of selective forces on their evolution are unclear. We apply evolutionary analysis to plasmid conjugation models to investigate selective pressures affecting plasmid transfer rate, emphasizing host versus plasmid control, the costs of plasmid transfer, and the role of recipient cells. Our analyses show that plasmid-determined transfer rates can be predicted with three parameters (host growth rate, plasmid loss rate, and the cost of plasmid transfer on growth) under some conditions. We also show that low-frequency genetic variation in transfer rate can accumulate, facilitating rapid adaptation to changing conditions. Furthermore, reduced transfer rates due to host control have limited effects on plasmid prevalence until low enough to prevent plasmid persistence. These results provide a framework to predict plasmid transfer rate evolution in different environments and demonstrate the limited impact of host mechanisms to control the costs incurred when plasmids are present.
Collapse
|
2
|
Hall JPJ, Harrison E, Pärnänen K, Virta M, Brockhurst MA. The Impact of Mercury Selection and Conjugative Genetic Elements on Community Structure and Resistance Gene Transfer. Front Microbiol 2020; 11:1846. [PMID: 32849443 PMCID: PMC7419628 DOI: 10.3389/fmicb.2020.01846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Carriage of resistance genes can underpin bacterial survival, and by spreading these genes between species, mobile genetic elements (MGEs) can potentially protect diversity within microbial communities. The spread of MGEs could be affected by environmental factors such as selection for resistance, and biological factors such as plasmid host range, with consequences for individual species and for community structure. Here we cultured a focal bacterial strain, Pseudomonas fluorescens SBW25, embedded within a soil microbial community, with and without mercury selection, and with and without mercury resistance plasmids (pQBR57 or pQBR103), to investigate the effects of selection and resistance gene introduction on (1) the focal species; (2) the community as a whole; (3) the spread of the introduced mer resistance operon. We found that P. fluorescens SBW25 only escaped competitive exclusion by other members of community under mercury selection, even when it did not begin with a mercury resistance plasmid, due to its propensity to acquire resistance from the community by horizontal gene transfer. Mercury pollution had a significant effect on community structure, decreasing alpha diversity within communities while increasing beta diversity between communities, a pattern that was not affected by the introduction of mercury resistance plasmids by P. fluorescens SBW25. Nevertheless, the introduced merA gene spread to a phylogenetically diverse set of recipients over the 5 weeks of the experiment, as assessed by epicPCR. Our data demonstrates how the effects of MGEs can be experimentally assessed for individual lineages, the wider community, and for the spread of adaptive traits.
Collapse
Affiliation(s)
- James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, The University of Liverpool, Liverpool, United Kingdom.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,Department of Biology, University of York, York, United Kingdom
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | - Marko Virta
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Sheppard RJ, Beddis AE, Barraclough TG. The role of hosts, plasmids and environment in determining plasmid transfer rates: A meta-analysis. Plasmid 2020; 108:102489. [DOI: 10.1016/j.plasmid.2020.102489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 12/08/2019] [Indexed: 12/19/2022]
|
4
|
Assessing genetic diversity and similarity of 435 KPC-carrying plasmids. Sci Rep 2019; 9:11223. [PMID: 31375735 PMCID: PMC6677891 DOI: 10.1038/s41598-019-47758-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023] Open
Abstract
The global spread and diversification of multidrug-resistant Gram-negative (MRGN) bacteria poses major challenges to healthcare. In particular, carbapenem-resistant Klebsiella pneumoniae strains have been frequently identified in infections and hospital-wide outbreaks. The most frequently underlying resistance gene (blaKPC) has been spreading over the last decade in the health care setting. blaKPC seems to have rapidly diversified and has been found in various species and on different plasmid types. To review the progress and dynamics of this diversification, all currently available KPC plasmids in the NCBI database were analysed in this work. Plasmids were grouped into 257 different representative KPC plasmids, of which 79.4% could be clearly assigned to incompatibility (Inc) group or groups. In almost half of all representative plasmids, the KPC gene is located on Tn4401 variants, emphasizing the importance of this transposon type for the transmission of KPC genes to other plasmids. The transposons also seem to be responsible for the occurrence of altered or uncommon fused plasmid types probably due to incomplete transposition. Moreover, many KPC plasmids contain genes that encode proteins promoting recombinant processes and mutagenesis; in consequence accelerating the diversification of KPC genes and other colocalized resistance genes.
Collapse
|
5
|
Hoque E, Fritscher J. A new mercury-accumulating Mucor hiemalis strain EH8 from cold sulfidic spring water biofilms. Microbiologyopen 2016; 5:763-781. [PMID: 27177603 PMCID: PMC5061714 DOI: 10.1002/mbo3.368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 11/24/2022] Open
Abstract
Here, we report about a unique aquatic fungus Mucor hiemalisEH8 that can remove toxic ionic mercury from water by intracellular accumulation and reduction into elemental mercury (Hg0 ). EH8 was isolated from a microbial biofilm grown in sulfidic-reducing spring water sourced at a Marching's site located downhill from hop cultivation areas with a history of mercury use. A thorough biodiversity survey and mercury-removal function analyses were undertaken in an area of about 200 km2 in Bavaria (Germany) to find the key biofilm and microbe for mercury removal. After a systematic search using metal removal assays we identified Marching spring's biofilm out of 18 different sulfidic springs' biofilms as the only one that was capable of removing ionic Hg from water. EH8 was selected, due to its molecular biological identification as the key microorganism of this biofilm with the capability of mercury removal, and cultivated as a pure culture on solid and in liquid media to produce germinating sporangiospores. They removed 99% of mercury from water within 10-48 h after initial exposure to Hg(II). Scanning electron microscopy demonstrated occurrence of intracellular mercury in germinating sporangiospores exposed to mercury. Not only associated with intracellular components, but mercury was also found to be released and deposited as metallic-shiny nanospheres. Electron-dispersive x-ray analysis of such a nanosphere confirmed presence of mercury by the HgMα peak at 2.195 keV. Thus, a first aquatic eukaryotic microbe has been found that is able to grow even at low temperature under sulfur-reducing conditions with promising performance in mercury removal to safeguard our environment from mercury pollution.
Collapse
Affiliation(s)
- Enamul Hoque
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Groundwater Ecology, Ingolstädter Landstr.1, Neuherberg, 85764, Germany.
| | - Johannes Fritscher
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Groundwater Ecology, Ingolstädter Landstr.1, Neuherberg, 85764, Germany
| |
Collapse
|
6
|
Lloyd NA, Janssen SE, Reinfelder JR, Barkay T. Co-selection of Mercury and Multiple Antibiotic Resistances in Bacteria Exposed to Mercury in the Fundulus heteroclitus Gut Microbiome. Curr Microbiol 2016; 73:834-842. [DOI: 10.1007/s00284-016-1133-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
|
7
|
Characterization of a collection of plasmid-containing bacteria isolated from an on-farm biopurification system used for pesticide removal. Plasmid 2015; 80:16-23. [PMID: 25957823 DOI: 10.1016/j.plasmid.2015.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/24/2015] [Accepted: 05/01/2015] [Indexed: 11/21/2022]
Abstract
Biopurification systems (BPS) are complex soil-related and artificially-generated environments usually designed for the removal of toxic compounds from contaminated wastewaters. The present study has been conducted to isolate and characterize a collection of cultivable plasmid-carrying bacterial isolates recovered from a BPS established for the decontamination of wastewater generated in a farmyard. Out of 1400 isolates, a collection of 75 plasmid-containing bacteria was obtained, of which 35 representative isolates comprising in total at least 50 plasmids were chosen for further characterization. Bacterial hosts were taxonomically assigned by 16S ribosomal RNA gene sequencing and phenotypically characterized according to their ability to grow in presence of different antibiotics and heavy metals. The study demonstrated that a high proportion of the isolates was tolerant to antibiotics and/or heavy metals, highlighting the on-farm BPS enrichment in such genetic traits. Several plasmids conferring such resistances in the bacterial collection were detected to be either mobilizable or selftransmissible. Occurrence of broad host range plasmids of the incompatibility groups IncP, IncQ, IncN and IncW was examined with positive results only for the first group. Presence of the IS1071 insertion sequence, frequently associated with xenobiotics degradation genes, was detected in DNA obtained from 24 of these isolates, strongly suggesting the presence of yet-hidden catabolic activities in the collection of isolates. The results showed a remarkable diversity in the plasmid mobilome of cultivable bacteria in the BPS with the presence of abundant resistance markers of different types, thus providing a suitable environment to investigate the genetic structure of the mobile genetic pool in a model on-farm biofilter for wastewater decontamination in intensive agricultural production.
Collapse
|
8
|
|
9
|
Ekyastuti W, Setyawati TR. Identification and in Vitro Effectivenesstest of Four Isolates of Mercury-resistant Bacteriaas Bioaccumulation Agents of Mercury. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proenv.2015.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Haq IU, Zhang M, Yang P, van Elsas JD. The interactions of bacteria with fungi in soil: emerging concepts. ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:185-215. [PMID: 25131403 DOI: 10.1016/b978-0-12-800259-9.00005-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this chapter, we review the existing literature on bacterial-fungal interactions in soil, exploring the role fungi may play for soil bacteria as providers of hospitable niches. A focus is placed on the mycosphere, i.e., the narrow zone of influence of fungal hyphae on the external soil milieu, in which hypha-associated bacterial cells dwell. Evidence is brought forward for the contention that the hyphae of both mycorrhizal and saprotrophic fungi serve as providers of ecological opportunities in a grossly carbon-limited soil, as a result of their release of carbonaceous compounds next to the provision of a colonizable surface. Soil bacteria of particular nature are postulated to have adapted to such selection pressures, evolving to the extent that they acquired capabilities that allow them to thrive in the novel habitat created by the emerging fungal hyphae. The mechanisms involved in the interactions and the modes of genetic adaptation of the mycosphere dwellers are discussed, with an emphasis on one key mycosphere-adapted bacterium, Burkholderia terrae BS001. In this discussion, we interrogate the positive interactions between soil fungi and bacteria, and refrain from considering negative interactions.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Miaozhi Zhang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Pu Yang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
11
|
Potentially novel copper resistance genes in copper-enriched activated sludge revealed by metagenomic analysis. Appl Microbiol Biotechnol 2014; 98:10255-66. [PMID: 25081552 DOI: 10.1007/s00253-014-5939-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
In this study, we utilized the Illumina high-throughput metagenomic approach to investigate diversity and abundance of both microbial community and copper resistance genes (CuRGs) in activated sludge (AS) which was enriched under copper selective stress up to 800 mg/L. The raw datasets (~3.5 Gb for each sample, i.e., the copper-enriched AS and the control AS) were merged and normalized for the BLAST analyses against the SILVA SSU rRNA gene database and self-constructed copper resistance protein database (CuRD). Also, the raw metagenomic sequences were assembled into contigs and analyzed based on Open Reading Frames (ORFs) to identify potentially novel copper resistance genes. Among the different resistance systems for copper detoxification under the high copper stress condition, the Cus system was the most enriched system. The results also indicated that genes encoding multi-copper oxidase played a more important role than those encoding efflux proteins. More significantly, several potentially novel copper resistance ORFs were identified by Pfam search and phylogenic analysis. This study demonstrated a new understanding of microbial-mediated copper resistance under high copper stress using high-throughput shotgun sequencing technique.
Collapse
|
12
|
Tardy V, Mathieu O, Lévêque J, Terrat S, Chabbi A, Lemanceau P, Ranjard L, Maron PA. Stability of soil microbial structure and activity depends on microbial diversity. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:173-83. [PMID: 24596291 DOI: 10.1111/1758-2229.12126] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/30/2013] [Indexed: 05/24/2023]
Abstract
Despite the central role of microbes in soil processes, empirical evidence concerning the effect of their diversity on soil stability remains controversial. Here, we addressed the ecological insurance hypothesis by examining the stability of microbial communities along a gradient of soil microbial diversity in response to mercury pollution and heat stress. Diversity was manipulated by dilution extinction approach. Structural and functional stabilities of microbial communities were assessed from patterns of genetic structure and soil respiration after the stress. Dilution led to the establishment of a consistent diversity gradient, as revealed by 454 sequencing of ribosomal genes. Diversity stability was enhanced in species-rich communities whatever the stress whereas functional stability was improved with increasing diversity after heat stress, but not after mercury pollution. This discrepancy implies that the relevance of ecological insurance for soil microbial communities might depend on the type of stress. Our results also suggest that the significance of microbial diversity for soil functional stability might increase with available soil resources. This could have strong repercussions in the current 'global changes' context because it suggests that the combined increased frequencies of extreme climatic events, nutrient loading and biotic exploitation may amplify the functional consequences of diversity decrease.
Collapse
|
13
|
Pérez-Valdespino A, Celestino-Mancera M, Villegas-Rodríguez VL, Curiel-Quesada E. Characterization of mercury-resistant clinical Aeromonas species. Braz J Microbiol 2014; 44:1279-83. [PMID: 24688523 PMCID: PMC3958199 DOI: 10.1590/s1517-83822013000400036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 04/04/2013] [Indexed: 01/14/2023] Open
Abstract
Mercury-resistant Aeromonas strains isolated from diarrhea were studied. Resistance occurs via mercuric ion reduction but merA and merR genes were only detected in some strains using PCR and dot hybridization. Results indicate a high variability in mer operons in Aeromonas. To our knowledge, this is the first report of mercury-resistant clinical Aeromonas strains.
Collapse
Affiliation(s)
- Abigail Pérez-Valdespino
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Martin Celestino-Mancera
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Everardo Curiel-Quesada
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
14
|
Mujumdar SS, Bashetti SP, Chopade BA. Plasmid pUPI126-encoded pyrrolnitrin production by Acinetobacter haemolyticus A19 isolated from the rhizosphere of wheat. World J Microbiol Biotechnol 2013; 30:495-505. [PMID: 23990066 DOI: 10.1007/s11274-013-1426-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/03/2013] [Indexed: 11/30/2022]
Abstract
An Acinetobacter species identified as A. haemolyticus A19 produces an antibiotic and the enzyme chitinase. The antibiotic produced by A. haemolyticus A19 was extracellular and inducible by co-cultivation with Klebsiella pneumoniae in the optimum ratio 2:1, respectively. pH 7, temperature 28 °C, and addition of 2% (w/v) NaCl are the most suitable environmental conditions for production and activity of the antibiotic. The antibiotic was produced in the early stationary growth phase (48 h) of A. haemolyticus A19. It has a very broad spectrum of antimicrobial activity against plant and human pathogenic bacteria and fungi. The antibiotic was extracted with ethyl acetate and purified by column chromatography with further purification by preparative thin-layer chromatography. Yield of the antibiotic was 15 mg/l. The antibiotic was active at very low concentrations, for example 50 μg/ml, and was water-soluble. It was stable at room temperature for up to 7 days. (1)H NMR analysis revealed the antibiotic was a pyrrolnitrin. It was found that pyrrolnitrin production by A. haemolyticus A19 was encoded by plasmid pUPI126 of molecular weight 25.7 kb. Plasmid pUPI126 was transferred to E. coli HB101 at a frequency of 5 × 10(-5) per μg DNA. It was also conjugally transformed to E. coli HB101 rif (r) mutants at a frequency of 5.9 × 10(-8) per recipient cell. Plasmid pUPI126 was 100% stable in Acinetobacter and 95% stable in E. coli HB101. Transconjugants and transformants both produced the antibiotic. This is the first report of plasmid-mediated pyrrolnitrin production by A. haemolyticus A19 isolated from wheat rhizosphere.
Collapse
Affiliation(s)
- Shilpa S Mujumdar
- Department of Microbiology, University of Pune, Pune, 411007, Maharashtra, India,
| | | | | |
Collapse
|
15
|
Heuer H, Smalla K. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol Rev 2012; 36:1083-104. [DOI: 10.1111/j.1574-6976.2012.00337.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 10/15/2011] [Accepted: 02/24/2012] [Indexed: 11/26/2022] Open
|
16
|
Ikeda S, Tsurumaru H, Wakai S, Noritake C, Fujishiro K, Akasaka M, Ando K. Evaluation of the effects of different additives in improving the DNA extraction yield and quality from andosol. Microbes Environ 2012; 23:159-66. [PMID: 21558703 DOI: 10.1264/jsme2.23.159] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A series of additives were evaluated for their effects on improving the yield and quality of DNA extracted from recalcitrant soils. Levels of possible DNA contaminants in these supplements were also assessed. Three of the additives (skim milk, casein, and RNA) were shown to be effective in improving the stable extraction of DNA from recalcitrant samples of Andosol. However, whereas skim milk appeared to be the most effective additive for this purpose, our data indicated that this commercially sourced product contained considerable amounts of contaminant DNA (30 to 40 μg/g skim milk). A ribosomal intergenic spacer analysis (RISA) revealed the consistent contamination of different batches of this product with DNA of several species of both eukaryotes (cattle and protists) and prokaryotes. In particular, thermophilic bacteria such as Geobacillus and Anoxybacillus were identified in the sequenced PCR amplicons from skim milk. The results of the RISA clearly also indicated that the impact of contaminated DNA on the analysis of a microbial community could be significant when skim milk is used for extracting DNA from a recalcitrant soil. In contrast, only a trace amount of contaminating DNA was evident in casein and none was detected in the RNA examined in the present study.
Collapse
Affiliation(s)
- Seishi Ikeda
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE)
| | | | | | | | | | | | | |
Collapse
|
17
|
Ogilvie LA, Firouzmand S, Jones BV. Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome. Bioeng Bugs 2012; 3:13-31. [PMID: 22126801 PMCID: PMC3329251 DOI: 10.4161/bbug.3.1.17883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous mobile genetic elements (MGE) are associated with the human gut microbiota and collectively referred to as the gut mobile metagenome. The role of this flexible gene pool in development and functioning of the gut microbial community remains largely unexplored, yet recent evidence suggests that at least some MGE comprising this fraction of the gut microbiome reflect the co-evolution of host and microbe in the gastro-intestinal tract. In conjunction, the high level of novel gene content typical of MGE coupled with their predicted high diversity, suggests that the mobile metagenome constitutes an immense and largely unexplored gene-space likely to encode many novel activities with potential biotechnological or pharmaceutical value, as well as being important to the development and functioning of the gut microbiota. Of the various types of MGE that comprise the gut mobile metagenome, plasmids are of particular importance since these elements are often capable of autonomous transfer between disparate bacterial species, and are known to encode accessory functions that increase bacterial fitness in a given environment facilitating bacterial adaptation. In this article current knowledge regarding plasmids resident in the human gut mobile metagenome is reviewed, and available strategies to access and characterize this portion of the gut microbiome are described. The relative merits of these methods and their present as well as prospective impact on our understanding of the human gut microbiota is discussed.
Collapse
Affiliation(s)
- Lesley A Ogilvie
- Centre for Biomedical and Health Science Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | | | | |
Collapse
|
18
|
Garcillán-Barcia MP, Alvarado A, de la Cruz F. Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiol Rev 2011; 35:936-56. [PMID: 21711366 DOI: 10.1111/j.1574-6976.2011.00291.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Plasmids contain a backbone of core genes that remains relatively stable for long evolutionary periods, making sense to speak about plasmid species. The identification and characterization of the core genes of a plasmid species has a special relevance in the study of its epidemiology and modes of transmission. Besides, this knowledge will help to unveil the main routes that genes, for example antibiotic resistance (AbR) genes, use to travel from environmental reservoirs to human pathogens. Global dissemination of multiple antibiotic resistances and virulence traits by plasmids is an increasing threat for the treatment of many bacterial infectious diseases. To follow the dissemination of virulence and AbR genes, we need to identify the causative plasmids and follow their path from reservoirs to pathogens. In this review, we discuss how the existing diversity in plasmid genetic structures gives rise to a large diversity in propagation strategies. We would like to propose that, using an identification methodology based on plasmid mobility types, we can follow the propagation routes of most plasmids in Gammaproteobacteria, as well as their cargo genes, in complex ecosystems. Once the dissemination routes are known, designing antidissemination drugs and testing their efficacy will become feasible. We discuss in this review how the existing diversity in plasmid genetic structures gives rise to a large diversity in propagation strategies. We would like to propose that, by using an identification methodology based on plasmid mobility types, we can follow the propagation routes of most plasmids in ?-proteobacteria, as well as their cargo genes, in complex ecosystems.
Collapse
Affiliation(s)
- Maria Pilar Garcillán-Barcia
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-IDICAN, C. Herrera Oria s/n, Santander, Spain
| | | | | |
Collapse
|
19
|
Abstract
The horizontal transfer of genes encoded on mobile genetic elements (MGEs) such as plasmids and phage and their associated hitchhiking elements (transposons, integrons, integrative and conjugative elements, and insertion sequences) rapidly accelerate genome diversification of microorganisms, thereby affecting their physiology, metabolism, pathogenicity,and ecological character. The analyses of completed prokaryotic genomes reveal that horizontal gene transfer (HGT) continues to be an important factor contributing to the innovation of microbial genomes. Indeed, microbial genomes are remarkably dynamic and a considerable amount of genetic information is inserted or deleted by HGT mechanisms. Thus, HGT and the vast pool of MGEs provide microbial communities with an unparalleled means by which to respond rapidly to changing environmental conditions and exploit new ecological niches. Metals and radionuclide contamination in soils, the subsurface, and aquifers poses a serious challenge to microbial growth and survival because these contaminants cannot be transformed or biodegraded into non-toxic forms as often occurs with organic xenobiotic contaminants. In this chapter we present cases in which HGT has been demonstrated to contribute to the dissemination of genes that provide adaptation to contaminant stress (i.e., toxic heavy metals and radionuclides). In addition, we present directions for future studies that could provide even greater insights into the contributions of HGT to adaptation for survival in mixed waste sites.
Collapse
|
20
|
Roane TM, Reynolds KA, Maier RM, Pepper IL. Microorganisms. Environ Microbiol 2009. [DOI: 10.1016/b978-0-12-370519-8.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
21
|
Prevalence of tetracycline resistance genes in Greek seawater habitats. J Microbiol 2008; 46:633-40. [DOI: 10.1007/s12275-008-0080-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
|
22
|
Khan SJ, Roser DJ, Davies CM, Peters GM, Stuetz RM, Tucker R, Ashbolt NJ. Chemical contaminants in feedlot wastes: concentrations, effects and attenuation. ENVIRONMENT INTERNATIONAL 2008; 34:839-859. [PMID: 18055014 DOI: 10.1016/j.envint.2007.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 10/28/2007] [Accepted: 10/29/2007] [Indexed: 05/25/2023]
Abstract
Commercial feedlots for beef cattle finishing are potential sources of a range of trace chemicals which have human health or environmental significance. To ensure adequate protection of human and environmental health from exposure to these chemicals, the application of effective manure and effluent management practices is warranted. The Australian meat and livestock industry has adopted a proactive approach to the identification of best management practices. Accordingly, this review was undertaken to identify key chemical species that may require consideration in the development of guidelines for feedlot manure and effluent management practices in Australia. Important classes of trace chemicals identified include steroidal hormones, antibiotics, ectoparasiticides, mycotoxins, heavy metals and dioxins. These are described in terms of their likely sources, expected concentrations and public health or environmental significance based on international data and research. Androgenic hormones such as testosterone and trenbolone are significantly active in feedlot wastes, but they are poorly understood in terms of fate and environmental implications. The careful management of residues of antibiotics including virginiamycin, tylosin and oxytetracycline appears prudent in terms of minimising the risk of potential public health impacts from resistant strains of bacteria. Good management of ectoparasiticides including synthetic pyrethroids, macrocyclic lactones, fluazuron, and amitraz is important for the prevention of potential ecological implications, particularly towards dung beetles. Very few of these individual chemical contaminants have been thoroughly investigated in terms of concentrations, effects and attenuation in Australian feedlot wastes.
Collapse
Affiliation(s)
- S J Khan
- Centre for Water and Waste Technology, School of Civil and Environmental Engineering, University of New South Wales, NSW 2054, Australia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Gaze W, O'Neill C, Wellington E, Hawkey P. Antibiotic resistance in the environment, with particular reference to MRSA. ADVANCES IN APPLIED MICROBIOLOGY 2008; 63:249-80. [PMID: 18395130 DOI: 10.1016/s0065-2164(07)00007-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- William Gaze
- Department of Biological Sciences, University of Warwick, Coventry CV47AL, United Kingdom
| | | | | | | |
Collapse
|
24
|
Slater FR, Bruce KD, Ellis RJ, Lilley AK, Turner SL. Heterogeneous selection in a spatially structured environment affects fitness tradeoffs of plasmid carriage in pseudomonads. Appl Environ Microbiol 2008; 74:3189-97. [PMID: 18378654 PMCID: PMC2394952 DOI: 10.1128/aem.02383-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 03/21/2008] [Indexed: 11/20/2022] Open
Abstract
Environmental conditions under which fitness tradeoffs of plasmid carriage are balanced to facilitate plasmid persistence remain elusive. Periodic selection for plasmid-encoded traits due to the spatial and temporal variation typical in most natural environments (such as soil particles, plant leaf and root surfaces, gut linings, and the skin) may play a role. However, quantification of selection pressures and their effects is difficult at a scale relevant to the bacterium in situ. The present work describes a novel experimental system for such fine-scale quantification, with conditions designed to mimic the mosaic of spatially variable selection pressures present in natural surface environments. The effects of uniform and spatially heterogeneous mercuric chloride (HgCl(2)) on the dynamics of a model community of plasmid-carrying, mercury-resistant (Hg(r)) and plasmid-free, mercury-sensitive (Hg(s)) pseudomonads were compared. Hg resulted in an increase in the surface area occupied by, and therefore an increase in the fitness of, Hg(r) bacteria relative to Hg(s) bacteria. Uniform and heterogeneous Hg distributions were demonstrated to result in different community structures by epifluorescence microscopy, with heterogeneous Hg producing spatially variable selection landscapes. The effects of heterogeneous Hg were only apparent at scales of a few hundred micrometers, emphasizing the importance of using appropriate analysis methods to detect effects of environmental heterogeneity on community dynamics. Heterogeneous Hg resulted in negative frequency-dependent selection for Hg(r) cells, suggesting that sporadic selection may facilitate the discontinuous distribution of plasmids through host populations in complex, structured environments.
Collapse
Affiliation(s)
- Frances R Slater
- The Centre for Ecology and Hydrology, Mansfield Road, Oxford OX1 3SR, United Kingdom
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Bahl MI, Hansen LH, Goesmann A, Sørensen SJ. The multiple antibiotic resistance IncP-1 plasmid pKJK5 isolated from a soil environment is phylogenetically divergent from members of the previously established α, β and δ sub-groups. Plasmid 2007; 58:31-43. [PMID: 17306874 DOI: 10.1016/j.plasmid.2006.11.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/07/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
The 54,383bp plasmid pKJK5 was recovered from a soil environment by exogenous plasmid isolation and conveys resistance towards tetracycline and trimethoprim. Sequencing and annotation revealed a high level of structural similarity of the backbone genes to other IncP-1 plasmids containing a Tra1 and Tra2 region, a central control module and a replication initiation module. A considerable degree of divergence was associated with the backbone genes of pKJK5 as compared to homologous genes in the alpha, beta and delta subgroups, which indicates that pKJK5 may belong to a novel subgroup of IncP-1 plasmids, which may also accommodate the partially sequenced non-subgroup classified plasmid pEMT3. Individual backbone genes in pKJK5 have a GC-content, which is consistently lower (average 6.3%) than the homologous genes from the archetype IncP-1beta plasmid R751 indicating homogenous amelioration of IncP-1 plasmid backbone genes. Two discrete accessory elements of 2145bp (load 1) and 11678bp (load 2) respectively are situated between the Tra1 and Tra2 regions of pKJK5, both bounded by inverted repeats and direct flanking repeats indicative of transposon-mediated insertion. Load 1 consists of an insertion sequence ISPa17 and load 2 is a Tn402-derivative containing a class 1 integron, IS1326 and a fragment identical to a region of plasmid pTB11 harboring a tetracycline resistance determinant and part of an IncP-1alphaoriV region.
Collapse
Affiliation(s)
- Martin Iain Bahl
- Department of Microbiology, University of Copenhagen, Sølvgade 83H, 1307 Copenhagen K, Denmark
| | | | | | | |
Collapse
|
27
|
Schlüter A, Szczepanowski R, Pühler A, Top EM. Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 2007; 31:449-77. [PMID: 17553065 DOI: 10.1111/j.1574-6976.2007.00074.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The dramatic spread of antibiotic resistance is a crisis in the treatment of infectious diseases that affect humans. Several studies suggest that wastewater treatment plants (WWTP) are reservoirs for diverse mobile antibiotic resistance elements. This review summarizes findings derived from genomic analysis of IncP-1 resistance plasmids isolated from WWTP bacteria. Plasmids that belong to the IncP-1 group are self-transmissible, and transfer to and replicate in a wide range of hosts. Their backbone functions are described with respect to their impact on vegetative replication, stable maintenance and inheritance, mobility and plasmid control. Accessory genetic modules, mainly representing mobile genetic elements, are integrated in-between functional plasmid backbone modules. These elements carry determinants conferring resistance to nearly all clinically relevant antimicrobial drug classes, to heavy metals, and quaternary ammonium compounds used as disinfectants. All plasmids analysed here contain integrons that potentially facilitate integration, exchange and dissemination of resistance gene cassettes. Comparative genomics of accessory modules located on plasmids from WWTP and corresponding modules previously identified in other bacterial genomes revealed that animal, human and plant pathogens and other bacteria isolated from different habitats share a common pool of resistance determinants.
Collapse
Affiliation(s)
- Andreas Schlüter
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Bielefeld, Germany
| | | | | | | |
Collapse
|
28
|
El Yacoubi B, Brunings AM, Yuan Q, Shankar S, Gabriel DW. In planta horizontal transfer of a major pathogenicity effector gene. Appl Environ Microbiol 2007; 73:1612-21. [PMID: 17220258 PMCID: PMC1828793 DOI: 10.1128/aem.00261-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas citri pv. citri is a clonal group of strains that causes citrus canker disease and appears to have originated in Asia. A phylogenetically distinct clonal group that causes identical disease symptoms on susceptible citrus, X. citri pv. aurantifolii, arose more recently in South America. Genomes of X. citri pv. aurantifolii strains carry two DNA fragments that hybridize to pthA, an X. citri pv. citri gene which encodes a major type III pathogenicity effector protein that is absolutely required to cause citrus canker. Marker interruption mutagenesis and complementation revealed that X. citri pv. aurantifolii strain B69 carried one functional pthA homolog, designated pthB, that was required to cause cankers on citrus. Gene pthB was found among 38 open reading frames on a 37,106-bp plasmid, designated pXcB, which was sequenced and annotated. No additional pathogenicity effectors were found on pXcB, but 11 out of 38 open reading frames appeared to encode a type IV transfer system. pXcB transferred horizontally in planta, without added selection, from B69 to a nonpathogenic X. citri pv. citri (pthA::Tn5) mutant strain, fully restoring canker. In planta transfer efficiencies were very high (>0.1%/recipient) and equivalent to those observed for agar medium with antibiotic selection, indicating that pthB conferred a strong selective advantage to the recipient strain. A single pathogenicity effector that can confer a distinct selective advantage in planta may both facilitate plasmid survival following horizontal gene transfer and account for the origination of phylogenetically distinct groups of strains causing identical disease symptoms.
Collapse
Affiliation(s)
- B El Yacoubi
- Plant Molecular and Cell Biology Program and Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, USA
| | | | | | | | | |
Collapse
|
29
|
Ní Chadhain SM, Schaefer JK, Crane S, Zylstra GJ, Barkay T. Analysis of mercuric reductase (merA) gene diversity in an anaerobic mercury-contaminated sediment enrichment. Environ Microbiol 2006; 8:1746-52. [PMID: 16958755 DOI: 10.1111/j.1462-2920.2006.01114.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The reduction of ionic mercury to elemental mercury by the mercuric reductase (MerA) enzyme plays an important role in the biogeochemical cycling of mercury in contaminated environments by partitioning mercury to the atmosphere. This activity, common in aerobic environments, has rarely been examined in anoxic sediments where production of highly toxic methylmercury occurs. Novel degenerate PCR primers were developed which span the known diversity of merA genes in Gram-negative bacteria and amplify a 285 bp fragment at the 3' end of merA. These primers were used to create a clone library and to analyse merA diversity in an anaerobic sediment enrichment collected from a mercury-contaminated site in the Meadowlands, New Jersey. A total of 174 sequences were analysed, representing 71 merA phylotypes and four novel MerA clades. This first examination of merA diversity in anoxic environments suggests an untapped resource for novel merA sequences.
Collapse
Affiliation(s)
- Sinéad M Ní Chadhain
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | | | |
Collapse
|
30
|
Lobova TI, Zagrebel’nyi SN, Popova LY. The Influence of Salt Concentration on the Copy Number of Plasmid pSH1 Replicating in Micrococcus sp. 9. Microbiology (Reading) 2005. [DOI: 10.1007/s11021-005-0066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Coombs JM, Barkay T. Molecular evidence for the evolution of metal homeostasis genes by lateral gene transfer in bacteria from the deep terrestrial subsurface. Appl Environ Microbiol 2004; 70:1698-707. [PMID: 15006795 PMCID: PMC368364 DOI: 10.1128/aem.70.3.1698-1707.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lateral gene transfer (LGT) plays a vital role in increasing the genetic diversity of microorganisms and promoting the spread of fitness-enhancing phenotypes throughout microbial communities. To date, LGT has been investigated in surface soils, natural waters, and biofilm communities but not in the deep terrestrial subsurface. Here we used a combination of molecular analyses to investigate the role of LGT in the evolution of metal homeostasis in lead-resistant subsurface bacteria. A nested PCR approach was employed to obtain DNA sequences encoding P(IB)-type ATPases, which are proteins that transport toxic or essential soft metals such as Zn(II), Cd(II), and Pb(II) through the cell wall. Phylogenetic incongruencies between a 16S rRNA gene tree and a tree based on 48 P(IB)-type ATPase amplicons and sequences available for complete bacterial genomes revealed an ancient transfer from a member of the beta subclass of the Proteobacteria (beta-proteobacterium) that may have predated the diversification of the genus Pseudomonas. Four additional phylogenetic incongruencies indicate that LGT has occurred among groups of beta- and gamma-proteobacteria. Two of these transfers appeared to be recent, as indicated by an unusual G+C content of the P(IB)-type ATPase amplicons. This finding provides evidence that LGT plays a distinct role in the evolution of metal homeostasis in deep subsurface bacteria, and it shows that molecular evolutionary approaches may be used for investigation of this process in microbial communities in specific environments.
Collapse
Affiliation(s)
- J M Coombs
- Department of Biochemistry and Microbiology, Cook College, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
32
|
Lilley AK, Bailey MJ, Barr M, Kilshaw K, Timms-Wilson TM, Day MJ, Norris SJ, Jones TH, Godfray HCJ. Population dynamics and gene transfer in genetically modified bacteria in a model microcosm. Mol Ecol 2004; 12:3097-107. [PMID: 14629389 DOI: 10.1046/j.1365-294x.2003.01960.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The horizontal transfer and effects on host fitness of a neutral gene cassette inserted into three different genomic loci of a plant-colonizing pseudomonad was assessed in a model ecosystem. The KX reporter cassette (kanamycin resistance, aph, and catechol 2, 3, dioxygenase, xylE) was introduced on the disarmed transposon mini-Tn5 into: (I) the chromosome of a spontaneous rifampicin resistant mutant Pseudomonas fluorescens SBW25R; (II) the chromosome of SBW25R in the presence of a naturally occurring lysogenic-phage (phage Phi101); and (III) a naturally occurring plasmid pQBR11 (330 kbp, tra+, Hgr) introduced into SBW25R. These bacteria were applied to Stellaria media (chickweed) plants as seed dressings [c. 5 x 104 colony-forming units (cfu)/seed] and the seedlings planted in 16 microcosm chambers containing model plant and animal communities. Gene transfer to pseudomonads in the phyllosphere and rhizosphere was found only in the plasmid treatment (III). Bacteria in the phage treatment (II) initially declined in density and free phage was detected, but populations partly recovered as the plants matured. Surprisingly, bacteria in the chromosome insertion treatment (I) consistently achieved higher population densities than the unmanipulated control and other treatments. Plasmids were acquired from indigenous bacterial populations in the control and chromosome insertion treatments. Plasmid acquisition, plasmid transfer from inocula and selection for plasmid carrying inocula coincided with plant maturation.
Collapse
Affiliation(s)
- A K Lilley
- Molecular Microbial Ecology Group, Centre for Ecology and Hydrology, Mansfield Road, Oxford OX1 3SR, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kay E, Chabrillat G, Vogel TM, Simonet P. Intergeneric transfer of chromosomal and conjugative plasmid genes between Ralstonia solanacearum and Acinetobacter sp. BD413. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:74-82. [PMID: 12580284 DOI: 10.1094/mpmi.2003.16.1.74] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Conjugative transfer of a broad-host range plasmid and transformation-mediated transfer of chromosomal genes were found to occur at significant frequencies between Ralstonia solanacearum and Acinetobacter sp. in planta. These intergeneric gene transfers are related to the conditions provided by the infected plant, including the extensive multiplication of these two bacteria in planta and the development of a competence state in Acinetobacter sp. Although interkingdom DNA transfer from nuclear transgenic plants to these bacteria was not detectable, plants infected by pathogens (e.g., Ralstonia solanacearum) and co-colonized by soil saprophyte bacteria (e.g., Acinetobacter sp.) can be considered as potential "hot spots" for gene transfer, even between phylogenetically remote organisms.
Collapse
Affiliation(s)
- Elisabeth Kay
- Ecologie Microbienne, UMR CNRS 5557, Université Claude Bernard, Lyon 1, Bât G. Mendel, 43 bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | | | | | | |
Collapse
|
34
|
Smalla K, Sobecky PA. The prevalence and diversity of mobile genetic elements in bacterial communities of different environmental habitats: insights gained from different methodological approaches. FEMS Microbiol Ecol 2002; 42:165-75. [DOI: 10.1111/j.1574-6941.2002.tb01006.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
35
|
Kalyaeva E, Bass I, Kholodii G, Nikiforov V. A broad host range plasmid vector that does not encode replication proteins. FEMS Microbiol Lett 2002; 211:91-5. [PMID: 12052556 DOI: 10.1111/j.1574-6968.2002.tb11208.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The 640-bp minimal replication region derived from a plasmid DNA preparation from an Acidothiobacillus ferrooxidans strain capable of autonomous replication in a range of Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Acinetobacter calcoaceticus and Alcaligenes faecalis) was identified. This DNA fragment (named TFK replicon) does not encode Rep proteins and appears to be unrelated to other known replicons.
Collapse
Affiliation(s)
- Eza Kalyaeva
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182, Moscow, Russia
| | | | | | | |
Collapse
|
36
|
|
37
|
Schneiker S, Keller M, Dröge M, Lanka E, Pühler A, Selbitschka W. The genetic organization and evolution of the broad host range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere of alfalfa. Nucleic Acids Res 2001; 29:5169-81. [PMID: 11812851 PMCID: PMC97592 DOI: 10.1093/nar/29.24.5169] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2001] [Revised: 10/08/2001] [Accepted: 10/22/2001] [Indexed: 11/13/2022] Open
Abstract
Employing the biparental exogenous plasmid isolation method, conjugative plasmids conferring mercury resistance were isolated from the microbial community of the rhizosphere of field grown alfalfa plants. Five different plasmids were identified, designated pSB101-pSB105. One of the plasmids, pSB102, displayed broad host range (bhr) properties for plasmid replication and transfer unrelated to the known incompatibility (Inc) groups of bhr plasmids IncP-1, IncW, IncN and IncA/C. Nucleotide sequence analysis of plasmid pSB102 revealed a size of 55 578 bp. The transfer region of pSB102 was predicted on the basis of sequence similarity to those of other plasmids and included a putative mating pair formation apparatus most closely related to the type IV secretion system encoded on the chromosome of the mammalian pathogen Brucella sp. The region encoding replication and maintenance functions comprised genes exhibiting different degrees of similarity to RepA, KorA, IncC and KorB of bhr plasmids pSa (IncW), pM3 (IncP-9), R751 (IncP-1beta) and RK2 (IncP-1alpha), respectively. The mercury resistance determinants were located on a transposable element of the Tn5053 family designated Tn5718. No putative functions could be assigned to a quarter of the coding capacity of pSB102 on the basis of comparisons with database entries. The genetic organization of the pSB102 transfer region revealed striking similarities to plasmid pXF51 of the plant pathogen Xylella fastidiosa.
Collapse
Affiliation(s)
- S Schneiker
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Schmidt-Eisenlohr H, Rittig M, Preithner S, Baron C. Biomonitoring of pJP4-carrying Pseudomonas chlororaphis with Trb protein-specific antisera. Environ Microbiol 2001; 3:720-30. [PMID: 11846762 DOI: 10.1046/j.1462-2920.2001.00244.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transfer of catabolic genes on conjugative plasmids to indigenous organisms from which they may spread further into the community allows the introduction of new biodegradative pathways for metabolic conversion of pollutants to the community. Biomonitoring of IncP plasmid pJP4-carrying Pseudomonas chlororaphis from the rhizosphere of Arabidopsis thaliana was achieved using antisera specific for proteins from the plasmid transfer machinery. Antisera were generated that recognized TrbC and TrbF, the putative major and minor components of pJP4-determined pili, respectively, and the putative lipoprotein TrbH. Cell fractionation studies showed association of TrbC, TrbF and TrbH with the cells and suggested that TrbC and TrbF are part of extracellular pJP4-determined pili. TrbF and TrbH antisera allowed specific detection of IncP compared with IncN or IncW plasmid-carrying cells and even permitted differentiation between bacteria carrying IncPalpha plasmid RP4 and IncPbeta plasmid pJP4. Immunofluorescence microscopy was applied to detect TrbF and TrbH signal at the cell periphery, allowing distinction from autofluorescing cells and soil debris. In situ experiments showed specific recognition of pJP4-carrying cells from laboratory cultures, as well as from the rhizosphere of A. thaliana grown in natural soil. After co-inoculation of donor P. chlororaphis pJP4 and recipient Ralstonia eutropha, a combination of immunofluorescence and oligonucleotide hybridization techniques permitted the detection of plasmid transfer between both organisms in the A. thaliana rhizosphere. This strategy may be generally applicable for the analysis of plasmid transfer in natural ecosystems.
Collapse
Affiliation(s)
- H Schmidt-Eisenlohr
- Institut für Genetik und Mikrobiologie der Universität München, Lehrstuhl für Mikrobiologie, Maria-Ward-Str. 1a, D-80638 München, Germany
| | | | | | | |
Collapse
|
39
|
Müller AK, Rasmussen LD, Sørensen SJ. Adaptation of the bacterial community to mercury contamination. FEMS Microbiol Lett 2001; 204:49-53. [PMID: 11682177 DOI: 10.1111/j.1574-6968.2001.tb10861.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The utilisation of 31 sole carbon sources by bacterial communities of soil in the presence of increasing concentrations of Hg(II) was measured by a colour development assay. The assay was performed on Biolog microtitre plates (Ecoplates) in the presence of Hg(II) and compared to Hg(II)-free Ecoplates. Furthermore, community tolerance to Hg(II) was measured by colour development in microtitre plates supplemented with LB broth and by enumeration of colony-forming units on LB agar plates. Both microtitre plates supplemented with LB and LB agar plates contained increasing concentrations of Hg(II). The difference in substrate utilisation profile, as shown by growth on 31 different carbon substrates in the Ecoplates, suggested an adaptation of the soil community that correlated with the metal exposure level in the soil. Similarly, growth on microtitre plates supplemented with LB and plate-spreading data showed an increased community tolerance with increasing levels of mercury in the soil. Both the multi-function microtitre plate assay (Ecoplate) and the LB broth microtitre plate assay are suitable for evaluating the adaptation of the bacterial community in soil to a heavy metal pollutant.
Collapse
Affiliation(s)
- A K Müller
- Department of General Microbiology, University of Copenhagen, Sølvgade 83 H, DK-1307 Copenhagen K, Denmark
| | | | | |
Collapse
|
40
|
Cook MA, Osborn AM, Bettandorff J, Sobecky PA. Endogenous isolation of replicon probes for assessing plasmid ecology of marine sediment microbial communities. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2089-2101. [PMID: 11495987 DOI: 10.1099/00221287-147-8-2089] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Six functional replication origins (repGA14, repGA33, repGA70, repSD41, repSD164 and repSD172), obtained from endogenously isolated, broad-host-range (BHR) marine plasmids ranging in size from 5 to 60 kb, were used to determine plasmid occurrence in three coastal marine sediment sites (in California, Georgia and South Carolina, USA). The plasmid-specific replicons were isolated from plasmid-bearing marine sediment bacteria belonging to the alpha and gamma subclasses of the Proteobacteria. The plasmid sources of the endogenous replicons were considered to be cryptic due to a lack of identifiable phenotypic traits. The putative Rep proteins from a number of these replicons showed similarity to replicons of two recognized families: RCR group III (repSD164) and the FIA family of theta group A (repSD41, repSD121, repGA33 and repGA14). Plasmids isolated from marine bacteria belonging to the genera Pseudoalteromonas, Shewanella and Vibrio cultivated from geographically different coastal sites exhibited homology to two of the marine plasmid replicons, repSD41 and repGA70, obtained from a Vibrio sp. The repGA33 plasmid origin, obtained from a Shewanella sp. isolated from coastal Georgia, was detected in 7% of the Georgia marine sediment Shewanella sp. isolates. Microbial community DNA extracted from marine sediments was also screened for the presence of the plasmid replication sequences. Community DNA samples amplified by PCR yielded a positive signal for the repSD172 and repGA14 replication sequences. The replication origin of BHR plasmid RK2 (IncP) was also detected in marine Vibrio sp. and microbial community DNA extracted from the three coastal sites. These findings provide molecular evidence that marine sediment bacteria harbour an untapped population of BHR plasmids.
Collapse
Affiliation(s)
- Marisa A Cook
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA1
| | - A Mark Osborn
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK2
| | - Juli Bettandorff
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA1
| | - Patricia A Sobecky
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA1
| |
Collapse
|
41
|
Abstract
Evidence of increasing resistance to antibiotics in soil and other natural isolates highlights the importance of horizontal transfer of resistance genes in facilitating gene flux in bacteria. Horizontal gene transfer in bacteria is favored by the presence of mobile genetic elements and by the organization of bacterial genomes into operons allowing for the cooperative transfer of genes with related functions. The selective pressure for the spread of resistance genes correlates strongly with the clinical and agricultural overuse of antibiotics. The future of antimicrobial chemotherapy may lie in developing new antimicrobials using information from comparative functional microbial genomics to find genetic targets for antimicrobials and also to understand gene expression enabling selective targeting of genes with expression that correlates with the infectious process.
Collapse
Affiliation(s)
- V C Nwosu
- Department of Biology, North Carolina Central University, Durham 27707, USA.
| |
Collapse
|
42
|
Rasmussen LD, Sørensen SJ. Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. FEMS Microbiol Ecol 2001; 36:1-9. [PMID: 11377768 DOI: 10.1111/j.1574-6941.2001.tb00820.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study investigates the effect of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. The changes in diversity were monitored in soil microcosms, enriched with 25 &mgr;g Hg(II) g(-1) soil, over a period of 3 months. The culturable heterotrophic diversity was investigated by colony morphology and colony appearance on solid LB medium. Functional diversity was analysed as sole carbon utilisation patterns in ECOplates. Genetic diversity was measured as bands on denaturing gradient gel electrophoresis (DGGE) gels obtained by purification of total soil DNA and amplification of bacterial 16S rDNA fragments by polymerase chain reaction. Concentrations of bioavailable and total mercury were measured throughout the experiment. The effect on the culturable heterotrophic and genetic diversity was very similar, showing an immediate decrease after mercury addition but then slowly increasing throughout the entire experimental period. Pre-exposure levels were not reached within the time span of this investigation. The DGGE band pattern indicated that a shift in the community structure was responsible for recovered diversity. When analysed by Shannon-Weaver indices, functional diversity was found to increase almost immediately after mercury addition and to remain at a level higher than the control soil for the rest of the experiment. The fraction of culturable heterotrophic bacteria increased from 1% to 10% of the total bacterial number as a result of mercury addition, and the mercury-resistant population increased to represent the entire heterotrophic population.
Collapse
Affiliation(s)
- L D. Rasmussen
- Department of General Microbiology, University of Copenhagen, Sølvgade 83H, DK-1307 K, Copenhagen, Denmark
| | | |
Collapse
|
43
|
Hansen LH, Ferrari B, Sørensen AH, Veal D, Sørensen SJ. Detection of oxytetracycline production by Streptomyces rimosus in soil microcosms by combining whole-cell biosensors and flow cytometry. Appl Environ Microbiol 2001; 67:239-44. [PMID: 11133451 PMCID: PMC92555 DOI: 10.1128/aem.67.1.239-244.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2000] [Accepted: 11/01/2000] [Indexed: 11/20/2022] Open
Abstract
Combining the high specificity of bacterial biosensors and the resolution power of fluorescence-activated cell sorting (FACS) provided qualitative detection of oxytetracycline production by Streptomyces rimosus in soil microcosms. A plasmid containing a transcriptional fusion between the tetR-regulated P(tet) promoter from Tn10 and a FACS-optimized gfp gene was constructed. When harbored by Escherichia coli, this plasmid produces large amounts of green fluorescent protein (GFP) in the presence of tetracycline. This tetracycline biosensor was used to detect the production of oxytetracycline by S. rimosus introduced into sterile soil. The tetracycline-induced GFP-producing biosensors were detected by FACS analysis, enabling the detection of oxytetracycline encounters by single biosensor cells. This approach can be used to study interactions between antibiotic producers and their target organisms in soil.
Collapse
Affiliation(s)
- L H Hansen
- Department of General Microbiology, University of Copenhagen, DK-1307 Copenhagen K, Denmark
| | | | | | | | | |
Collapse
|
44
|
Smalla K, Heuer H, Götz A, Niemeyer D, Krögerrecklenfort E, Tietze E. Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids. Appl Environ Microbiol 2000; 66:4854-62. [PMID: 11055935 PMCID: PMC92391 DOI: 10.1128/aem.66.11.4854-4862.2000] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2000] [Accepted: 08/17/2000] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance plasmids were exogenously isolated in biparental matings with piggery manure bacteria as plasmid donors in Escherichia coli CV601 and Pseudomonas putida UWC1 recipients. Surprisingly, IncQ-like plasmids were detected by dot blot hybridization with an IncQ oriV probe in several P. putida UWC1 transconjugants. The capture of IncQ-like plasmids in biparental matings indicates not only their high prevalence in manure slurries but also the presence of efficiently mobilizing plasmids. In order to elucidate unusual hybridization data (weak or no hybridization with IncQ repB or IncQ oriT probes) four IncQ-like plasmids (pIE1107, pIE1115, pIE1120, and pIE1130), each representing a different EcoRV restriction pattern, were selected for a more thorough plasmid characterization after transfer into E. coli K-12 strain DH5alpha by transformation. The characterization of the IncQ-like plasmids revealed an astonishingly high diversity with regard to phenotypic and genotypic properties. Four different multiple antibiotic resistance patterns were found to be conferred by the IncQ-like plasmids. The plasmids could be mobilized by the RP4 derivative pTH10 into Acinetobacter sp., Ralstonia eutropha, Agrobacterium tumefaciens, and P. putida, but they showed diverse patterns of stability under nonselective growth conditions in different host backgrounds. Incompatibility testing and PCR analysis clearly revealed at least two different types of IncQ-like plasmids. PCR amplification of total DNA extracted directly from different manure samples and other environments indicated the prevalence of both types of IncQ plasmids in manure, sewage, and farm soil. These findings suggest that IncQ plasmids play an important role in disseminating antibiotic resistance genes.
Collapse
Affiliation(s)
- K Smalla
- Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Pflanzenvirologie, Mikrobiologie und biologische Sicherheit, D-38104 Braunschweig, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Hohnstock AM, Stuart-Keil KG, Kull EE, Madsen EL. Naphthalene and donor cell density influence field conjugation of naphthalene catabolism plasmids. Appl Environ Microbiol 2000; 66:3088-92. [PMID: 10877811 PMCID: PMC92116 DOI: 10.1128/aem.66.7.3088-3092.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined transfer of naphthalene-catabolic genes from donor microorganisms native to a contaminated site to site-derived, rifampin-resistant recipient bacteria unable to grow on naphthalene. Horizontal gene transfer (HGT) was demonstrated in filter matings using groundwater microorganisms as donors. Two distinct but similar plasmid types, closely related to pDTG1, were retrieved. In laboratory-incubated sediment matings, the addition of naphthalene stimulated HGT. However, recipient bacteria deployed in recoverable vessels in the field site (in situ) did not retrieve plasmids from native donors. Only when plasmid-containing donor cells and naphthalene were added to the in situ mating experiments did HGT occur.
Collapse
Affiliation(s)
- A M Hohnstock
- Section of Microbiology, Division of Biological Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853-8101, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Retrotransfer of DNA refers to the phenomenon by which a plasmid travels from a host strain to a recipient one and returns to the original host, bringing with it DNA from the recipient. The resultant host strain with DNA from the recipient is called a retrotransconjugant. The retrotransfer phenomenon mediated by the TOL plasmid pWW0 and other plasmids has been documented on plates under optimal laboratory culture conditions, but never under natural conditions. In this work, we show that retrotransfer mediated by the IncP9 TOL pWW0 plasmid occurs in the rhizosphere, a niche in which the continuous supply of nutrients via root exudates allows cells to reach a high density. This suggests that this unusual sexual fertilization may be of great importance in lateral gene transfer. We also show that retrotransfer of DNA seems to require co-integration of the plasmid and the host chromosome and subsequent resolution, because a TOL plasmid with a mutation in the tnpR gene, encoding the resolvase of the Tn4653 of the TOL plasmid, was self-transferred between Pseudomonas strains, but unable to mobilize chromosome.
Collapse
Affiliation(s)
- M C Ronchel
- Department of Plant Biochemistry, CSIC-Estación Experimental del Saidín, Granada, Spain
| | | | | |
Collapse
|
47
|
Abstract
Nucleotide sequence analysis, and more recently whole genome analysis, shows that bacterial evolution has often proceeded by horizontal gene flow between different species and genera. In bacteria, gene transfer takes place by transformation, transduction, or conjugation and this review examines the roles of these gene transfer processes, between different bacteria, in a wide variety of ecological niches in the natural environment. This knowledge is necessary for our understanding of plasmid evolution and ecology, as well as for risk assessment. The rise and spread of multiple antibiotic resistance plasmids in medically important bacteria are consequences of intergeneric gene transfer coupled to the selective pressures posed by the increasing use and misuse of antibiotics in medicine and animal feedstuffs. Similarly, the evolution of degradative plasmids is a response to the increasing presence of xenobiotic pollutants in soil and water. Finally, our understanding of the role of horizontal gene transfer in the environment is essential for the evaluation of the possible consequences of the deliberate environmental release of natural or recombinant bacteria for agricultural and bioremediation purposes.
Collapse
Affiliation(s)
- J Davison
- Institut National de la Recherche Agronomique, Route de Saint Cyr, Versailles, F-78026, France.
| |
Collapse
|
48
|
Dr�nen AK, Torsvik V, Top EM. Comparison of the plasmid types obtained by two distantly related recipients in biparental exogenous plasmid isolations from soil. FEMS Microbiol Lett 1999. [DOI: 10.1111/j.1574-6968.1999.tb13649.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
Drønen AK, Torsvik V, Goksøyr J, Top EM. Effect of mercury addition on plasmid incidence and gene mobilizing capacity in bulk soil. FEMS Microbiol Ecol 1998. [DOI: 10.1111/j.1574-6941.1998.tb00553.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
50
|
Plasmids responsible for horizontal transfer of naphthalene catabolism genes between bacteria at a coal tar-contaminated site are homologous to pDTG1 from pseudomonas putida NCIB 9816-4. Appl Environ Microbiol 1998; 64:3633-40. [PMID: 9758778 PMCID: PMC106482 DOI: 10.1128/aem.64.10.3633-3640.1998] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of a highly conserved nahAc allele among phylogenetically diverse bacteria carrying naphthalene-catabolic plasmids provided evidence for in situ horizontal gene transfer at a coal tar-contaminated site (J. B. Herrick, K. G. Stuart-Keil, W. C. Ghiorse, and E. L. Madsen, Appl. Environ. Microbiol. 63:2330-2337, 1997). The objective of the present study was to identify and characterize the different-sized naphthalene-catabolic plasmids in order to determine the probable mechanism of horizontal transfer of the nahAc gene in situ. Filter matings between naphthalene-degrading bacterial isolates and their cured progeny revealed that the naphthalene-catabolic plasmids were self-transmissible. Limited interstrain transfer was also found. Analysis of the restriction fragment length polymorphism (RFLP) patterns indicated that catabolic plasmids from 12 site-derived isolates were closely related to each other and to the naphthalene-catabolic plasmid (pDTG1) of Pseudomonas putida NCIB 9816-4, which was isolated decades ago in Bangor, Wales. The similarity among all site-derived naphthalene-catabolic plasmids and pDTG1 was confirmed by using the entire pDTG1 plasmid as a probe in Southern hybridizations. Two distinct but similar naphthalene-catabolic plasmids were retrieved directly from the microbial community indigenous to the contaminated site in a filter mating by using a cured, rifampin-resistant site-derived isolate as the recipient. RFLP patterns and Southern hybridization showed that both of these newly retrieved plasmids, like the isolate-derived plasmids, were closely related to pDTG1. These data indicate that a pDTG1-like plasmid is the mobile genetic element responsible for transferring naphthalene-catabolic genes among bacteria in situ. The pervasiveness and persistence of this naphthalene-catabolic plasmid suggest that it may have played a role in the adaptation of this microbial community to the coal tar contamination at our study site.
Collapse
|