1
|
Vasilakis G, Roidouli C, Karayannis D, Giannakis N, Rondags E, Chevalot I, Papanikolaou S. Study of Different Parameters Affecting Production and Productivity of Polyunsaturated Fatty Acids (PUFAs) and γ-Linolenic Acid (GLA) by Cunninghamella elegans Through Glycerol Conversion in Shake Flasks and Bioreactors. Microorganisms 2024; 12:2097. [PMID: 39458406 PMCID: PMC11510017 DOI: 10.3390/microorganisms12102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Microbial cultures repurposing organic industrial residues for value-added metabolite production is pivotal for sustainable resource use. Highlighting polyunsaturated fatty acids (PUFAs), particularly gamma-linolenic acid (GLA), renowned for their nutritional and therapeutic value. Notably, Zygomycetes' filamentous fungi harbor abundant GLA-rich lipid content, furthering their relevance in this approach. In this study, the strain C. elegans NRRL Y-1392 was evaluated for its capability to metabolize glycerol and produce lipids rich in GLA under different culture conditions. Various carbon-to-nitrogen ratios (C/N = 11.0, 110.0, and 220.0 mol/mol) were tested in batch-flask cultivations. The highest GLA production of 224.0 mg/L (productivity equal to 2.0 mg/L/h) was observed under nitrogen excess conditions, while low nitrogen content promoted lipid accumulation (0.59 g of lipids per g of dry biomass) without yielding more PUFAs and GLA. After improving the C/N ratio at 18.3 mol/mol, even higher PUFA (600 mg/L) and GLA (243 mg/L) production values were recorded. GLA content increased when the fungus was cultivated at 12 °C (15.5% w/w compared to 12.8% w/w at 28 °C), but productivity values decreased significantly due to prolonged cultivation duration. An attempt to improve productivity by increasing the initial spore population did not yield the expected results. The successful scale-up of fungal cultivations is evidenced by achieving consistent results (compared to flask experiments under corresponding conditions) in both laboratory-scale (Working Volume-Vw = 1.8 L; C/N = 18.3 mol/mol) and semi-pilot-scale (Vw = 15.0 L; C/N = 110.0 mol/mol) bioreactor experiments. To the best of our knowledge, cultivation of the fungus Cunninghamella elegans in glycerol-based substrates, especially in 20 L bioreactor experiments, has never been previously reported in the international literature. The successful scale-up of the process in a semi-pilot-scale bioreactor illustrates the potential for industrializing the bioprocess.
Collapse
Affiliation(s)
- Gabriel Vasilakis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Christina Roidouli
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
| | - Dimitris Karayannis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Nikos Giannakis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
| | - Emmanuel Rondags
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Isabelle Chevalot
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| |
Collapse
|
2
|
Phaya M, Chalom S, Ingkaninan K, Ounnunkad K, Chandet N, Pyne SG, Mungkornasawakul P. Oxidative biotransformation of stemofoline alkaloids. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:166-172. [PMID: 33565358 DOI: 10.1080/21691401.2021.1883044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Biotransformations of stemofoline (1a), (2'S)-hydroxystemofoline (2a), (11Z)-1',2'-didehydrostemofoline (3a) and stemocurtisine (4) were studied through fermentation with Cunninghamella elegans TISTR 3370. Three new stemofoline derivatives; 6 R-hydroxystemofoline (1b), (2'S, 6 R)-dihydroxystemofoline (2b) and (11Z,6R)-1',2'-didehydro-6-hydroxystemofoline (3b), together with the known compound 1',2'-didehydrostemofoline-N-oxide (3c), were produced by C-hydroxylation and N-oxidation reactions. Stemocurtisine was not biotransformed under these conditions. The transformed product 1b was four times more potent (IC50 = 11.01 ± 1.49 µM) than its precursor 1a (IC50 = 45.1 ± 5.46 µM) as an inhibitor against acetylcholinesterase.
Collapse
Affiliation(s)
- Manlika Phaya
- PhD Degree Program in Environmental Science, Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinrat Chalom
- PhD Degree Program in Environmental Science, Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Naresuan University, Phitsanulok, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nopakarn Chandet
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Pitchaya Mungkornasawakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Saito K, Hagiwara N, Sakamoto M, Wakana D, Ito R, Hosoe T. Elucidation of Degradation Behavior of Tricyclic Antidepressant Amoxapine in Artificial Gastric Juice. Chem Pharm Bull (Tokyo) 2020; 68:848-854. [PMID: 32879225 DOI: 10.1248/cpb.c20-00313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The degradation behavior of eight tricyclic antidepressants (TCAs; amitriptyline, amoxapine (AMX), imipramine, clomipramine, desipramine, doxepin, dothiepin, and nortriptyline) in artificial gastric juice was investigated to estimate their pharmacokinetics in the stomach. As a result, among the eight TCAs, only AMX was degraded in artificial gastric juice. The degradation was a pseudo first-order reaction; activation energy (Ea) was 88.70 kJ/mol and activation entropy (ΔS) was -80.73 J/K·mol. On the other hand, the recovery experiment revealed that the degradation product did not revert to AMX and accordingly, this reaction was considered to be irreversible. In the AMX degradation experiment, peaks considered to be degradation products A (I) and B (II) were detected at retention times of around 3 min and 30 min in LC/UV measurements, respectively. Structural analysis revealed that compound (I) was [2-(2-aminophenoxy)-5-chlorophenyl]-piperazin-1-yl-methanone, a new compound, and compound (II) was 2-chlorodibenzo[b,f][1,4]oxazepin-11(10H)-one. As for the degradation behavior, it was estimated that AMX was degraded into (II) via (I), i.e., (II) was the final product. The results are expected to be useful in clinical chemistry and forensic science, including the estimation of drugs to be used at the time of judicial dissection and suspected drug addiction.
Collapse
Affiliation(s)
- Koichi Saito
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University
| | - Nami Hagiwara
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University
| | - Miho Sakamoto
- Department of Pharmaceutical Sciences, Tokyo Metropolitan Institute of Public Health
| | - Daigo Wakana
- Department of Bioregulatory Science, Faculty of Pharmaceutical Sciences, Hoshi University
| | - Rie Ito
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University
| | - Tomoo Hosoe
- Department of Bioregulatory Science, Faculty of Pharmaceutical Sciences, Hoshi University
| |
Collapse
|
4
|
Zhu YZ, Fu M, Jeong IH, Kim JH, Zhang CJ. Metabolism of an Insecticide Fenitrothion by Cunninghamella elegans ATCC36112. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10711-10718. [PMID: 29144738 DOI: 10.1021/acs.jafc.7b04273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, the detailed metabolic pathways of fenitrothion (FNT), an organophosphorus insecticide by Cunninghamella elegans, were investigated. Approximately 81% of FNT was degraded within 5 days after treatment with concomitant accumulation of four metabolites (M1-M4). The four metabolites were separated by high-performance liquid chromatography, and their structures were identified by mass spectroscopy and/or nuclear magnetic resonance. M3 is confirmed to be an initial precursor of others and identified as fenitrothion-oxon. On the basis of their metabolic profiling, the possible metabolic pathways involved in phase I and II metabolism of FNT by C. elegans was proposed. We also found that C. elegans was able to efficiently and rapidly degrade other organophosphorus pesticides (OPs). Thus, these results will provide insight into understanding of the fungal degradation of FNT and the potential application for bioremediation of OPs. Furthermore, the ability of C. elegans to mimic mammalian metabolism would help us elucidate the metabolic fates of organic compounds occurring in mammalian liver cells and evaluate their toxicity and potential adverse effects.
Collapse
Affiliation(s)
- Yong-Zhe Zhu
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University , 700 Changcheng Road, Chengyang, Qingdao, Shandong 266109, People's Republic of China
| | - Min Fu
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University , 700 Changcheng Road, Chengyang, Qingdao, Shandong 266109, People's Republic of China
| | - In-Hong Jeong
- Division of Crop Protection, National Institute of Agricultural Science, Rural Development Administration , 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology, Seoul National University , 599 Gwanak-ro, Silim-dong, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Chuan-Jie Zhang
- Department of Plant Science, University of Connecticut , 1376 Storrs Road, U-4163, Storrs, Connecticut 06269, United States
| |
Collapse
|
5
|
Jahn S, Karst U. Electrochemistry coupled to (liquid chromatography/) mass spectrometry—Current state and future perspectives. J Chromatogr A 2012; 1259:16-49. [DOI: 10.1016/j.chroma.2012.05.066] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/09/2012] [Accepted: 05/19/2012] [Indexed: 02/04/2023]
|
6
|
Investigation of the biotransformation pathway of verapamil using electrochemistry/liquid chromatography/mass spectrometry – A comparative study with liver cell microsomes. J Chromatogr A 2011; 1218:9210-20. [DOI: 10.1016/j.chroma.2011.10.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/06/2011] [Accepted: 10/20/2011] [Indexed: 11/21/2022]
|
7
|
Choudhary MI, Erum S, Atif M, Malik R, Khan NT. Biotransformation of (20S)-20-hydroxymethylpregna-1,4-dien-3-one by four filamentous fungi. Steroids 2011; 76:1288-96. [PMID: 21762714 DOI: 10.1016/j.steroids.2011.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/04/2011] [Accepted: 06/21/2011] [Indexed: 11/20/2022]
Abstract
Microbial transformation of (20S)-20-hydroxymethylpregna-1,4-dien-3-one (1) by four filamentous fungi, Cunninghamella elegans, Macrophomina phaseolina, Rhizopus stolonifer, and Gibberella fujikuroi, afforded nine new, and two known metabolites 2-12. The structures of these metabolites were characterized through detailed spectroscopic analysis. These metabolites were obtained as a result of biohydroxylation of 1 at C-6β, -7β, -11α, -14α, -15β, -16β, and -17α positions, except metabolite 2 which contain an O-acetyl group at C-22. These fungal strains demonstrated to be efficient biocatalysts for 11α-hydroxylation. Compound 1, and its metabolites were evaluated for the first time for their cytotoxicity against the HeLa cancer cell lines, and some interesting results were obtained.
Collapse
Affiliation(s)
- M Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | | | | | | | | |
Collapse
|
8
|
Transformation of prednisolone to a 20β-hydroxy prednisolone compound by Streptomyces roseochromogenes TS79. Appl Microbiol Biotechnol 2011; 92:727-35. [DOI: 10.1007/s00253-011-3382-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 01/21/2023]
|
9
|
Abstract
The biotransformation of the fluorinated anti-inflammatory drug flurbiprofen was investigated in Cunninghamella spp. Mono- and dihydroxylated metabolites were detected using gas chromatography-mass spectrometry and fluorine-19 nuclear magnetic resonance spectroscopy, and the major metabolite 4'-hydroxyflurbiprofen was isolated by preparative high-pressure liquid chromatography (HPLC). Cunninghamella elegans DSM 1908 and C. blakesleeana DSM 1906 also produced a phase II (conjugated) metabolite, which was identified as the sulfated drug via deconjugation experiments.
Collapse
|
10
|
Biotransformation of fluorobiphenyl by Cunninghamella elegans. Appl Microbiol Biotechnol 2009; 86:345-51. [PMID: 19956946 DOI: 10.1007/s00253-009-2346-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/04/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
Abstract
The fungus Cunninghamella elegans is a useful model of human catabolism of xenobiotics. In this paper, the biotransformation of fluorinated biphenyls by C. elegans was investigated by analysis of the culture supernatants with a variety of analytical techniques. 4-Fluorobiphenyl was principally transformed to 4-fluoro-4'-hydroxybiphenyl, but other mono- and dihydroxylated compounds were detected in organic extracts by gas chromatography-mass spectrometry. Additionally, fluorinated water-soluble products were detected by (19)F NMR and were identified as sulphate and beta-glucuronide conjugates. Other fluorobiphenyls (2-fluoro-, 4,4'-difluoro- and 2,3,4,5,6-pentafluoro-biphenyl) were catabolised by C. elegans, yielding mono- and dihydroxylated products, but phase II metabolites were detected from 4,4'-difluorobiphenyl only.
Collapse
|
11
|
Borges KB, Pupo MÃT, Bonato PS. Enantioselective analysis of propranolol and 4-hydroxypropranolol by CE with application to biotransformation studies employing endophytic fungi. Electrophoresis 2009; 30:3910-7. [DOI: 10.1002/elps.200900216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Moody JD, Heinze TM, Cerniglia CE. Fungal Transformation of the Tricyclic Antidepressant Amoxapine: Identification of N-Carbomethoxy Compounds Formed as Artifacts by Phosgene in Chloroform used for the Extraction of Metabolites. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420109003642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Oda S, Isshiki K, Ohashi S. Regio- and Stereoselective Subterminal Hydroxylations ofn-Decane by Fungi in a Liquid–Liquid Interface Bioreactor (L–L IBR). BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2009. [DOI: 10.1246/bcsj.82.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Asha S, Vidyavathi M. Cunninghamella – A microbial model for drug metabolism studies – A review. Biotechnol Adv 2009; 27:16-29. [DOI: 10.1016/j.biotechadv.2008.07.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/03/2008] [Accepted: 07/31/2008] [Indexed: 01/16/2023]
|
15
|
Seo J, Lee YG, Kim SD, Cha CJ, Ahn JH, Hur HG. Biodegradation of the insecticide N,N-diethyl-m-toluamide by fungi: identification and toxicity of metabolites. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2005; 48:323-328. [PMID: 15750774 DOI: 10.1007/s00244-004-0029-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 10/19/2004] [Indexed: 05/24/2023]
Abstract
Fungi (Cunninghamella elegans ATCC 9245, Mucor ramannianus R-56, Aspergillus niger VKMF-1119, and Phanerochaete chrysosporium BKMF-1767) were tested to elucidate the biologic fate of the topical insect repellent N,N-diethyl-m-toluamide (DEET). The elution profile obtained from analysis by high-pressure liquid chromatography equipped with a reverse-phase C-18 column, showed that three peaks occurred after incubation of C. elegans, with which 1 mM DEET was combined as a final concentration. The peaks were not detected in the control experiments with either DEET alone or tested fungus alone. The metabolites produced by C. elegans exhibited a molecular mass of 207 with a fragment ion (m/z) at 135, a molecular mass of 179 with an m/z at 135, and a molecular mass of 163 with an m/z at 119, all of which correspond to N,N-diethyl-m-toluamide-N-oxide, N-ethyl-m-toluamide-N-oxide, and N-ethyl-m-toluamide, respectively. M. ramannianus R-56 also produced N, N-diethyl-m-toluamide-N-oxide and N-ethyl-m-toluamide but did not produce N-ethyl-m-toluamide-N-oxide. For the biologic toxicity test with DEET and its metabolites, the freshwater zooplankton Daphnia magna was used. The biologic sensitivity in decreasing order was DEET > N-ethyl-m-toluamide > N,N-diethyl-m-toluamide-N-oxide. Although DEET and its fungal metabolites showed relatively low mortality compared with other insecticides, the toxicity was increased at longer exposure periods. These are the first reports of the metabolism of DEET by fungi and of the biologic toxicity of DEET and its fungal metabolites to the freshwater zooplankton D. magna.
Collapse
Affiliation(s)
- J Seo
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea
| | | | | | | | | | | |
Collapse
|
16
|
Sun L, Huang HH, Liu L, Zhong DF. Transformation of verapamil by Cunninghamella blakesleeana. Appl Environ Microbiol 2004; 70:2722-7. [PMID: 15128524 PMCID: PMC404379 DOI: 10.1128/aem.70.5.2722-2727.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A filamentous fungus, Cunninghamella blakesleeana AS 3.153, was used as a microbial model of mammalian metabolism to transform verapamil, a calcium channel antagonist. The metabolites of verapamil were separated and assayed by the liquid chromatography-ion trap mass spectrometry method. After 96 h of incubation, nearly 93% of the original drug was metabolized to 23 metabolites. Five major metabolites were isolated by semipreparative high-performance liquid chromatography and were identified by proton nuclear magnetic resonance and electrospray mass spectrometry. Other metabolites were characterized according to their chromatographic behavior and mass spectral data. The major metabolic pathways of verapamil transformation by the fungus were N dealkylation, O demethylation, and sulfate conjugation. The phase I metabolites of verapamil (introduction of a functional group) by C. blakesleeana paralleled those in mammals; therefore, C. blakesleeana could be a useful tool for generating the mammalian phase I metabolites of verapamil.
Collapse
Affiliation(s)
- Lu Sun
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Lisowska K, Długoński J. Concurrent corticosteroid and phenanthrene transformation by filamentous fungus Cunninghamella elegans. J Steroid Biochem Mol Biol 2003; 85:63-9. [PMID: 12798358 DOI: 10.1016/s0960-0760(03)00136-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A filamentous fungus Cunninghamella elegans IM 1785/21Gp which displays ability of 17alpha,21-dihydroxy-4-pregnene-3,20-dione (cortexolone) 11-hydroxylation (yielding epihydrocortisone (eF) and hydrocortisone (F)) and polycyclic aromatic hydrocarbons (PAHs) degradation, was used as a microbial eucaryotic model to study the relationships between mammalian steroid hydroxylation and PAHs metabolization. The obtained results showed faster transformation of phenanthrene in Sabouraud medium supplemented with steroid substrate (cortexolone). Simultaneously phenanthrene stimulated epihydrocortisone production from cortexolone. In phenanthrene presence the ratio between cortexolone hydroxylation products (hydrocortisone and epihydrocortisone) was changed from 1:5.1-6.2 to 1:7.6-8.4 in the culture without phenanthrene. Cytochrome P-450 content significantly increased after the culture supplementation by the second substrate, phenanthrene or cortexolone, adequately. To confirm the involvement of cytochrome P-450 in phenanthrene metabolism, the inhibition studies were performed. The cytochrome P-450 inhibitors SKF 525-A (1.5mM) and 2-methyl-1,2-di-3-pyridyl-1-propanone (metyrapone) (2mM) inhibited phenanthrene transformation by 80 and 62%, respectively. 1-aminobenzotriazole (1mM) completely blocked phenanthrene metabolism. The obtained results suggest a presence of connections between steroid hydroxylases and enzymes involved in PAH degradation in C. elegans.
Collapse
Affiliation(s)
- Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, University of Lódź, Banacha 12/16, 90-237 Lódź, Poland
| | | |
Collapse
|
18
|
Shanmugam B, Luckman S, Summers M, Bernan V, Greenstein M. New approaches to augment fungal biotransformation. J Ind Microbiol Biotechnol 2003; 30:308-14. [PMID: 12712364 DOI: 10.1007/s10295-003-0052-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Accepted: 03/12/2003] [Indexed: 11/24/2022]
Abstract
The possibility of using solid supports and intermittent substrate feeding to manipulate biotransformation by fungi was examined, with amoxapine as a model compound. Cunninghamella elegans ATCC 8688a grown as free cells in six-well plates showed 7-hydroxyamoxapine as the major metabolite of amoxapine biotransformation. However, when cells were grown in the presence of activated carbon, N-formyl-7-hydroxyamoxapine was formed as the major metabolite. Intermittent feeding of amoxapine also favored the formation of N-formyl-7-hydroxyamoxapine.
Collapse
Affiliation(s)
- Balajee Shanmugam
- Natural Products Microbiology, Wyeth Research, 401 N. Middletown Road, Pearl River, NY 10965, USA.
| | | | | | | | | |
Collapse
|
19
|
Moody JD, Freeman JP, Fu PP, Cerniglia CE. Biotransformation of mirtazapine by Cunninghamella elegans. Drug Metab Dispos 2002; 30:1274-9. [PMID: 12386135 DOI: 10.1124/dmd.30.11.1274] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The fungus Cunninghamella elegans was used as a microbial model of mammalian metabolism to biotransform the tetracyclic antidepressant drug mirtazapine, which is manufactured as a racemic mixture of R(-)- and S(+)-enantiomers. In 168 h, C. elegans transformed 91% of the drug into the following seven metabolites: 8-hydroxymirtazapine, N-desmethyl-8-hydroxymirtazapine, N-desmethylmirtazapine, 13-hydroxymirtazapine, mirtazapine N-oxide, 12-hydroxymirtazapine, and N-desmethyl-13-hydroxymirtazapine. Circular dichroism spectral analysis of unused mirtazapine indicated that it was slightly enriched with the R(-)-enantiomer. When the fungus was treated with the optically pure forms of the drug, the S(+)-enantiomer produced all seven metabolites whereas the R(-)-enantiomer produced only 8-hydroxymirtazapine, N-desmethyl-8-hydroxymirtazapine, N-desmethylmirtazapine, and mirtazapine N-oxide. C. elegans produced five mammalian and two novel metabolites and is therefore a suitable microbial model for mirtazapine metabolism.
Collapse
Affiliation(s)
- Joanna D Moody
- Division of Microbiology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | | | | | | |
Collapse
|
20
|
Cha CJ, Doerge DR, Cerniglia CE. Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl Environ Microbiol 2001; 67:4358-60. [PMID: 11526047 PMCID: PMC93171 DOI: 10.1128/aem.67.9.4358-4360.2001] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous fungus Cunninghamella elegans ATCC 36112 metabolized the triphenylmethane dye malachite green with a first-order rate constant of 0.029 micromol x h(-1) (mg of cells)(-1). Malachite green was enzymatically reduced to leucomalachite green and also converted to N-demethylated and N-oxidized metabolites, including primary and secondary arylamines. Inhibition studies suggested that the cytochrome P450 system mediated both the reduction and the N-demethylation reactions.
Collapse
Affiliation(s)
- C J Cha
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | | | | |
Collapse
|