1
|
Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P. Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiol Rev 2021; 44:874-908. [PMID: 32785584 DOI: 10.1093/femsre/fuaa037] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Nitrification is the microbial conversion of reduced forms of nitrogen (N) to nitrate (NO3-), and in fertilized soils it can lead to substantial N losses via NO3- leaching or nitrous oxide (N2O) production. To limit such problems, synthetic nitrification inhibitors have been applied but their performance differs between soils. In recent years, there has been an increasing interest in the occurrence of biological nitrification inhibition (BNI), a natural phenomenon according to which certain plants can inhibit nitrification through the release of active compounds in root exudates. Here, we synthesize the current state of research but also unravel knowledge gaps in the field. The nitrification process is discussed considering recent discoveries in genomics, biochemistry and ecology of nitrifiers. Secondly, we focus on the 'where' and 'how' of BNI. The N transformations and their interconnections as they occur in, and are affected by, the rhizosphere, are also discussed. The NH4+ and NO3- retention pathways alternative to BNI are reviewed as well. We also provide hypotheses on how plant compounds with putative BNI ability can reach their targets inside the cell and inhibit ammonia oxidation. Finally, we discuss a set of techniques that can be successfully applied to solve unresearched questions in BNI studies.
Collapse
Affiliation(s)
- Pierfrancesco Nardi
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Hendrikus J Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Graeme W Nicol
- Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully, 69134, France
| | - Giancarlo Renella
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Centro Ecotekne - via Provinciale Lecce-Monteroni, I-73100, Lecce, Italy
| | - Giacomo Pietramellara
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Alessandra Trinchera
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Paolo Nannipieri
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| |
Collapse
|
2
|
Microbial N Transformations and N2O Emission after Simulated Grassland Cultivation: Effects of the Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate (DMPP). Appl Environ Microbiol 2016; 83:AEM.02019-16. [PMID: 27742682 DOI: 10.1128/aem.02019-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022] Open
Abstract
Grassland cultivation can mobilize large pools of N in the soil, with the potential for N leaching and N2O emissions. Spraying with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) before cultivation was simulated by use of soil columns in which the residue distribution corresponded to plowing or rotovation to study the effects of soil-residue contact on N transformations. DMPP was sprayed on aboveground parts of ryegrass and white clover plants before incorporation. During a 42-day incubation, soil mineral N dynamics, potential ammonia oxidation (PAO), denitrifying enzyme activity (DEA), nitrifier and denitrifier populations, and N2O emissions were investigated. The soil NO3- pool was enriched with 15N to trace sources of N2O. Ammonium was rapidly released from decomposing residues, and PAO was stimulated in soil near residues. DMPP effectively reduced NH4+ transformation irrespective of residue distribution. Ammonia-oxidizing archaea (AOA) and bacteria (AOB) were both present, but only the AOB amoA transcript abundance correlated with PAO. DMPP inhibited the transcription of AOB amoA genes. Denitrifier genes and transcripts (nirK, nirS, and clades I and II of nosZ) were recovered, and a correlation was found between nirS mRNA and DEA. DMPP showed no adverse effects on the abundance or activity of denitrifiers. The 15N enrichment of N2O showed that denitrification was responsible for 80 to 90% of emissions. With support from a control experiment without NO3- amendment, it was concluded that DMPP will generally reduce the potential for leaching of residue-derived N, whereas the effect of DMPP on N2O emissions will be significant only when soil NO3- availability is limiting. IMPORTANCE Residue incorporation following grassland cultivation can lead to mobilization of large pools of N and potentially to significant N losses via leaching and N2O emissions. This study proposed a mitigation strategy of applying 3,4-dimethylpyrazole phosphate (DMPP) prior to grassland cultivation and investigated its efficacy in a laboratory incubation study. DMPP inhibited the growth and activity of ammonia-oxidizing bacteria but had no adverse effects on ammonia-oxidizing archaea and denitrifiers. DMPP can effectively reduce the potential for leaching of NO3- derived from residue decomposition, while the effect on reducing N2O emissions will be significant only when soil NO3- availability is limiting. Our findings provide insight into how DMPP affects soil nitrifier and denitrifier populations and have direct implications for improving N use efficiency and reducing environmental impacts during grassland cultivation.
Collapse
|
3
|
Wang Y, Ma X, Zhou S, Lin X, Ma B, Park HD, Yan Y. Expression of the nirS, hzsA, and hdh Genes in Response to Nitrite Shock and Recovery in Candidatus Kuenenia stuttgartiensis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6940-6947. [PMID: 27233005 DOI: 10.1021/acs.est.6b00546] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, Candidatus Kuenenia stuttgartiensis were subjected to distinct nitrite shocks (66 (control), 200, 300, 400, and 500 mg N/L), and the responses of mRNA levels of cytochrome cd1 nitrite/nitric oxide oxidoreductase (nirS), hydrazine synthase (hzsA), and hydrazine dehydrogenase (hdh) were assessed. Changes in the hydrazine dehydrogenase (HDH) protein level were monitored. At 200 mg NO2(-)-N/L, the normalized specific anaerobic ammonium-oxidizing activity (nSAA) slightly increased relative to the control despite a significant decrease in nirS, hzsA, and hdh mRNA levels. When nitrite increased to 300 and 400 mg N/L, increased nirS, hzsA, and hdh mRNA levels were observed, but the nSAA decreased, relative to the 200 mg NO2(-)-N/L exposure. HDH protein detection revealed that Candidatus Kuenenia stuttgartiensis attempted to yield high enzyme levels by stimulating mRNA synthesis to resist the nitrite-induced stress. On 500 mg NO2(-)-N/L shock, the nirS, hzsA, and hdh mRNA levels decreased, alongside decreased nSAA and HDH levels. Although the mRNA levels did not always coincide with activities, our findings advance understanding of the mechanisms that anammox bacteria use to cope with nitrite inhibition at the transcriptional and translational levels, which will improve the diagnostic accuracy of bioreactor failures when nitrite accumulation occurs.
Collapse
Affiliation(s)
- Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Siping Road, Shanghai 200092, P. R. China
| | - Xiao Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Siping Road, Shanghai 200092, P. R. China
| | - Shuai Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Siping Road, Shanghai 200092, P. R. China
| | - Ximao Lin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Siping Road, Shanghai 200092, P. R. China
| | - Bin Ma
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology , Beijing 100124, P. R. China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University , Anam-Dong, Seongbuk-Gu, Seoul 136-713, South Korea
| | - Yuan Yan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
4
|
Kassotaki E, Buttiglieri G, Ferrando-Climent L, Rodriguez-Roda I, Pijuan M. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products. WATER RESEARCH 2016; 94:111-119. [PMID: 26938496 DOI: 10.1016/j.watres.2016.02.022] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
The occurrence of the widely-used antibiotic sulfamethoxazole (SFX) in wastewaters and surface waters has been reported in a large number of studies. However, the results obtained up-to-date have pointed out disparities in its removal. This manuscript explores the enhanced biodegradation potential of an enriched culture of Ammonia Oxidizing Bacteria (AOB) towards SFX. Several sets of batch tests were conducted to establish a link between SFX degradation and specific ammonia oxidation rate. The occurrence, degradation and generation of SFX and some of its transformation products (4-Nitro SFX, Desamino-SFX and N(4)-Acetyl-SFX) was also monitored. A clear link between the degradation of SFX and the nitrification rate was found, resulting in an increased SFX removal at higher specific ammonia oxidation rates. Moreover, experiments conducted under the presence of allylthiourea (ATU) did not present any removal of SFX, suggesting a connection between the AMO enzyme and SFX degradation. Long term experiments (up to 10 weeks) were also conducted adding two different concentrations (10 and 100 μg/L) of SFX in the influent of a partial nitrification sequencing batch reactor, resulting in up to 98% removal. Finally, the formation of transformation products during SFX degradation represented up to 32%, being 4-Nitro-SFX the most abundant.
Collapse
Affiliation(s)
- Elissavet Kassotaki
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain.
| | - Gianluigi Buttiglieri
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain.
| | - Laura Ferrando-Climent
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain; IFE, Tracer Technology Department, Oil and Gas Section, Institute for Energy Technology, P.O. Box 40, NO-2027, Kjeller, Norway.
| | - Ignasi Rodriguez-Roda
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain; LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071, Girona, Spain.
| | - Maite Pijuan
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain.
| |
Collapse
|
5
|
|
6
|
French E, Bollmann A. Freshwater Ammonia-Oxidizing Archaea Retain amoA mRNA and 16S rRNA during Ammonia Starvation. Life (Basel) 2015; 5:1396-404. [PMID: 25997109 PMCID: PMC4500144 DOI: 10.3390/life5021396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 12/04/2022] Open
Abstract
In their natural habitats, microorganisms are often exposed to periods of starvation if their substrates for energy generation or other nutrients are limiting. Many microorganisms have developed strategies to adapt to fluctuating nutrients and long-term starvation. In the environment, ammonia oxidizers have to compete with many different organisms for ammonium and are often exposed to long periods of ammonium starvation. We investigated the effect of ammonium starvation on ammonia-oxidizing archaea (AOA) and bacteria (AOB) enriched from freshwater lake sediments. Both AOA and AOB were able to recover even after almost two months of starvation; however, the recovery time differed. AOA and AOB retained their 16S rRNA (ribosomes) throughout the complete starvation period. The AOA retained also a small portion of the mRNA of the ammonia monooxygenase subunit A (amoA) for the complete starvation period. However, after 10 days, no amoA mRNA was detected anymore in the AOB. These results indicate that AOA and AOB are able to survive longer periods of starvation, but might utilize different strategies.
Collapse
Affiliation(s)
- Elizabeth French
- Department of Microbiology, Miami University, 32 Pearson Hall, 700 East High Street, Oxford, OH 45056, USA.
| | - Annette Bollmann
- Department of Microbiology, Miami University, 32 Pearson Hall, 700 East High Street, Oxford, OH 45056, USA.
| |
Collapse
|
7
|
Töwe S, Kleineidam K, Schloter M. Differences in amplification efficiency of standard curves in quantitative real-time PCR assays and consequences for gene quantification in environmental samples. J Microbiol Methods 2010; 82:338-41. [PMID: 20621132 DOI: 10.1016/j.mimet.2010.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/04/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
Abstract
High and comparable efficiency values are the key for reliable quantification of target genes from environmental samples using real-time PCR. Therefore it was the aim of this study to investigate if PCR amplification efficiencies of plasmid DNA used for the calculation of standard curves (i) remain constant along a logarithmic scale of dilutions and (ii) if these values are comparable to those of DNA extracted from environmental samples. It could be shown that comparable efficiency values within the standards cannot be achieved using log scale serial dilutions and a comparison of gene copy numbers from DNA extracted from environmental samples and standard DNA extracted from plasmids is only possible in a very small interval.
Collapse
Affiliation(s)
- Stefanie Töwe
- Technische Universität München, Chair of Soil Ecology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | | | | |
Collapse
|
8
|
Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol Ecol 2010; 72:1-21. [PMID: 20180852 DOI: 10.1111/j.1574-6941.2010.00837.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Scientific imaging represents an important and accepted research tool for the analysis and understanding of complex natural systems. Apart from traditional microscopic techniques such as light and electron microscopy, new advanced techniques have been established including laser scanning microscopy (LSM), magnetic resonance imaging (MRI) and scanning transmission X-ray microscopy (STXM). These new techniques allow in situ analysis of the structure, composition, processes and dynamics of microbial communities. The three techniques open up quantitative analytical imaging possibilities that were, until a few years ago, impossible. The microscopic techniques represent powerful tools for examination of mixed environmental microbial communities usually encountered in the form of aggregates and films. As a consequence, LSM, MRI and STXM are being used in order to study complex microbial biofilm systems. This mini review provides a short outline of the more recent applications with the intention to stimulate new research and imaging approaches in microbiology.
Collapse
Affiliation(s)
- Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Berube PM, Samudrala R, Stahl DA. Transcription of all amoC copies is associated with recovery of Nitrosomonas europaea from ammonia starvation. J Bacteriol 2007; 189:3935-44. [PMID: 17384196 PMCID: PMC1913382 DOI: 10.1128/jb.01861-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 03/14/2007] [Indexed: 11/20/2022] Open
Abstract
The chemolithotrophic ammonia-oxidizing bacterium Nitrosomonas europaea is known to be highly resistant to starvation conditions. The transcriptional response of N. europaea to ammonia addition following short- and long-term starvation was examined by primer extension and S1 nuclease protection analyses of genes encoding enzymes for ammonia oxidation (amoCAB operons) and CO(2) fixation (cbbLS), a third, lone copy of amoC (amoC(3)), and two representative housekeeping genes (glyA and rpsJ). Primer extension analysis of RNA isolated from growing, starved, and recovering cells revealed two differentially regulated promoters upstream of the two amoCAB operons. The distal sigma(70) type amoCAB promoter was constitutively active in the presence of ammonia, but the proximal promoter was only active when cells were recovering from ammonia starvation. The lone, divergent copy of amoC (amoC(3)) was expressed only during recovery. Both the proximal amoC(1,2) promoter and the amoC(3) promoter are similar to gram-negative sigma(E) promoters, thus implicating sigma(E) in the regulation of the recovery response. Although modeling of subunit interactions suggested that a nonconservative proline substitution in AmoC(3) may modify the activity of the holoenzyme, characterization of a DeltaamoC(3) strain showed no significant difference in starvation recovery under conditions evaluated. In contrast to the amo transcripts, a delayed appearance of transcripts for a gene required for CO(2) fixation (cbbL) suggested that its transcription is retarded until sufficient energy is available. Overall, these data revealed a programmed exit from starvation likely involving regulation by sigma(E) and the coordinated regulation of catabolic and anabolic genes.
Collapse
Affiliation(s)
- Paul M Berube
- Department of Microbiology, University of Washington, Seattle, WA 98195-2700, USA
| | | | | |
Collapse
|
10
|
Urakawa H, Maki H, Kawabata S, Fujiwara T, Ando H, Kawai T, Hiwatari T, Kohata K, Watanabe M. Abundance and population structure of ammonia-oxidizing bacteria that inhabit canal sediments receiving effluents from municipal wastewater treatment plants. Appl Environ Microbiol 2006; 72:6845-50. [PMID: 17021242 PMCID: PMC1610321 DOI: 10.1128/aem.00807-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A polyphasic, culture-independent study was conducted to investigate the abundance and population structure of ammonia-oxidizing bacteria (AOB) in canal sediments receiving wastewater discharge. The abundance of AOB ranged from 0.2 to 1.9% and 1.6 to 5.7% of the total bacterial fraction by real-time PCR and immunofluorescence staining, respectively. Clone analysis and restriction endonuclease analysis revealed that the AOB communities influenced by the wastewater discharge were dominated by Nitrosomonas, were similar to each other, and were less diverse than the communities outside of the immediate discharge zone.
Collapse
Affiliation(s)
- Hidetoshi Urakawa
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Urakawa H, Kurata S, Fujiwara T, Kuroiwa D, Maki H, Kawabata S, Hiwatari T, Ando H, Kawai T, Watanabe M, Kohata K. Characterization and quantification of ammonia-oxidizing bacteria in eutrophic coastal marine sediments using polyphasic molecular approaches and immunofluorescence staining. Environ Microbiol 2006; 8:787-803. [PMID: 16623737 DOI: 10.1111/j.1462-2920.2005.00962.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tokyo Bay, a eutrophic bay in Japan, receives nutrients from wastewater plants and other urban diffuse sources via river input. A transect was conducted along a line from the Arakawa River into Tokyo Bay to investigate the ecological relationship between the river outflow and the distribution, abundance and population structure of ammonia-oxidizing bacteria (AOB). Five surficial marine sediments were collected and analysed with polyphasic approaches. Heterogeneity and genetic diversity of beta-AOB populations were examined using restriction fragment length polymorphism (RFLP) analysis of 16S rRNA and amoA genes. A shift of the microbial community was detected in samples along the transect. Both 16S rRNA and amoA genes generated polymorphisms in the restriction profiles that were distinguishable at each sampling site. Two 16S rRNA gene libraries were constructed using the reverse transcription polymerase chain reaction (RT-PCR) method to determine the major ammonia oxidizers maintaining high cellular rRNA content. Two major groups were observed in the Nitrosomonas lineage; no Nitrosospira were detected. The effort to isolate novel AOB was successful; the isolate dominated in the gene libraries. For quantitative analysis, a real-time PCR assay targeting the 16S rRNA gene was developed. The population sizes of beta-AOB ranged from 1.6 x 10(7) to 3.0 x 10(8) cells g(-1) in dry sediments, which corresponded to 0.1-1.1% of the total bacterial population. An immunofluorescence staining using anti-hydroxylamine oxidoreductase (HAO) antibody was also tested to obtain complementary data. The population sizes of ammonia oxidizers ranged between 2.4 x 10(8) and 1.2 x 10(9) cells g(-1) of dry sediments, which corresponded to 1.2-4.3% of the total bacterial fraction. Ammonia-oxidizing bacteria cell numbers deduced by the two methods were correlated (R = 0.79, P < 0.01). In both methods, the number of AOB increased with the distance from the river mouth; ammonia-oxidizing bacteria were most numerous at B30, where the ammonium concentration in the porewater was markedly lower and the nitrite concentration was slightly higher than nearby sites. These results reveal spatial distribution and shifts in the population structure of AOB corresponding to nutrients and organic inputs from the river run-off and phytoplankton bloom.
Collapse
Affiliation(s)
- Hidetoshi Urakawa
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fiencke C, Bock E. Immunocytochemical localization of membrane-bound ammonia monooxygenase in cells of ammonia oxidizing bacteria. Arch Microbiol 2006; 185:99-106. [PMID: 16395553 DOI: 10.1007/s00203-005-0074-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/19/2005] [Accepted: 12/06/2005] [Indexed: 11/24/2022]
Abstract
The intracellular location of the membrane-bound ammonia monooxygenase (AMO) in all genera of ammonia oxidizing bacteria (Nitrosomonas, Nitrosococcus and Nitrosospira) was determined by electron microscopic immunocytochemistry. Polyclonal antibodies recognizing the two subunits, AmoA- and AmoB-proteins, were used for post-embedding labeling. Ultrathin sections revealed that the AmoB-protein was located in all genera on the cytoplasmic membrane. In cells of Nitrosomonas and Nitrosococus additional but less AmoB-labeling was found on the intracytoplasmic membrane (ICM). In contrast to the detection of AmoB-protein, the AmoA-antibodies failed to detect the AmoA-protein. Based on quantitative immunoblots the extent of ICM in Nitrosomonas eutropha was correlated with the amount of AmoA in the cells. The highest extent of ICM and amount of AmoA was found at low ammonium substrate concentrations.
Collapse
Affiliation(s)
- Claudia Fiencke
- Biocenter Klein Flottbek, Section for Microbiology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany,
| | | |
Collapse
|
13
|
Lebedeva EV, Alawi M, Fiencke C, Namsaraev B, Bock E, Spieck E. Moderately thermophilic nitrifying bacteria from a hot spring of the Baikal rift zone. FEMS Microbiol Ecol 2005; 54:297-306. [PMID: 16332328 DOI: 10.1016/j.femsec.2005.04.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 02/15/2005] [Accepted: 04/14/2005] [Indexed: 11/30/2022] Open
Abstract
Samples from three hot springs (Alla, Seya and Garga) located in the northeastern part of Baikal rift zone (Buryat Republic, Russia) were screened for the presence of thermophilic nitrifying bacteria. Enrichment cultures were obtained solely from the Garga spring characterized by slightly alkaline water (pH 7.9) and an outlet temperature of 75 degrees C. The enrichment cultures of the ammonia- and nitrite oxidizers grew at temperature ranges of 27-55 and 40-60 degrees C, respectively. The temperature optimum was approximately 50 degrees C for both groups and thus they can be designated as moderate thermophiles. Ammonia oxidizers were identified with classical and immunological techniques. Representatives of the genus Nitrosomonas and Nitrosospira-like bacteria with characteristic vibroid morphology were detected. The latter were characterized by an enlarged periplasmic space, which has not been previously observed in ammonia oxidizers. Electron microscopy, denaturing gradient gel electrophoresis analyses and partial 16S rRNA gene sequencing provided evidence that the nitrite oxidizers were members of the genus Nitrospira.
Collapse
Affiliation(s)
- Elena V Lebedeva
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/2, Moscow 117312, Russia
| | | | | | | | | | | |
Collapse
|
14
|
Fiencke C, Bock E. Genera-specific immunofluorescence labeling of ammonia oxidizers with polyclonal antibodies recognizing both subunits of the ammonia monooxygenase. MICROBIAL ECOLOGY 2004; 47:374-384. [PMID: 14994172 DOI: 10.1007/s00248-003-1009-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2002] [Accepted: 03/20/2003] [Indexed: 05/24/2023]
Abstract
Polyclonal antibodies that recognize the two subunits AmoA and AmoB of the ammonia monooxygenase (AMO) were applied to identify ammonia-oxidizing bacteria by immunofluorescence (IF) labeling in pure, mixed, and enriched cultures. The antibodies against the AmoA were produced using a synthetic peptide of the AmoA of Nitrosomonas eutropha, whereas the antibodies against the AmoB had been developed previously is against the whole B-subunit of the AMO [Pinck et al. (2001) Appl Environ Microbiol 67:118-124]. Using IF labeling, the AmoA antibodies were specific for the detection of all species of the genus Nitrosomonas. In contrast, the antiserum against AmoB labeled all genera of ammonia oxidizers of the beta-subclass of Proteobacteria (Nitrosomonas, Nitrosospira, Nitrosolobus, and Nitrosovibrio). The fluorescence signals of the AmoA antibodies were spread all over the cells, whereas the signals of the AmoB antibodies were associated with the cytoplasmic membranes. The specificity of the reactions of the antisera with ammonia oxidizers were proven in pure and mixed cultures, and the characteristic IF labeling and the morphology of the cells enabled their identification at the genus level. The genus-specific IF labeling could be used to identify ammonia oxidizers enriched from various habitats. In enrichment cultures of natural sandstone, cells of the genera Nitrosomonas, Nitrosovibrio, and Nitrosospira were detected. Members of the genus Nitrosovibrio and Nitrosolobus were most prominent in enriched garden soil samples, whereas members of the genus Nitrosomonas dominated in enriched activated sludge. The antibodies caused only slight background fluorescence on sandstone and soil particles compared to oligonucleotide probes, which could not be used to detect ammonia oxidizers on these materials because of strong nonspecific fluorescence.
Collapse
Affiliation(s)
- C Fiencke
- Institut für Allgemeine Botanik, Universität Hamburg, D-22609 Hamburg, Germany.
| | | |
Collapse
|