1
|
Tian Y, Li C, Tu S, James NT, Harrell FE, Shepherd BE. Addressing Multiple Detection Limits with Semiparametric Cumulative Probability Models. J Am Stat Assoc 2024; 119:864-874. [PMID: 39463921 PMCID: PMC11500994 DOI: 10.1080/01621459.2024.2315667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 10/29/2024]
Abstract
Detection limits (DLs), where a variable cannot be measured outside of a certain range, are common in research. DLs may vary across study sites or over time. Most approaches to handling DLs in response variables implicitly make strong parametric assumptions on the distribution of data outside DLs. We propose a new approach to deal with multiple DLs based on a widely used ordinal regression model, the cumulative probability model (CPM). The CPM is a rank-based, semiparametric linear transformation model that can handle mixed distributions of continuous and discrete outcome variables. These features are key for analyzing data with DLs because while observations inside DLs are continuous, those outside DLs are censored and generally put into discrete categories. With a single lower DL, CPMs assign values below the DL as having the lowest rank. With multiple DLs, the CPM likelihood can be modified to appropriately distribute probability mass. We demonstrate the use of CPMs with DLs via simulations and a data example. This work is motivated by a study investigating factors associated with HIV viral load 6 months after starting antiretroviral therapy in Latin America; 56% of observations are below lower DLs that vary across study sites and over time.
Collapse
Affiliation(s)
- Yuqi Tian
- Department of Biostatistics, Vanderbilt University, California
| | - Chun Li
- Department of Population and Public Health Sciences, University of Southern California
| | - Shengxin Tu
- Department of Biostatistics, Vanderbilt University, California
| | - Nathan T. James
- Department of Biostatistics, Vanderbilt University, California
| | | | | |
Collapse
|
2
|
Paul C, Roy T, Singh K, Maitra M, Das N. Study of growth-improving and sporophore-inducing endobacteria isolated from Pleurotus pulmonarius. World J Microbiol Biotechnol 2023; 39:349. [PMID: 37857876 DOI: 10.1007/s11274-023-03776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Several Pleurotus species (oyster mushrooms) are commercially cultivated in India owing to the favorable tropical agro-climatic conditions. However, there are only a few studies on the microbiome of mushrooms, especially oyster mushrooms. The aim of this study was to assess the effect of endobacteria on mycelial growth, spawning, sporophore development, and proximate composition of P. pulmonarius. We isolated several bacterial strains from the sporophores of P. pulmonarius and assessed the in vitro production of indole acetic acid, ammonia, and siderophores. The selected bacteria were individually supplemented with spawn, substrate, or both for sporophore production. Three of 130 isolates were selected as mycelial growth-promoting bacteria in both solid and submerged fermentation. These bacterial isolates were identified through Gram staining, biochemical characterization, and 16S rRNA sequencing. Isolate PP showed 99.24% similarity with Priestia paraflexa, whereas isolates PJ1 and PJ2 showed 99.78% and 99.65% similarities, respectively, with Rossellomorea marisflavi. The bacterial supplementation with spawn, substrate, or both, increased the biological efficiency (BE) and nutrient content of the mushrooms. The bacterial supplementation with substrate augmented BE by 64.84%, 13.73%, and 27.13% using PJ2, PP, and PJ1, respectively; under similar conditions of spawn supplementation, BE was increased by 15.24%, 47.30%, 48.10%, respectively. Overall, the supplementation of endobacteria to improve oyster mushroom cultivation may open a new avenue for sustainable agricultural practices in the mushroom industry.
Collapse
Affiliation(s)
- Chandana Paul
- Department of Microbiology, St. Xavier's College, Park Street, Kolkata, West Bengal, 700016, India
| | - Tina Roy
- Plant-Microbe Interaction and Molecular Biology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Kunal Singh
- Plant-Microbe Interaction and Molecular Biology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Madhumita Maitra
- Department of Microbiology, St. Xavier's College, Park Street, Kolkata, West Bengal, 700016, India
| | - Nirmalendu Das
- Department of Botany, Barasat Government College, Barasat, Kolkata, West Bengal, 700124, India.
| |
Collapse
|
3
|
Temporal Dynamics of Bacterial Communities along a Gradient of Disturbance in a U.S. Southern Plains Agroecosystem. mBio 2022; 13:e0382921. [PMID: 35420482 PMCID: PMC9239210 DOI: 10.1128/mbio.03829-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Land conversion for intensive agriculture produces unfavorable changes to soil ecosystems, causing global concern. Soil bacterial communities mediate essential terrestrial ecosystem processes, making it imperative to understand their responses to agricultural perturbations. Here, we used high-throughput sequencing coupled with a functional gene array to study temporal dynamics of soil bacterial communities over 1 year under different disturbance intensities across a U.S. Southern Plains agroecosystem, including tallgrass prairie, Old World bluestem pasture, no-tillage (NT) canola, and conventional tillage (CT) wheat. Land use had the greatest impact on bacterial taxonomic diversity, whereas sampling time and its interaction with land use were central to functional diversity differences. The main drivers of taxonomic diversity were tillage > sampling time > temperature, while all measured factors explained similar amounts of variations in functional diversity. Temporal differences had the strongest correlation with total nitrogen > rainfall > nitrate. Within land uses, community variations for CT wheat were attributed to nitrogen levels, whereas soil organic matter and soil water content explained community variations for NT canola. In comparison, all measured factors contributed almost equally to variations in grassland bacterial communities. Finally, functional diversity had a stronger relationship with taxonomic diversity for CT wheat compared to phylogenetic diversity in the prairie. These findings reinforce that tillage management has the greatest impact on bacterial community diversity, with sampling time also critical. Hence, our study highlights the importance of the interaction between temporal dynamics and land use in influencing soil microbiomes, providing support for reducing agricultural disturbance to conserve soil biodiversity.
Collapse
|
4
|
Shim J, Williams L, Kim D, Ko K, Kim MS. Application of Engineered Zinc Finger Proteins Immobilized on Paramagnetic Beads for Multiplexed Detection of Pathogenic DNA. J Microbiol Biotechnol 2021; 31:1323-1329. [PMID: 34261849 PMCID: PMC9705829 DOI: 10.4014/jmb.2106.06057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Micro-scale magnetic beads are widely used for isolation of proteins, DNA, and cells, leading to the development of in vitro diagnostics. Efficient isolation of target biomolecules is one of the keys to developing a simple and rapid point-of-care diagnostic. A zinc finger protein (ZFP) is a double-stranded (ds) DNA-binding domain, providing a useful scaffold for direct reading of the sequence information. Here, we utilized two engineered ZFPs (Stx2-268 and SEB-435) to detect the Shiga toxin (stx2) gene and the staphylococcal enterotoxin B (seb) gene present in foodborne pathogens, Escherichia coli O157 and Staphylococcus aureus, respectively. Engineered ZFPs are immobilized on a paramagnetic bead as a detection platform to efficiently isolate the target dsDNA-ZFP bound complex. The small paramagnetic beads provide a high surface area to volume ratio, allowing more ZFPs to be immobilized on the beads, which leads to increased target DNA detection. The fluorescence signal was measured upon ZFP binding to fluorophore-labeled target dsDNA. In this study, our system provided a detection limit of ≤ 60 fmol and demonstrated high specificity with multiplexing capability, suggesting a potential for development into a simple and reliable diagnostic for detecting multiple pathogens without target amplification.
Collapse
Affiliation(s)
- Jiyoung Shim
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Langley Williams
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Dohyun Kim
- Department of Mechanical Engineering, Myongji University, Yongin 17058, Republic of Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Moon-Soo Kim
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, USA,Corresponding author Phone: +1-270-745-4362 Fax: +1-270-745-5361 E-mail:
| |
Collapse
|
5
|
Functional Gene Array-Based Ultrasensitive and Quantitative Detection of Microbial Populations in Complex Communities. mSystems 2019; 4:4/4/e00296-19. [PMID: 31213523 PMCID: PMC6581690 DOI: 10.1128/msystems.00296-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The rapid development of metagenomic technologies, including microarrays, over the past decade has greatly expanded our understanding of complex microbial systems. However, because of the ever-expanding number of novel microbial sequences discovered each year, developing a microarray that is representative of real microbial communities, is specific and sensitive, and provides quantitative information remains a challenge. The newly developed GeoChip 5.0 is the most comprehensive microarray available to date for examining the functional capabilities of microbial communities important to biogeochemistry, ecology, environmental sciences, and human health. The GeoChip 5 is highly specific, sensitive, and quantitative based on both computational and experimental assays. Use of the array on a contaminated groundwater sample provided novel insights on the impacts of environmental contaminants on groundwater microbial communities. While functional gene arrays (FGAs) have greatly expanded our understanding of complex microbial systems, specificity, sensitivity, and quantitation challenges remain. We developed a new generation of FGA, GeoChip 5.0, using the Agilent platform. Two formats were created, a smaller format (GeoChip 5.0S), primarily covering carbon-, nitrogen-, sulfur-, and phosphorus-cycling genes and others providing ecological services, and a larger format (GeoChip 5.0M) containing the functional categories involved in biogeochemical cycling of C, N, S, and P and various metals, stress response, microbial defense, electron transport, plant growth promotion, virulence, gyrB, and fungus-, protozoan-, and virus-specific genes. GeoChip 5.0M contains 161,961 oligonucleotide probes covering >365,000 genes of 1,447 gene families from broad, functionally divergent taxonomic groups, including bacteria (2,721 genera), archaea (101 genera), fungi (297 genera), protists (219 genera), and viruses (167 genera), mainly phages. Computational and experimental evaluation indicated that designed probes were highly specific and could detect as little as 0.05 ng of pure culture DNAs within a background of 1 μg community DNA (equivalent to 0.005% of the population). Additionally, strong quantitative linear relationships were observed between signal intensity and amount of pure genomic (∼99% of probes detected; r > 0.9) or soil (∼97%; r > 0.9) DNAs. Application of the GeoChip to a contaminated groundwater microbial community indicated that environmental contaminants (primarily heavy metals) had significant impacts on the biodiversity of the communities. This is the most comprehensive FGA to date, capable of directly linking microbial genes/populations to ecosystem functions. IMPORTANCE The rapid development of metagenomic technologies, including microarrays, over the past decade has greatly expanded our understanding of complex microbial systems. However, because of the ever-expanding number of novel microbial sequences discovered each year, developing a microarray that is representative of real microbial communities, is specific and sensitive, and provides quantitative information remains a challenge. The newly developed GeoChip 5.0 is the most comprehensive microarray available to date for examining the functional capabilities of microbial communities important to biogeochemistry, ecology, environmental sciences, and human health. The GeoChip 5 is highly specific, sensitive, and quantitative based on both computational and experimental assays. Use of the array on a contaminated groundwater sample provided novel insights on the impacts of environmental contaminants on groundwater microbial communities.
Collapse
|
6
|
LeBrun ES, Kang S. A comparison of computationally predicted functional metagenomes and microarray analysis for microbial P cycle genes in a unique basalt-soil forest. F1000Res 2018; 7:179. [PMID: 30057749 PMCID: PMC6051228 DOI: 10.12688/f1000research.13841.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2018] [Indexed: 02/01/2023] Open
Abstract
Here we compared microbial results for the same Phosphorus (P) biogeochemical cycle genes from a GeoChip microarray and PICRUSt functional predictions from 16S rRNA data for 20 samples in the four spatially separated Gotjawal forests on Jeju Island in South Korea. The high homogeneity of microbial communities detected at each site allows sites to act as environmental replicates for comparing the two different functional analysis methods. We found that while both methods capture the homogeneity of the system, both differed greatly in the total abundance of genes detected, as well as the diversity of taxa detected. Additionally, we introduce a more comprehensive functional assay that again captures the homogeneity of the system but also captures more extensive community gene and taxonomic information and depth. While both methods have their advantages and limitations, PICRUSt appears better suited to asking questions specifically related to microbial community P as we did here. This comparison of methods makes important distinctions between both the results and the capabilities of each method and can help select the best tool for answering different scientific questions.
Collapse
Affiliation(s)
- Erick S. LeBrun
- Center for Reservoir and Aquatic Systems Research, Department of Biology, Baylor University, Waco, TX, 76798-7388, USA
| | - Sanghoon Kang
- Center for Reservoir and Aquatic Systems Research, Department of Biology, Baylor University, Waco, TX, 76798-7388, USA
| |
Collapse
|
7
|
|
8
|
Tung HY, Chen WC, Ou BR, Yeh JY, Cheng YH, Tsng PH, Hsu MH, Tsai MS, Liang YC. Simultaneous detection of multiple pathogens by multiplex PCR coupled with DNA biochip hybridization. Lab Anim 2017; 52:186-195. [PMID: 28691600 DOI: 10.1177/0023677217718864] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Traditional serological enzyme-linked immunosorbent assay (ELISA) is routinely used to monitor pathogens during quarantine in most animal facilities to prevent possible infection. However, the ELISA platform is a single-target assay, and screening all targeted pathogens is time-consuming and laborious. In this study, to increase sensitivity and to reduce diagnosis time for high-throughput processes, multiplex PCR and DNA biochip techniques were combined to develop a multi-pathogen diagnostic method for use instead of routine ELISA. Eight primer sets were designed for multiplex PCR to detect genes from seven targeted bacterial and viral pathogens. DNA-DNA hybridization was conducted on a biochip following the multiple PCR analysis. Using this method, a total of 24 clinical samples were tested, and the result showed that not only single infection but also co-infection by multi-pathogens can be detected. In conclusion, multiplex PCR coupled with a DNA biochip is an efficient method for detecting multi-pathogens in a reaction. This platform is a useful tool for quarantine services and disease prevention in animal facilities.
Collapse
Affiliation(s)
- Hsiang-Yun Tung
- 1 College of Biotechnology and Bioresources, Dayeh University, Changhua, Taiwan
| | - Wei-Chen Chen
- 2 Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Bor-Rung Ou
- 3 Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Jan-Ying Yeh
- 4 Department of Post-Baccalaureate Veterinary Medicine, Asia University, Wufeng Taichung, Taiwan.,5 Food Safety and Inspection Center, Asia University, Wufeng Taichung, Taiwan
| | - Yeong-Hsiang Cheng
- 6 Department of Biotechnology and Animal Science, National I-Lan University, I-Lan, Taiwan
| | - Ping-Hua Tsng
- 7 GeneReach Biotechnology Corporation, Taichung, Taiwan
| | - Ming-Hua Hsu
- 8 Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Shiun Tsai
- 1 College of Biotechnology and Bioresources, Dayeh University, Changhua, Taiwan
| | - Yu-Chuan Liang
- 2 Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| |
Collapse
|
9
|
Nasrabadi Z, Ranjbar R, Poorali F, Sarshar M. Detection of eight foodborne bacterial pathogens by oligonucleotide array hybridization. Electron Physician 2017; 9:4405-4411. [PMID: 28713514 PMCID: PMC5498707 DOI: 10.19082/4405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Simultaneous and rapid detection of multiple foodborne bacterial pathogens is important for the prevention of foodborne illnesses. OBJECTIVE The aim of this study was to evaluate the use of 16S rDNA and 23S rDNA sequences as targets for simultaneous detection of eight foodborne bacterial pathogens. METHODS Nineteen bacterial oligonucleotide probes were synthesized and applied to nylon membranes. Digoxygenin labeled 16S rDNA and 23S rDNA from bacteria were amplified by PCR using universal primers, and the amplicons were hybridized to the membrane array. Hybridization signals were visualized by NBT/BCIP color development. RESULTS The eight intestinal bacterial pathogens including Salmonella enterica, Escherichia coli, Bacillus cereus, Vibrio cholerae, Shigella dysenteriae, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis were appropriately detected in a panel of oligonucleotide array hybridization. The experimental results showed that the method could discriminate the bacterial pathogens successfully. The sensitivity of oligonucleotide array was 103 CFU/ml. CONCLUSION This study showed that 16S rDNA and 23S rDNA genes had sufficient sequence diversity for species identification and were useful for monitoring the populations of foodborne pathogenic bacteria. Furthermore, results obtained in this study revealed that oligonucleotide array hybridization had a powerful capability to detect and identify the bacterial pathogens simultaneously.
Collapse
Affiliation(s)
- Zohreh Nasrabadi
- Department of Microbiology, Faculty of Science, Islamic Azad University, Karaj branch, Karaj, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Poorali
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Meysam Sarshar
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
10
|
CAZyChip: dynamic assessment of exploration of glycoside hydrolases in microbial ecosystems. BMC Genomics 2016; 17:671. [PMID: 27552843 PMCID: PMC4994258 DOI: 10.1186/s12864-016-2988-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/02/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Microorganisms constitute a reservoir of enzymes involved in environmental carbon cycling and degradation of plant polysaccharides through their production of a vast variety of Glycoside Hydrolases (GH). The CAZyChip was developed to allow a rapid characterization at transcriptomic level of these GHs and to identify enzymes acting on hydrolysis of polysaccharides or glycans. RESULTS This DNA biochip contains the signature of 55,220 bacterial GHs available in the CAZy database. Probes were designed using two softwares, and microarrays were directly synthesized using the in situ ink-jet technology. CAZyChip specificity and reproducibility was validated by hybridization of known GHs RNA extracted from recombinant E. coli strains, which were previously identified by a functional metagenomic approach. The GHs arsenal was also studied in bioprocess conditions using rumen derived microbiota. CONCLUSIONS The CAZyChip appears to be a user friendly tool for profiling the expression of a large variety of GHs. It can be used to study temporal variations of functional diversity, thereby facilitating the identification of new efficient candidates for enzymatic conversions from various ecosystems.
Collapse
|
11
|
Van Nostrand JD, Yin H, Wu L, Yuan T, Zhou J. Hybridization of Environmental Microbial Community Nucleic Acids by GeoChip. Methods Mol Biol 2016; 1399:183-196. [PMID: 26791504 DOI: 10.1007/978-1-4939-3369-3_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Functional gene arrays, like the GeoChip, allow for the study of tens of thousands of genes in a single assay. The GeoChip array (5.0) contains probes for genes involved in geochemical cycling (N, C, S, and P), metal homeostasis, stress response, organic contaminant degradation, antibiotic resistance, secondary metabolism, and virulence factors as well as genes specific for fungi, protists, and viruses. Here, we briefly describe GeoChip design strategies (gene selection and probe design) and discuss minimum quantity and quality requirements for nucleic acids. We then provide detailed protocols for amplification, labeling, and hybridization of samples to the GeoChip.
Collapse
Affiliation(s)
- Joy D Van Nostrand
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Huaqin Yin
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Liyou Wu
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Tong Yuan
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
12
|
Contemporary molecular tools in microbial ecology and their application to advancing biotechnology. Biotechnol Adv 2015; 33:1755-73. [DOI: 10.1016/j.biotechadv.2015.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 09/19/2015] [Accepted: 09/20/2015] [Indexed: 12/30/2022]
|
13
|
|
14
|
High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 2015; 6:mBio.02288-14. [PMID: 25626903 PMCID: PMC4324309 DOI: 10.1128/mbio.02288-14] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions.
Collapse
|
15
|
Inoue D, Pang J, Matsuda M, Sei K, Nishida K, Ike M. Development of a whole community genome amplification-assisted DNA microarray method to detect functional genes involved in the nitrogen cycle. World J Microbiol Biotechnol 2014; 30:2907-15. [DOI: 10.1007/s11274-014-1718-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/31/2014] [Indexed: 11/28/2022]
|
16
|
Tu Q, Yu H, He Z, Deng Y, Wu L, Van Nostrand JD, Zhou A, Voordeckers J, Lee YJ, Qin Y, Hemme CL, Shi Z, Xue K, Yuan T, Wang A, Zhou J. GeoChip 4: a functional gene-array-based high-throughput environmental technology for microbial community analysis. Mol Ecol Resour 2014; 14:914-28. [PMID: 24520909 DOI: 10.1111/1755-0998.12239] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/02/2014] [Accepted: 02/05/2014] [Indexed: 01/21/2023]
Abstract
Micro-organisms play critical roles in many important biogeochemical processes in the Earth's biosphere. However, understanding and characterizing the functional capacity of microbial communities are still difficult due to the extremely diverse and often uncultivable nature of most micro-organisms. In this study, we developed a new functional gene array, GeoChip 4, for analysing the functional diversity, composition, structure, metabolic potential/activity and dynamics of microbial communities. GeoChip 4 contained approximately 82 000 probes covering 141 995 coding sequences from 410 functional gene families related to microbial carbon (C), nitrogen (N), sulphur (S), and phosphorus (P) cycling, energy metabolism, antibiotic resistance, metal resistance/reduction, organic remediation, stress responses, bacteriophage and virulence. A total of 173 archaeal, 4138 bacterial, 404 eukaryotic and 252 viral strains were targeted, providing the ability to analyse targeted functional gene families of micro-organisms included in all four domains. Experimental assessment using different amounts of DNA suggested that as little as 500 ng environmental DNA was required for good hybridization, and the signal intensities detected were well correlated with the DNA amount used. GeoChip 4 was then applied to study the effect of long-term warming on soil microbial communities at a Central Oklahoma site, with results indicating that microbial communities respond to long-term warming by enriching carbon degradation, nutrient cycling (nitrogen and phosphorous) and stress response gene families. To the best of our knowledge, GeoChip 4 is the most comprehensive functional gene array for microbial community analysis.
Collapse
Affiliation(s)
- Qichao Tu
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics (IEG), University of Oklahoma, Norman, OK, 73019, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tu Q, He Z, Li Y, Chen Y, Deng Y, Lin L, Hemme CL, Yuan T, Van Nostrand JD, Wu L, Zhou X, Shi W, Li L, Xu J, Zhou J. Development of HuMiChip for functional profiling of human microbiomes. PLoS One 2014; 9:e90546. [PMID: 24595026 PMCID: PMC3942451 DOI: 10.1371/journal.pone.0090546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/01/2014] [Indexed: 02/05/2023] Open
Abstract
Understanding the diversity, composition, structure, function, and dynamics of human microbiomes in individual human hosts is crucial to reveal human-microbial interactions, especially for patients with microbially mediated disorders, but challenging due to the high diversity of the human microbiome. Here we have developed a functional gene-based microarray for profiling human microbiomes (HuMiChip) with 36,802 probes targeting 50,007 protein coding sequences for 139 key functional gene families. Computational evaluation suggested all probes included are highly specific to their target sequences. HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome. Obvious shifts of microbial functional structure and composition were observed for both patients with dental caries and periodontitis from moderate to advanced stages, suggesting a progressive change of microbial communities in response to the diseases. Consistent gene family profiles were observed by both HuMiChip and next generation sequencing technologies. Additionally, HuMiChip was able to detect gene families at as low as 0.001% relative abundance. The results indicate that the developed HuMiChip is a useful and effective tool for functional profiling of human microbiomes.
Collapse
Affiliation(s)
- Qichao Tu
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Zhili He
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Yan Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ye Deng
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Lu Lin
- Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao, Shandong, China
| | - Christopher L. Hemme
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Tong Yuan
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Joy D. Van Nostrand
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Liyou Wu
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenyuan Shi
- UCLA School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao, Shandong, China
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
- Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
A microarray for assessing transcription from pelagic marine microbial taxa. ISME JOURNAL 2014; 8:1476-91. [PMID: 24477198 DOI: 10.1038/ismej.2014.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 12/16/2013] [Accepted: 12/31/2013] [Indexed: 02/08/2023]
Abstract
Metagenomic approaches have revealed unprecedented genetic diversity within microbial communities across vast expanses of the world's oceans. Linking this genetic diversity with key metabolic and cellular activities of microbial assemblages is a fundamental challenge. Here we report on a collaborative effort to design MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories), a high-density oligonucleotide microarray that targets functional genes of diverse taxa in pelagic and coastal marine microbial communities. MicroTOOLs integrates nucleotide sequence information from disparate data types: genomes, PCR-amplicons, metagenomes, and metatranscriptomes. It targets 19 400 unique sequences over 145 different genes that are relevant to stress responses and microbial metabolism across the three domains of life and viruses. MicroTOOLs was used in a proof-of-concept experiment that compared the functional responses of microbial communities following Fe and P enrichments of surface water samples from the North Pacific Subtropical Gyre. We detected transcription of 68% of the gene targets across major taxonomic groups, and the pattern of transcription indicated relief from Fe limitation and transition to N limitation in some taxa. Prochlorococcus (eHLI), Synechococcus (sub-cluster 5.3) and Alphaproteobacteria SAR11 clade (HIMB59) showed the strongest responses to the Fe enrichment. In addition, members of uncharacterized lineages also responded. The MicroTOOLs microarray provides a robust tool for comprehensive characterization of major functional groups of microbes in the open ocean, and the design can be easily amended for specific environments and research questions.
Collapse
|
19
|
Microbial diversity in the era of omic technologies. BIOMED RESEARCH INTERNATIONAL 2013; 2013:958719. [PMID: 24260747 PMCID: PMC3821902 DOI: 10.1155/2013/958719] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 11/17/2022]
Abstract
Human life and activity depends on microorganisms, as they are responsible for providing basic elements of life. Although microbes have such a key role in sustaining basic functions for all living organisms, very little is known about their biology since only a small fraction (average 1%) can be cultured under laboratory conditions. This is even more evident when considering that >88% of all bacterial isolates belong to four bacterial phyla, the Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Advanced technologies, developed in the last years, promise to revolutionise the way that we characterize, identify, and study microbial communities. In this review, we present the most advanced tools that microbial ecologists can use for the study of microbial communities. Innovative microbial ecological DNA microarrays such as PhyloChip and GeoChip that have been developed for investigating the composition and function of microbial communities are presented, along with an overview of the next generation sequencing technologies. Finally, the Single Cell Genomics approach, which can be used for obtaining genomes from uncultured phyla, is outlined. This tool enables the amplification and sequencing of DNA from single cells obtained directly from environmental samples and is promising to revolutionise microbiology.
Collapse
|
20
|
Ledeker BM, De Long SK. The effect of multiple primer-template mismatches on quantitative PCR accuracy and development of a multi-primer set assay for accurate quantification of pcrA gene sequence variants. J Microbiol Methods 2013; 94:224-31. [PMID: 23806694 DOI: 10.1016/j.mimet.2013.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/14/2013] [Accepted: 06/15/2013] [Indexed: 11/19/2022]
Abstract
Quantitative PCR (qPCR) is a critical tool for quantifying the abundance of specific organisms and the level or expression of target genes in medically and environmentally relevant systems. However, often the power of this tool has been limited because primer-template mismatches, due to sequence variations of targeted genes, can lead to inaccuracies in measured gene quantities, detection failures, and spurious conclusions. Currently available primer design guidelines for qPCR were developed for pure culture applications, and available primer design strategies for mixed cultures were developed for detection rather than accurate quantification. Furthermore, past studies examining the impact of mismatches have focused only on single mismatches while instances of multiple mismatches are common. There are currently no appropriate solutions to overcome the challenges posed by sequence variations. Here, we report results that provide a comprehensive, quantitative understanding of the impact of multiple primer-template mismatches on qPCR accuracy and demonstrate a multi-primer set approach to accurately quantify a model gene pcrA (encoding perchlorate reductase) that has substantial sequence variation. Results showed that for multiple mismatches (up to 3 mismatches) in primer regions where mismatches were previously considered tolerable (middle and 5' end), quantification accuracies could be as low as ~0.1%. Furthermore, tests were run using a published pcrA primer set with mixtures of genomic DNA from strains known to harbor the target gene, and for some mixtures quantification accuracy was as low as ~0.8% or was non-detect. To overcome these limitations, a multiple primer set assay including minimal degeneracies was developed for pcrA genes. This assay resulted in nearly 100% accurate detection for all mixed microbial communities tested. The multi-primer set approach demonstrated herein can be broadly applied to other genes with known sequences.
Collapse
Affiliation(s)
- Brett M Ledeker
- Department of Civil and Environmental Engineering, Colorado State University, 1372 Campus Delivery, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
21
|
Abstract
The McMurdo Dry Valleys are the largest ice-free region in Antarctica and are critically at risk from climate change. The terrestrial landscape is dominated by oligotrophic mineral soils and extensive exposed rocky surfaces where biota are largely restricted to microbial communities, although their ability to perform the majority of geobiological processes has remained largely uncharacterized. Here, we identified functional traits that drive microbial survival and community assembly, using a metagenomic approach with GeoChip-based functional gene arrays to establish metabolic capabilities in communities inhabiting soil and rock surface niches in McKelvey Valley. Major pathways in primary metabolism were identified, indicating significant plasticity in autotrophic, heterotrophic, and diazotrophic strategies supporting microbial communities. This represents a major advance beyond biodiversity surveys in that we have now identified how putative functional ecology drives microbial community assembly. Significant differences were apparent between open soil, hypolithic, chasmoendolithic, and cryptoendolithic communities. A suite of previously unappreciated Antarctic microbial stress response pathways, thermal, osmotic, and nutrient limitation responses were identified and related to environmental stressors, offering tangible clues to the mechanisms behind the enduring success of microorganisms in this seemingly inhospitable terrain. Rocky substrates exposed to larger fluctuations in environmental stress supported greater functional diversity in stress-response pathways than soils. Soils comprised a unique reservoir of genes involved in transformation of organic hydrocarbons and lignin-like degradative pathways. This has major implications for the evolutionary origin of the organisms, turnover of recalcitrant substrates in Antarctic soils, and predicting future responses to anthropogenic pollution.
Collapse
|
22
|
Akondi K, Lakshmi V. Emerging Trends in Genomic Approaches for Microbial Bioprospecting. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:61-70. [DOI: 10.1089/omi.2012.0082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- K.B. Akondi
- Department of Applied Microbiology, Sri Padmavati Women's University, Tirupati, India
| | - V.V. Lakshmi
- Department of Applied Microbiology, Sri Padmavati Women's University, Tirupati, India
| |
Collapse
|
23
|
Pakpour S, Olishevska SV, Prasher SO, Milani AS, Chénier MR. DNA extraction method selection for agricultural soil using TOPSIS multiple criteria decision-making model. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajmb.2013.34028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Correa-Galeote D, Tortosa G, Bedmar EJ. Determination of Denitrification Genes Abundance in Environmental Samples. ACTA ACUST UNITED AC 2013. [DOI: 10.4303/mg/235702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Nostrand JDV, He Z, Zhou J. Use of functional gene arrays for elucidating in situ biodegradation. Front Microbiol 2012; 3:339. [PMID: 23049526 PMCID: PMC3448134 DOI: 10.3389/fmicb.2012.00339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/03/2012] [Indexed: 12/18/2022] Open
Abstract
Microarrays have revolutionized the study of microbiology by providing a high-throughput method for examining thousands of genes with a single test and overcome the limitations of many culture-independent approaches. Functional gene arrays (FGA) probe a wide range of genes involved in a variety of functions of interest to microbial ecology (e.g., carbon degradation, N fixation, metal resistance) from many different microorganisms, cultured and uncultured. The most comprehensive FGA to date is the GeoChip array, which targets tens of thousands of genes involved in the geochemical cycling of carbon, nitrogen, phosphorus, and sulfur, metal resistance and reduction, energy processing, antibiotic resistance and contaminant degradation as well as phylogenetic information (gyrB). Since the development of GeoChips, many studies have been performed using this FGA and have shown it to be a powerful tool for rapid, sensitive, and specific examination of microbial communities in a high-throughput manner. As such, the GeoChip is well-suited for linking geochemical processes with microbial community function and structure. This technology has been used successfully to examine microbial communities before, during, and after in situ bioremediation at a variety of contaminated sites. These studies have expanded our understanding of biodegradation and bioremediation processes and the associated microorganisms and environmental conditions responsible. This review provides an overview of FGA development with a focus on the GeoChip and highlights specific GeoChip studies involving in situ bioremediation.
Collapse
Affiliation(s)
- Joy D Van Nostrand
- Institute for Environmental Genomics, University of Oklahoma Norman, OK, USA ; Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| | | | | |
Collapse
|
26
|
Barnett MJ, Pearce DA, Cullen DC. Advances in the in-field detection of microorganisms in ice. ADVANCES IN APPLIED MICROBIOLOGY 2012; 81:133-67. [PMID: 22958529 DOI: 10.1016/b978-0-12-394382-8.00004-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The historic view of ice-bound ecosystems has been one of a predominantly lifeless environment, where microorganisms certainly exist but are assumed to be either completely inactive or in a state of long-term dormancy. However, this standpoint has been progressively overturned in the past 20years as studies have started to reveal the importance of microbial life in the functioning of these environments. Our present knowledge of the distribution, taxonomy, and metabolic activity of such microbial life has been derived primarily from laboratory-based analyses of collected field samples. To date, only a restricted range of life detection and characterization techniques have been applied in the field. Specific examples include direct observation and DNA-based techniques (microscopy, specific stains, and community profiling based on PCR amplification), the detection of biomarkers (such as adenosine triphosphate), and measurements of metabolism [through the uptake and incorporation of radiolabeled isotopes or chemical alteration of fluorescent substrates (umbelliferones are also useful here)]. On-going improvements in technology mean that smaller and more robust life detection and characterization systems are continually being designed, manufactured, and adapted for in-field use. Adapting technology designed for other applications is the main source of new methodology, and the range of techniques is currently increasing rapidly. Here we review the current use of technology and techniques to detect and characterize microbial life within icy environments and specifically its deployment to in-field situations. We discuss the necessary considerations, limitations, and adaptations, review emerging technologies, and highlight the future potential. Successful application of these new techniques to in-field studies will certainly generate new insights into the way ice bound ecosystems function.
Collapse
Affiliation(s)
- Megan J Barnett
- Cranfield Health, Vincent Building, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | | | | |
Collapse
|
27
|
Leski TA, Lin B, Malanoski AP, Stenger DA. Application of resequencing microarrays in microbial detection and characterization. Future Microbiol 2012; 7:625-37. [PMID: 22568717 DOI: 10.2217/fmb.12.30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Microarrays are powerful, highly parallel assays that are transforming microbiological diagnostics and research. The adaptation of microarray-based resequencing technology for microbial detection and characterization resulted in the development of a number assays that have unique advantages over other existing technologies. This technological platform seems to be especially useful for sensitive and high-resolution multiplexed diagnostics for clinical syndromes with similar symptoms, screening environmental samples for biothreat agents, as well as genotyping and whole-genome analysis of single pathogens.
Collapse
Affiliation(s)
- Tomasz A Leski
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, SW, Washington, DC 20375, USA.
| | | | | | | |
Collapse
|
28
|
Park SJ, Kim DH, Jung MY, Kim SJ, Kim H, Kim YH, Chae JC, Rhee SK. Evaluation of a fosmid-clone-based microarray for comparative analysis of swine fecal metagenomes. J Microbiol 2012; 50:684-8. [DOI: 10.1007/s12275-012-2115-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
|
29
|
Xing MN, Zhang XZ, Huang H. Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnol Adv 2012; 30:920-9. [DOI: 10.1016/j.biotechadv.2012.01.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
30
|
Simultaneous detection of multiple fish pathogens using a naked-eye readable DNA microarray. SENSORS 2012; 12:2710-28. [PMID: 22736973 PMCID: PMC3376613 DOI: 10.3390/s120302710] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 02/20/2012] [Accepted: 02/27/2012] [Indexed: 11/21/2022]
Abstract
We coupled 16S rDNA PCR and DNA hybridization technology to construct a microarray for simultaneous detection and discrimination of eight fish pathogens (Aeromonas hydrophila, Edwardsiella tarda, Flavobacterium columnare, Lactococcus garvieae, Photobacterium damselae, Pseudomonas anguilliseptica, Streptococcus iniae and Vibrio anguillarum) commonly encountered in aquaculture. The array comprised short oligonucleotide probes (30 mer) complementary to the polymorphic regions of 16S rRNA genes for the target pathogens. Targets annealed to the microarray probes were reacted with streptavidin-conjugated alkaline phosphatase and nitro blue tetrazolium/5-bromo-4-chloro-3′-indolylphosphate, p-toluidine salt (NBT/BCIP), resulting in blue spots that are easily visualized by the naked eye. Testing was performed against a total of 168 bacterial strains, i.e., 26 representative collection strains, 81 isolates of target fish pathogens, and 61 ecologically or phylogenetically related strains. The results showed that each probe consistently identified its corresponding target strain with 100% specificity. The detection limit of the microarray was estimated to be in the range of 1 pg for genomic DNA and 103 CFU/mL for pure pathogen cultures. These high specificity and sensitivity results demonstrate the feasibility of using DNA microarrays in the diagnostic detection of fish pathogens.
Collapse
|
31
|
Ozel AB, Srivannavit O, Rouillard JM, Gulari AE. Target concentration dependence of DNA melting temperature on oligonucleotide microarrays. Biotechnol Prog 2012; 28:556-66. [PMID: 22275183 DOI: 10.1002/btpr.1505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 11/08/2011] [Indexed: 01/12/2023]
Abstract
The design of microarrays is currently based on studies focusing on DNA hybridization reaction in bulk solution. However, the presence of a surface to which the probe strand is attached can make the solution-based approximations invalid, resulting in sub-optimum hybridization conditions. To determine the effect of surfaces on DNA duplex formation, the authors studied the dependence of DNA melting temperature (T(m)) on target concentration. An automated system was developed to capture the melting profiles of a 25-mer perfect-match probe-target pair initially hybridized at 23°C. Target concentrations ranged from 0.0165 to 15 nM with different probe amounts (0.03-0.82 pmol on a surface area of 10(18) Å(2)), a constant probe density (5 × 10(12) molecules/cm(2)) and spacer length (15 dT). The authors found that T(m) for duplexes anchored to a surface is lower than in-solution, and this difference increases with increasing target concentration. In a representative set, a target concentration increase from 0.5 to 15 nM with 0.82 pmol of probe on the surface resulted in a T(m) decrease of 6°C when compared with a 4°C increase in solution. At very low target concentrations, a multi-melting process was observed in low temperature domains of the curves. This was attributed to the presence of truncated or mismatch probes.
Collapse
Affiliation(s)
- Ayse Bilge Ozel
- Dept. of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
32
|
Asuming- Brempong S. Microarray Technology and Its Applicability in Soil Science – A Short Review. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojss.2012.23039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Yamane T, Enokida H, Hayami H, Kawahara M, Nakagawa M. Genome-wide transcriptome analysis of fluoroquinolone resistance in clinical isolates of Escherichia coli. Int J Urol 2011; 19:360-8. [PMID: 22211478 DOI: 10.1111/j.1442-2042.2011.02933.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Coincident with their worldwide use, resistance to fluoroquinolones in Escherichia coli has increased. To identify the gene expression profiles underlying fluoroquinolone resistance, we carried out genome-wide transcriptome analysis of fluoroquinolone-sensitive E. coli. METHODS Four fluoroquinolone-sensitive E. coli and five fluoroquinolone-resistant E. coli clinical isolates were subjected to complementary deoxyribonucleic acid microarray analysis. Some upregulated genes' expression was verified by real-time polymerase chain reaction using 104 E. coli clinical isolates, and minimum inhibitory concentration tests were carried out by using their transformants. RESULTS A total of 40 genes were significantly upregulated in fluoroquinolone-resistant E. coli isolates (P < 0.05). The expression of phage shock protein operons, which are involved in biofilm formation, was markedly upregulated in our profile of fluoroquinolone-resistant E. coli. One of the phage shock protein operons, pspC, was significantly upregulated in 50 fluoroquinolone-resistant E. coli isolates (P < 0.0001). The expression of type I fimbriae genes, which are pilus operons involved in biofilm formation, were markedly downregulated in fluoroquinolone-resistant E. coli. Deoxyribonucleic acid adenine methyltransferase (dam), which represses type I fimbriae genes, was significantly upregulated in the clinical fluoroquinolone-resistant E. coli isolates (P = 0.007). We established pspC- and dam-expressing E. coli transformants from fluoroquinolone-sensitive E. coli, and the minimum inhibitory concentration tests showed that the transformants acquired fluoroquinolone resistance, suggesting that upregulation of these genes contributes to acquiring fluoroquinolone resistance. CONCLUSIONS Upregulation of psp operones and dam underlying pilus operons downregulation might be associated with fluoroquinolone resistance in E. coli.
Collapse
Affiliation(s)
- Takashi Yamane
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | |
Collapse
|
34
|
He Z, Deng Y, Zhou J. Development of functional gene microarrays for microbial community analysis. Curr Opin Biotechnol 2011; 23:49-55. [PMID: 22100036 DOI: 10.1016/j.copbio.2011.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 01/21/2023]
Abstract
Functional gene arrays (FGAs) are a special type of microarrays containing probes for key genes involved in microbial functional processes, such as biogeochemical cycling of carbon, nitrogen, sulfur, phosphorus and metals, virulence and antibiotic resistance, biodegradation of environmental contaminants, and stress responses. FGAs have been demonstrated to be a specific, sensitive, and quantitative tool for rapid analysis of microbial communities from different habitats, such as waters, soils, extreme environments, bioreactors, and human microbiomes. In this review, we first summarize currently reported FGAs, and then focus on the FGA development. We will also discuss several key issues of FGA technology as well as challenges and directions in future FGA development.
Collapse
Affiliation(s)
- Zhili He
- Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA.
| | | | | |
Collapse
|
35
|
Paliy O, Agans R. Application of phylogenetic microarrays to interrogation of human microbiota. FEMS Microbiol Ecol 2011; 79:2-11. [PMID: 22092522 DOI: 10.1111/j.1574-6941.2011.01222.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/09/2011] [Accepted: 09/28/2011] [Indexed: 12/22/2022] Open
Abstract
Human-associated microbiota is recognized to play vital roles in maintaining host health, and it is implicated in many disease states. While the initial surge in the profiling of these microbial communities was achieved with Sanger and next-generation sequencing, many oligonucleotide microarrays have also been developed recently for this purpose. Containing probes complementary to small ribosomal subunit RNA gene sequences of community members, such phylogenetic arrays provide direct quantitative comparisons of microbiota composition among samples and between sample groups. Some of the developed microarrays including PhyloChip, Microbiota Array, and HITChip can simultaneously measure the presence and abundance of hundreds and thousands of phylotypes in a single sample. This review describes the currently available phylogenetic microarrays that can be used to analyze human microbiota, delineates the approaches for the optimization of microarray use, and provides examples of recent findings based on microarray interrogation of human-associated microbial communities.
Collapse
Affiliation(s)
- Oleg Paliy
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA.
| | | |
Collapse
|
36
|
Shotgun isotope array for rapid, substrate-specific detection of microorganisms in a microbial community. Appl Environ Microbiol 2011; 77:7430-2. [PMID: 21873478 DOI: 10.1128/aem.00121-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The shotgun isotope array method has been proposed to be an effective new tool for use in substrate-specific microbe exploration without any prior knowledge of the community composition. Proof of concept was demonstrated by detection of acetate-degrading microorganisms in activated sludge and further verified by independent stable isotope probing (SIP).
Collapse
|
37
|
Liu A, Wu L, He Z, Zhou J. Development of highly fluorescent silica nanoparticles chemically doped with organic dye for sensitive DNA microarray detection. Anal Bioanal Chem 2011; 401:2003-11. [PMID: 21822973 DOI: 10.1007/s00216-011-5258-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 01/07/2023]
Abstract
Increasing the sensitivity in DNA microarray hybridization can significantly enhance the capability of microarray technology for a wide range of research and clinical diagnostic applications, especially for those with limited sample biomass. To address this issue, using reverse microemulsion method and surface chemistry, a novel class of homogenous, photostable, highly fluorescent streptavidin-functionalized silica nanoparticles was developed, in which Alexa Fluor 647 (AF647) molecules were covalently embedded. The coating of bovine serum albumin on the resultant fluorescent particles can greatly eliminate nonspecific background signal interference. The thus-synthesized fluorescent nanoparticles can specifically recognize biotin-labeled target DNA hybridized to the microarray via streptavidin-biotin interaction. The response of this DNA microarray technology exhibited a linear range within 0.2 to 10 pM complementary DNA and limit of detection of 0.1 pM, enhancing microarray hybridization sensitivity over tenfold. This promising technology may be potentially applied to other binding events such as specific interactions between proteins.
Collapse
Affiliation(s)
- Aihua Liu
- Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA.
| | | | | | | |
Collapse
|
38
|
Li Z, Zeng G, Tang L, Zhang Y, Li Y, Pang Y, Luo J, Liu Y. Electrochemical DNA sensor for simultaneous detection of genes encoding two functional enzymes involved in lignin degradation. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Krauss GJ, Solé M, Krauss G, Schlosser D, Wesenberg D, Bärlocher F. Fungi in freshwaters: ecology, physiology and biochemical potential. FEMS Microbiol Rev 2011; 35:620-51. [DOI: 10.1111/j.1574-6976.2011.00266.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
40
|
Design and verification of a pangenome microarray oligonucleotide probe set for Dehalococcoides spp. Appl Environ Microbiol 2011; 77:5361-9. [PMID: 21666017 DOI: 10.1128/aem.00063-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dehalococcoides spp. are an industrially relevant group of Chloroflexi bacteria capable of reductively dechlorinating contaminants in groundwater environments. Existing Dehalococcoides genomes revealed a high level of sequence identity within this group, including 98 to 100% 16S rRNA sequence identity between strains with diverse substrate specificities. Common molecular techniques for identification of microbial populations are often not applicable for distinguishing Dehalococcoides strains. Here we describe an oligonucleotide microarray probe set designed based on clustered Dehalococcoides genes from five different sources (strain DET195, CBDB1, BAV1, and VS genomes and the KB-1 metagenome). This "pangenome" probe set provides coverage of core Dehalococcoides genes as well as strain-specific genes while optimizing the potential for hybridization to closely related, previously unknown Dehalococcoides strains. The pangenome probe set was compared to probe sets designed independently for each of the five Dehalococcoides strains. The pangenome probe set demonstrated better predictability and higher detection of Dehalococcoides genes than strain-specific probe sets on nontarget strains with <99% average nucleotide identity. An in silico analysis of the expected probe hybridization against the recently released Dehalococcoides strain GT genome and additional KB-1 metagenome sequence data indicated that the pangenome probe set performs more robustly than the combined strain-specific probe sets in the detection of genes not included in the original design. The pangenome probe set represents a highly specific, universal tool for the detection and characterization of Dehalococcoides from contaminated sites. It has the potential to become a common platform for Dehalococcoides-focused research, allowing meaningful comparisons between microarray experiments regardless of the strain examined.
Collapse
|
41
|
Dynamics of microbial community composition and function during in situ bioremediation of a uranium-contaminated aquifer. Appl Environ Microbiol 2011; 77:3860-9. [PMID: 21498771 DOI: 10.1128/aem.01981-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter(-1)). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.
Collapse
|
42
|
Analysis of methanotroph community composition using a pmoA-based microbial diagnostic microarray. Nat Protoc 2011; 6:609-24. [PMID: 21527919 DOI: 10.1038/nprot.2010.191] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microbial diagnostic microarrays (MDMs) are highly parallel hybridization platforms containing multiple sets of immobilized oligonucleotide probes used for parallel detection and identification of many different microorganisms in environmental and clinical samples. Each probe is approximately specific to a given group of organisms. Here we describe the protocol used to develop and validate an MDM method for the semiquantification of a range of functional genes--in this case, particulate methane monooxygenase (pmoA)--and we give an example of its application to the study of the community structure of methanotrophs and functionally related bacteria in the environment. The development and validation of an MDM, following this protocol, takes ∼6 months. The pmoA MDM described in detail comprises 199 probes and addresses ∼50 different species-level clades. An experiment comprising 24 samples can be completed, from DNA extraction to data acquisition, within 3 d (12-13 h bench work).
Collapse
|
43
|
Kim MS, Stybayeva G, Lee JY, Revzin A, Segal DJ. A zinc finger protein array for the visual detection of specific DNA sequences for diagnostic applications. Nucleic Acids Res 2011; 39:e29. [PMID: 21134909 PMCID: PMC3061069 DOI: 10.1093/nar/gkq1214] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/06/2010] [Accepted: 11/10/2010] [Indexed: 11/13/2022] Open
Abstract
The visual detection of specific double-stranded DNA sequences possesses great potential for the development of diagnostics. Zinc finger domains provide a powerful scaffold for creating custom DNA-binding proteins that recognize specific DNA sequences. We previously demonstrated sequence-enabled reassembly of TEM-1 β-lactamase (SEER-LAC), a system consisting of two inactive fragments of β-lactamase each linked to engineered zinc finger proteins (ZFPs). Here the SEER-LAC system was applied to develop ZFP arrays that function as simple devices to identify bacterial double-stranded DNA sequences. The ZFP arrays provided a quantitative assay with a detection limit of 50 fmol of target DNA. The method could distinguish target DNA from non-target DNA within 5 min. The ZFP arrays provided sufficient sensitivity and high specificity to recognize specific DNA sequences. These results suggest that ZFP arrays have the potential to be developed into a simple and rapid point-of-care (POC) diagnostic for the multiplexed detection of pathogens.
Collapse
Affiliation(s)
- Moon-Soo Kim
- Genome Center, Department of Pharmacology and Department of Biomedical Engineering, 451 Health Sciences Drive, University of California, Davis, CA 95616, USA
| | - Gulnaz Stybayeva
- Genome Center, Department of Pharmacology and Department of Biomedical Engineering, 451 Health Sciences Drive, University of California, Davis, CA 95616, USA
| | - Ji Youn Lee
- Genome Center, Department of Pharmacology and Department of Biomedical Engineering, 451 Health Sciences Drive, University of California, Davis, CA 95616, USA
| | - Alexander Revzin
- Genome Center, Department of Pharmacology and Department of Biomedical Engineering, 451 Health Sciences Drive, University of California, Davis, CA 95616, USA
| | - David J. Segal
- Genome Center, Department of Pharmacology and Department of Biomedical Engineering, 451 Health Sciences Drive, University of California, Davis, CA 95616, USA
| |
Collapse
|
44
|
He Z, Van Nostrand JD, Deng Y, Zhou J. Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11783-011-0301-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Shi Z, Tian L, Zhang Y. Molecular biology approaches for understanding microbial polycyclic aromatic hydrocarbons (PAHs) degradation. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.chnaes.2010.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME JOURNAL 2010; 5:403-13. [PMID: 20861922 DOI: 10.1038/ismej.2010.142] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites.
Collapse
|
47
|
Development of an environmental functional gene microarray for soil microbial communities. Appl Environ Microbiol 2010; 76:7161-70. [PMID: 20851978 DOI: 10.1128/aem.03108-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Functional attributes of microbial communities are difficult to study, and most current techniques rely on DNA- and rRNA-based profiling of taxa and genes, including microarrays containing sequences of known microorganisms. To quantify gene expression in environmental samples in a culture-independent manner, we constructed an environmental functional gene microarray (E-FGA) consisting of 13,056 mRNA-enriched anonymous microbial clones from diverse microbial communities to profile microbial gene transcripts. A new normalization method using internal spot standards was devised to overcome spotting and hybridization bias, enabling direct comparisons of microarrays. To evaluate potential applications of this metatranscriptomic approach for studying microbes in environmental samples, we tested the E-FGA by profiling the microbial activity of agricultural soils with a low or high flux of N₂O. A total of 109 genes displayed expression that differed significantly between soils with low and high N₂O emissions. We conclude that mRNA-based approaches such as the one presented here may complement existing techniques for assessing functional attributes of microbial communities.
Collapse
|
48
|
Nemir A, David MM, Perrussel R, Sapkota A, Simonet P, Monier JM, Vogel TM. Comparative phylogenetic microarray analysis of microbial communities in TCE-contaminated soils. CHEMOSPHERE 2010; 80:600-607. [PMID: 20444493 DOI: 10.1016/j.chemosphere.2010.03.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 02/15/2010] [Accepted: 03/28/2010] [Indexed: 05/29/2023]
Abstract
The arrival of chemicals in a soil or groundwater ecosystem could upset the natural balance of the microbial community. Since soil microorganisms are the first to be exposed to the chemicals released into the soil environment, we evaluated the use of a phylogenetic microarray as a bio-indicator of community perturbations due to the exposure to trichloroethylene (TCE). The phylogenetic microarray, which measures the presence of different members of the soil community, was used to evaluate unpolluted soils exposed to TCE as well as to samples from historically TCE polluted sites. We were able to determine an apparent threshold at which the microbial community structure was significantly affected (about 1ppm). In addition, the members of the microbial community most affected were identified. This approach could be useful for assessing environmental impact of chemicals on the biosphere as well as important members of the microbial community involved in TCE degradation.
Collapse
Affiliation(s)
- Audra Nemir
- Ecole Centrale de Lyon, Université de Lyon, Ecully, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed. Appl Environ Microbiol 2010; 76:5533-40. [PMID: 20562280 DOI: 10.1128/aem.00502-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal (GI) tract provides home to a complex microbial community, collectively termed microbiota. Although major efforts have been made to describe the diversity and stability of the microbiota, functional studies have been largely restricted to intestinal isolates and include few community studies. The aim of this study was to explore the in situ gene expression of the fecal microbiota and to evaluate the RNA fingerprinting method cDNA-AFLP (cDNA amplified fragment length polymorphism) for this purpose. To this end, cDNA-AFLP analysis of enriched mRNA revealed that two healthy subjects showed highly divergent expression profiles with considerable fluctuations in time. Subsequent excision and sequence determination of bands from the mRNA-enriched profiles resulted in 122 identifiable sequences (transcripts and rRNAs). The classification of retrieved transcripts into functional clusters based on COG (cluster of orthologous genes) annotation showed that most assigned transcripts belonged to the metabolism cluster (26% of all sequences), underlining that even at the very end of the intestinal tract the microbiota is still very active. This study furthermore revealed that cDNA-AFLP is a useful tool to compare gene expression profiles in time in complex microbial communities.
Collapse
|
50
|
Improved dsrA-based terminal restriction fragment length polymorphism analysis of sulfate-reducing bacteria. Appl Environ Microbiol 2010; 76:5308-11. [PMID: 20543035 DOI: 10.1128/aem.03004-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better describe the community structure of sulfate-reducing bacteria in environmental systems, we compared several dissimilatory sulfite reductase (dsr) primer sets for terminal restriction fragment length polymorphism application. A new reverse primer that increased allelic diversity estimates up to 5-fold was applied to hydrocarbon seep samples to examine the relationship between guild activity and diversity.
Collapse
|