1
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
2
|
Ünsaldı E, Kurt-Kızıldoğan A, Özcan S, Becher D, Voigt B, Aktaş C, Özcengiz G. Proteomic analysis of a hom-disrupted, cephamycin C overproducing Streptomyces clavuligerus. Protein Pept Lett 2021; 28:205-220. [PMID: 32707026 DOI: 10.2174/0929866527666200723163655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Streptomyces clavuligerus is prolific producer of cephamycin C, a medically important antibiotic. In our former study, cephamycin C titer was 2-fold improved by disrupting homoserine dehydrogenase (hom) gene of aspartate pahway in Streptomyces clavuligerus NRRL 3585. OBJECTIVE In this article, we aimed to provide a comprehensive understanding at the proteome level on potential complex metabolic changes as a consequence of hom disruption in Streptomyces clavuligerus AK39. METHODS A comparative proteomics study was carried out between the wild type and its hom disrupted AK39 strain by 2 Dimensional Electrophoresis-Matrix Assisted Laser Desorption and Ionization Time-Of-Flight Mass Spectrometry (2DE MALDI-TOF/MS) and Nanoscale Liquid Chromatography- Tandem Mass Spectrometry (nanoLC-MS/MS) analyses. Clusters of Orthologous Groups (COG) database was used to determine the functional categories of the proteins. The theoretical pI and Mw values of the proteins were calculated using Expasy pI/Mw tool. RESULTS "Hypothetical/Unknown" and "Secondary Metabolism" were the most prominent categories of the differentially expressed proteins. Upto 8.7-fold increased level of the positive regulator CcaR was a key finding since CcaR was shown to bind to cefF promoter thereby direcly controlling its expression. Consistently, CeaS2, the first enzyme of CA biosynthetic pathway, was 3.3- fold elevated. There were also many underrepresented proteins associated with the biosynthesis of several Non-Ribosomal Peptide Synthases (NRPSs), clavams, hybrid NRPS/Polyketide synthases (PKSs) and tunicamycin. The most conspicuously underrepresented protein of amino acid metabolism was 4-Hydroxyphenylpyruvate dioxygenase (HppD) acting in tyrosine catabolism. The levels of a Two Component System (TCS) response regulator containing a CheY-like receiver domain and an HTH DNA-binding domain as well as DNA-binding protein HU were elevated while a TetR-family transcriptional regulator was underexpressed. CONCLUSION The results obtained herein will aid in finding out new targets for further improvement of cephamycin C production in Streptomyces clavuligerus.
Collapse
Affiliation(s)
- Eser Ünsaldı
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | | | - Servet Özcan
- Department of Biology, Erciyes University, Kayseri 38280, Turkey
| | - Dörte Becher
- Institute of Microbiology, Ernst- Moritz-Arndt-University of Greifswald, Greifswald D-17487, Germany
| | - Birgit Voigt
- Institute of Microbiology, Ernst- Moritz-Arndt-University of Greifswald, Greifswald D-17487, Germany
| | - Caner Aktaş
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Gülay Özcengiz
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
3
|
Fu J, Qin R, Zong G, Liu C, Kang N, Zhong C, Cao G. The CagRS Two-Component System Regulates Clavulanic Acid Metabolism via Multiple Pathways in Streptomyces clavuligerus F613-1. Front Microbiol 2019; 10:244. [PMID: 30837970 PMCID: PMC6382702 DOI: 10.3389/fmicb.2019.00244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/29/2019] [Indexed: 11/21/2022] Open
Abstract
Streptomyces clavuligerus F613-1 produces a clinically important β-lactamase inhibitor, clavulanic acid (CA). Although the biosynthesis pathway of CA has essentially been elucidated, the global regulatory mechanisms of CA biosynthesis remain unclear. The paired genes cagS and cagR, which are annotated, respectively, as orf22 and orf23 in S. clavuligerus ATCC 27064, encode a bacterial two-component regulatory system (TCS) and were found next to the CA biosynthetic gene cluster of S. clavuligerus F613-1. To further elucidate the regulatory mechanism of CA biosynthesis, the CagRS TCS was deleted from S. clavuligerus F613-1. Deletion of cagRS resulted in decreased production of CA, but the strain phenotype was not otherwise affected. Both transcriptome and ChIP-seq data revealed that, in addition to CA biosynthesis, the CagRS TCS mainly regulates genes involved in primary metabolism, such as glyceraldehyde 3-phosphate (G3P) metabolism and arginine biosynthesis. Notably, both G3P and arginine are precursors of CA. Electrophoretic mobility shift assays demonstrated that the response regulator CagR could bind to the intergenic regions of argG, argC, oat1, oat2, ceaS1, and claR in vitro, suggesting that CagR can directly regulate genes involved in arginine and CA biosynthesis. This study indicated that CagRS is a pleiotropic regulator that can directly affect the biosynthesis of CA and indirectly affect CA production by regulating the metabolism of arginine and G3P. Our findings provide new insights into the regulation of CA biosynthetic pathways and provide an innovative approach for future metabolic engineering efforts for CA production in S. clavuligerus.
Collapse
Affiliation(s)
- Jiafang Fu
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Ronghuo Qin
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Gongli Zong
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Cheng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Ni Kang
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Guangxiang Cao
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
4
|
KURT KIZILDOĞAN A, VANLI JACCARD G, MUTLU A, SERTDEMİR İ, ÖZCENGİZ G. Genetic engineering of an industrial strain of Streptomyces clavuligerusfor further enhancement of clavulanic acid production. Turk J Biol 2017. [DOI: 10.3906/biy-1608-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
5
|
Ünsaldı E, Kurt-Kızıldoğan A, Voigt B, Becher D, Özcengiz G. Proteome-wide alterations in an industrial clavulanic acid producing strain of Streptomyces clavuligerus. Synth Syst Biotechnol 2016; 2:39-48. [PMID: 29062960 PMCID: PMC5625738 DOI: 10.1016/j.synbio.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/17/2016] [Accepted: 10/23/2016] [Indexed: 11/26/2022] Open
Abstract
The usefulness of genetic/metabolic engineering for further improvement of industrial strains is subject of discussion because of the general lack of knowledge on genetic alterations introduced by iterative cycles of random mutagenesis in such strains. An industrial clavulanic acid (CA)-overproducer Streptomyces clavuligerus DEPA was assessed to understand proteome-wide changes that have occurred in a local industrial CA overproducer developed through succesive mutagenesis programs. The proteins that could be identified corresponded to 33 distinct ORFs for underrepresented ones and 60 ORFs for overrepresented ones. Three CA biosynthetic enzymes were overrepresented in S. clavuligerus DEPA; carboxyethylarginine synthase (Ceas2), clavaldehyde dehydrogenase (Car) and carboxyethyl-arginine beta-lactam-synthase (Bls2) whereas the enzymes of two other secondary metabolites were underrepresented along with two important global regulators [two-component system (TCS) response regulator (SCLAV_2102) and TetR-family transcriptional regulator (SCLAV_3146)] that might be related with CA production and/or differentiation. γ-butyrolactone biosynthetic protein AvaA2 was 2.6 fold underrepresented in S. clavuligerus DEPA. The levels of two glycolytic enzymes, 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase and phosophoglycerate kinase were found decreased while those of dihydrolipoyl dehydrogenase (E3) and isocitrate dehydrogenase, with two isoforms were found as significantly increased. A decrease of amino acid metabolism, methionine biosynthesis in particular, as well as S-adenosylmethionine synthetase appeared as one of the prominent mechanisms of success of S. clavuligerus DEPA strain as a prolific producer of CA. The levels of two enzymes of shikimate pathway that leads to the production of aromatic amino acids and aromatic secondary metabolites were also underrepresented. Some of the overrepresented stress proteins in S. clavuligerus DEPA included polynucleotide phosphorylase/polyadenylase (PNPase), ATP-dependent DNA helicase, two isoforms of an anti-sigma factor and thioredoxin reductase. Downregulation of important proteins of cell wall synthesis and division was recorded and a protein with β-lactamase domain (SCLAV_p1007) appeared in 12 isoforms, 5 of which were drastically overrepresented in DEPA strain. These results described herein provide useful information for rational engineering to improve CA production in Streptomyces clavuligerus.
Collapse
Affiliation(s)
- Eser Ünsaldı
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Aslıhan Kurt-Kızıldoğan
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.,Department of Agricultural Biotechnology, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Birgit Voigt
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487, Greifswald, Germany
| | - Gülay Özcengiz
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| |
Collapse
|
6
|
Sánchez C, Quintero JC, Ochoa S. Flux balance analysis in the production of clavulanic acid by Streptomyces clavuligerus. Biotechnol Prog 2015; 31:1226-36. [PMID: 26171767 DOI: 10.1002/btpr.2132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/26/2015] [Indexed: 11/08/2022]
Abstract
In this work, in silico flux balance analysis is used for predicting the metabolic behavior of Streptomyces clavuligerus during clavulanic acid production. To choose the best objective function for use in the analysis, three different optimization problems are evaluated inside the flux balance analysis formulation: (i) maximization of the specific growth rate, (ii) maximization of the ATP yield, and (iii) maximization of clavulanic acid production. Maximization of ATP yield showed the best predictions for the cellular behavior. Therefore, flux balance analysis using ATP as objective function was used for analyzing different scenarios of nutrient limitations toward establishing the effect of limiting the carbon, nitrogen, phosphorous, and oxygen sources on the growth and clavulanic acid production rates. Obtained results showed that ammonia and phosphate limitations are the ones most strongly affecting clavulanic acid biosynthesis. Furthermore, it was possible to identify the ornithine flux from the urea cycle and the α-ketoglutarate flux from the TCA cycle as the most determinant internal fluxes for promoting clavulanic acid production.
Collapse
Affiliation(s)
- Claudia Sánchez
- Grupo de Investigación Nutrición Y Tecnología de Alimentos, Universidad de Antioquia, Medellín, Colombia
| | - Juan Carlos Quintero
- Grupo de Investigación Bioprocesos, Universidad de Antioquia, Medellín, Colombia
| | - Silvia Ochoa
- Grupo de Investigación SIDCOP, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
7
|
Shao L, Huang J, Yu Y, Li M, Pu T, Kan S, Chen D. Improvement of 7α
-methoxycephalosporins production by overexpression of cmcJ
and cmcI
controlled by promoter ermEp
* in Streptomyces clavuligerus. J Appl Microbiol 2014; 117:1645-54. [DOI: 10.1111/jam.12640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/20/2014] [Accepted: 08/28/2014] [Indexed: 11/27/2022]
Affiliation(s)
- L. Shao
- State Key Lab of New Drug and Pharmaceutical Process; Shanghai Institute of Pharmaceutical Industry; Shanghai China
| | - J.J. Huang
- State Key Lab of New Drug and Pharmaceutical Process; Shanghai Institute of Pharmaceutical Industry; Shanghai China
| | - Y. Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan China
| | - M.X. Li
- State Key Lab of New Drug and Pharmaceutical Process; Shanghai Institute of Pharmaceutical Industry; Shanghai China
| | - T. Pu
- State Key Lab of New Drug and Pharmaceutical Process; Shanghai Institute of Pharmaceutical Industry; Shanghai China
| | - S.D. Kan
- State Key Lab of New Drug and Pharmaceutical Process; Shanghai Institute of Pharmaceutical Industry; Shanghai China
| | - D.J. Chen
- State Key Lab of New Drug and Pharmaceutical Process; Shanghai Institute of Pharmaceutical Industry; Shanghai China
| |
Collapse
|
8
|
Zhang J, An J, Wang JJ, Yan YJ, He HR, Wang XJ, Xiang WS. Genetic engineering of Streptomyces bingchenggensis to produce milbemycins A3/A4 as main components and eliminate the biosynthesis of nanchangmycin. Appl Microbiol Biotechnol 2013; 97:10091-101. [PMID: 24077727 DOI: 10.1007/s00253-013-5255-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 01/07/2023]
Abstract
Milbemycins A3/A4 are important 16-membered macrolides which have been commercialized and widely used as pesticide and veterinary medicine. However, similar to other milbemycin producers, the production of milbemycins A3/A4 in Streptomyces bingchenggensis is usually accompanied with undesired by-products such as C5-O - methylmilbemycins B2/B3 (α-class) and β1/β2 (β-class) together with nanchangmycin. In order to obtain high yield milbemycins A3/A4-producing strains that produce milbemycins A3/A4 as main components, milD, a putative C5-O-methyltransferase gene of S. bingchenggensis , was biofunctionally investigated by heterologous expression in Escherichia coli . Enzymatic analysis indicated that MilD can catalyze both α-class (A3/A4) and β-class milbemycins (β11) into C5-O-methylmilbemycins B2/B3 and β1, respectively, suggesting little effect of furan ring formed between C6 and C8a on the C5-O-methylation catalyzed by MilD. Deletion of milD gene resulted in the elimination of C5-Omethylmilbemycins B2/B3 and β1/β2 together with an increased yield of milbemycins A3/A4 in disruption strain BCJ13. Further disruption of the gene nanLD encoding loading module of polyketide synthase responsible for the biosynthesis of nanchangmycin led to strain BCJ36 that abolished the production of nanchangmycin. Importantly, mutant strain BCJ36 (ΔmilDΔnanLD) produced milbemycins A3/A4 as main secondary metabolites with a yield of 2312 ± 47 μg/ml, which was approximately 74 % higher than that of the initial strain S. bingchenggensis BC-109-6 (1326 ± 37 μg/ml).
Collapse
|
9
|
Orbegozo T, Burel F, Jubault P, Pannecoucke X. 3,3-gem-Difluorinated-β-lactams: synthesis pathways and applications. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.02.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Paradkar A. Clavulanic acid production by Streptomyces clavuligerus: biogenesis, regulation and strain improvement. J Antibiot (Tokyo) 2013; 66:411-20. [DOI: 10.1038/ja.2013.26] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/25/2013] [Accepted: 03/11/2013] [Indexed: 11/09/2022]
|
11
|
Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 2013; 31:287-311. [DOI: 10.1016/j.biotechadv.2012.12.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 11/23/2022]
|
12
|
Yin H, Xiang S, Zheng J, Fan K, Yu T, Yang X, Peng Y, Wang H, Feng D, Luo Y, Bai H, Yang K. Induction of holomycin production and complex metabolic changes by the argR mutation in Streptomyces clavuligerus NP1. Appl Environ Microbiol 2012; 78:3431-41. [PMID: 22344669 PMCID: PMC3346449 DOI: 10.1128/aem.07699-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 02/11/2012] [Indexed: 02/06/2023] Open
Abstract
In bacteria, arginine biosynthesis is tightly regulated by a universally conserved regulator, ArgR, which regulates the expression of arginine biosynthetic genes, as well as other important genes. Disruption of argR in Streptomyces clavuligerus NP1 resulted in complex phenotypic changes in growth and antibiotic production levels. To understand the metabolic changes underlying the phenotypes, comparative proteomic studies were carried out between NP1 and its argR disruption mutant (designated CZR). In CZR, enzymes involved in holomycin biosynthesis were overexpressed; this is consistent with its holomycin overproduction phenotype. The effects on clavulanic acid (CA) biosynthesis are more complex. Several proteins from the CA cluster were moderately overexpressed, whereas several proteins from the 5S clavam biosynthetic cluster and from the paralog cluster of CA and 5S clavam biosynthesis were severely downregulated. Obvious changes were also detected in primary metabolism, which are mainly reflected in the altered expression levels of proteins involved in acetyl-coenzyme A (CoA) and cysteine biosynthesis. Since acetyl-CoA and cysteine are precursors for holomycin synthesis, overexpression of these proteins is consistent with the holomycin overproduction phenotype. The complex interplay between primary and secondary metabolism and between secondary metabolic pathways were revealed by these analyses, and the insights will guide further efforts to improve production levels of CA and holomycin in S. clavuligerus.
Collapse
Affiliation(s)
- Hua Yin
- Address correspondence to Keqian Yang,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Goomeshi Nobary S, Jensen SE. A comparison of the clavam biosynthetic gene clusters in Streptomyces antibioticus Tü1718 and Streptomyces clavuligerus. Can J Microbiol 2012; 58:413-25. [PMID: 22435762 DOI: 10.1139/w2012-012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The production of clavam metabolites has been studied previously in Streptomyces clavuligerus , a species that produces clavulanic acid as well as 4 other clavam compounds, but the late steps of the pathway leading to the specific end products are unclear. The present study compared the clavam biosynthetic gene cluster in Streptomyces antibioticus , chosen because it produces only 2 clavam metabolites and no clavulanic acid, with that of S. clavuligerus. A cosmid library of S. antibioticus genomic DNA was screened with a clavaminate synthase-specific probe based on the corresponding genes from S. clavuligerus, and 1 of the hybridizing cosmids was sequenced in full. A clavam gene cluster was identified that shows similarities to that of S. clavuligerus but also contains a number of novel genes. Knock-out mutation of the clavaminate synthase gene abolished clavam production in S. antibioticus, confirming the identity of the gene cluster. Knock-out mutation of a novel gene encoding an apparent oxidoreductase also abolished clavam production. A potential clavam biosynthetic pathway consistent with the genes in the cluster and the metabolites produced by S. antibioticus, and correspondingly different from that of S. clavuligerus, is proposed.
Collapse
Affiliation(s)
- Sarah Goomeshi Nobary
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | |
Collapse
|
14
|
Huang D, Wen J, Wang G, Yu G, Jia X, Chen Y. In silico aided metabolic engineering of Streptomyces roseosporus for daptomycin yield improvement. Appl Microbiol Biotechnol 2012; 94:637-49. [PMID: 22406858 DOI: 10.1007/s00253-011-3773-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/18/2011] [Accepted: 11/21/2011] [Indexed: 11/25/2022]
Abstract
In silico metabolic network models are valuable tools for strain improvement with desired properties. In this work, based on the comparisons of each pathway flux under two different objective functions for the reconstructed metabolic network of Streptomyces roseosporus, three potential targets of zwf2 (code for glucose-6-phosphate hydrogenase), dptI (code for α-ketoglutarate methyltransferase), and dptJ (code for tryptophan oxygenase) were identified and selected for the genetic modifications. Overexpression of zwf2, dptI, and dptJ genes increased the daptomycin concentration up to 473.2, 452.5, and 489.1 mg/L, respectively. Furthermore, co-overexpression of three genes in series resulted in a 34.4% higher daptomycin concentration compared with the parental strain, which ascribed to the synergistic effect of the enzymes responsible for daptomycin biosynthesis. Finally, the engineered strain enhanced the yield of daptomycin up to 581.5 mg/L in the fed-batch culture, which was approximately 43.2% higher than that of the parental strain. These results demonstrated that the metabolic network based on in silico prediction would be accurate, reasonable, and practical for target gene identification and strain improvement.
Collapse
Affiliation(s)
- Di Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
El-Bondkly AM, Abd-Alla HI, Shaaban M, Shaaban KA. The Electrospray Ionization - Mass Spectra of Erythromycin A Obtained from a Marine Streptomyces sp. Mutant. Indian J Pharm Sci 2011; 70:310-9. [PMID: 20046738 PMCID: PMC2792501 DOI: 10.4103/0250-474x.42979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 02/12/2008] [Accepted: 05/25/2008] [Indexed: 11/12/2022] Open
Abstract
In our ongoing search for production improvements of bioactive secondary metabolites from marine Streptomyces through the induction of mutations using UV light, out of 145 isolates, mutant 10/14 was able to produce potent antibacterial metabolites other than the parent strain as established by chromatographic analysis. Up-scaling fermentation of mutant 10/14, followed by working up and isolation delivered five metabolites, phenazine, 1-acetyl-β -carboline, perlolyrin and erythromycin A, along with an oily substance. The latter two compounds were responsible for the antibacterial activity of the strain. In this article, we discuss with the mutation of the marine Streptomyces sp. AH2, bioactivity evaluation, fermentation and isolation of the microbial metabolites. Moreover, we study to first time in detail the 1D and 2D NMR and ESI MS data including ESI MS2 and MS3 patterns combined with HRESI MS of erythromycin A.
Collapse
|
16
|
Ni X, Li D, Yang L, Huang T, Li H, Xia H. Construction of kanamycin B overproducing strain by genetic engineering of Streptomyces tenebrarius. Appl Microbiol Biotechnol 2010; 89:723-31. [PMID: 20936279 DOI: 10.1007/s00253-010-2908-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 11/29/2022]
Abstract
Genetic engineering as an important approach to strain optimization has received wide recognition. Recent advances in the studies on the biosynthetic pathways and gene clusters of Streptomyces make stain optimization by genetic alteration possible. Kanamycin B is a key intermediate in the manufacture of the important medicines dibekacin and arbekacin, which belong to a class of antibiotics known as the aminoglycosides. Kanamycin could be prepared by carbamoylkanamycin B hydrolysis. However, carbamoylkanamycin B production in Streptomyces tenebrarius H6 is very low. Therefore, we tried to obtain high kanamycin B-producing strains that produced kanamycin B as a main component. In our work, aprD3 and aprD4 were clarified to be responsible for deoxygenation in apramycin and tobramycin biosynthesis. Based on this information, genes aprD3, aprQ (deduced apramycin biosynthetic gene), and aprD4 were disrupted to optimize the production of carbamoylkanamycin B. Compared with wild-type strain, mutant strain SPU313 (ΔaprD3, ΔaprQ, and ΔaprD4) produced carbamoylkanamycin B as a single antibiotic, whose production increased approximately fivefold. To construct a strain producing kanamycin B instead of carbamoylkanamycin B, the carbamoyl-transfer gene tacA was inactivated in strain SPU313. Mutant strain SPU314 (ΔaprD3, ΔaprQ, ΔaprD4, and ΔtacA) specifically produced kanamycin B, which was proven by LC-MS. This work demonstrated careful genetic engineering could significantly improve production and eliminate undesired products.
Collapse
Affiliation(s)
- Xianpu Ni
- Shenyang Pharmaceutical University, Liaoning, China
| | | | | | | | | | | |
Collapse
|
17
|
Song JY, Jensen SE, Lee KJ. Clavulanic acid biosynthesis and genetic manipulation for its overproduction. Appl Microbiol Biotechnol 2010; 88:659-69. [DOI: 10.1007/s00253-010-2801-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 12/27/2022]
|
18
|
Zhao X, Wang Y, Wang S, Chen Z, Wen Y, Song Y. Construction of a doramectin producer mutant from an avermectin-overproducing industrial strain of Streptomyces avermitilis. Can J Microbiol 2009; 55:1355-63. [DOI: 10.1139/w09-098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The avermectin analogue doramectin (CHC-B1), which is produced in mutants that have an altered biosynthesis pathway of avermectin, is one of the most effective agricultural pesticides and antiparasitics. We report here the construction of a bkdF olmA double-deletion mutant lacking one of the branched-chain α-keto acid dehydrogenase encoding genes (bkdF) and the oligomycin PKS encoding gene cluster (olmA) in Streptomyces avermitilis 76-05. We then characterized the production of various antibiotics in cultures of the deletion mutant. In a fermentation medium supplemented with cyclohexanecarboxylic acid, this double mutant produced doramectin and its analogues but no oligomycin. The mutant proved to be genetically stable, without any antibiotic resistance markers inserted into its chromosome, and could potentially become an industrial doramectin-producing strain after further improvement.
Collapse
Affiliation(s)
- Xuejin Zhao
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanxin Wang
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiwei Wang
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhi Chen
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wen
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Song
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Application of a double-reporter-guided mutant selection method to improve clavulanic acid production in Streptomyces clavuligerus. Metab Eng 2009; 11:310-8. [DOI: 10.1016/j.ymben.2009.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/14/2009] [Accepted: 06/29/2009] [Indexed: 11/23/2022]
|
20
|
A gene located downstream of the clavulanic acid gene cluster in Streptomyces clavuligerus ATCC 27064 encodes a putative response regulator that affects clavulanic acid production. J Ind Microbiol Biotechnol 2008; 36:301-11. [PMID: 19011915 DOI: 10.1007/s10295-008-0499-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
Three open reading frames denoted as orf21, orf22, and orf23 were identified from downstream of the currently recognized gene cluster for clavulanic acid biosynthesis in Streptomyces clavuligerus ATCC 27064. The new orfs were annotated after in silico analysis as genes encoding a putative sigma factor, a sensor kinase, and a response regulator. The roles of the individual genes were explored by disruption of the corresponding orfs, and the morphological and antibiotic production phenotypes of the resulting mutants were compared. In orf21 and orf22 mutants, no growth or morphological differences were noted, but modest reduction of cephamycin C (orf21), or both cephamycin C and clavulanic acid production (orf22) compared with wild-type, were observed. In orf23 mutant, cell growth and sporulation was retarded, and clavulanic acid and cephamycin C production were reduced to 40 and 47% of wild-type levels, respectively. Conversely, overexpression of orf23 caused precocious hyperproduction of spores on solid medium, and antibiotic production was increased above the levels seen in plasmid control cultures. Transcriptional analyses were also carried out on orf23 and showed that mutation had little effect on transcription of genes associated with the early stages of cephamycin C or clavulanic acid production but transcription of claR, which regulates the late stages of clavulanic acid production, was reduced in orf23 mutants. These observations suggest that the orf23 product may enable S. clavuligerus to respond to environmental changes by altering cell growth and differentiation. In addition, the effects of ORF23 on growth might indirectly regulate the biosynthesis of secondary metabolites such as clavulanic acid and cephamycin C.
Collapse
|
21
|
Olano C, Lombó F, Méndez C, Salas JA. Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 2008; 10:281-92. [PMID: 18674632 DOI: 10.1016/j.ymben.2008.07.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 11/25/2022]
Abstract
Production of secondary metabolites is a process influenced by several physico-chemical factors including nutrient supply, oxygenation, temperature and pH. These factors have been traditionally controlled and optimized in industrial fermentations in order to enhance metabolite production. In addition, traditional mutagenesis programs have been used by the pharmaceutical industry for strain and production yield improvement. In the last years, the development of recombinant DNA technology has provided new tools for approaching yields improvement by means of genetic manipulation of biosynthetic pathways. These efforts are usually focused in redirecting precursor metabolic fluxes, deregulation of biosynthetic pathways and overexpression of specific enzymes involved in metabolic bottlenecks. In addition, efforts have been made for the heterologous expression of biosynthetic gene clusters in other organisms, looking not only for an increase of production levels but also to speed the process by using rapidly growing and easy to manipulate organisms compared to the producing organism. In this review, we will focus on these genetic approaches as applied to bioactive secondary metabolites produced by actinomycetes.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | |
Collapse
|
22
|
Zheng JT, Wang SL, Yang KQ. Engineering a regulatory region of jadomycin gene cluster to improve jadomycin B production in Streptomyces venezuelae. Appl Microbiol Biotechnol 2007; 76:883-8. [PMID: 17653711 DOI: 10.1007/s00253-007-1064-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/28/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
Streptomyces venezuelae ISP5230 produces a group of jadomycin congeners with cytotoxic activities. To improve jadomycin fermentation process, a genetic engineering strategy was designed to replace a 3.4-kb regulatory region of jad gene cluster that contains four regulatory genes (3' end 272 bp of jadW2, jadW3, jadR2, and jadR1) and the native promoter upstream of jadJ (P(J)) with the ermEp* promoter sequence so that ermEp* drives the expression of the jadomycin biosynthetic genes from jadJ in the engineered strain. As expected, the mutant strain produced jadomycin B without ethanol treatment, and the yield increased to about twofold that of the stressed wild-type. These results indicated that manipulation of the regulation of a biosynthetic gene cluster is an effective strategy to increase product yield.
Collapse
Affiliation(s)
- Jian-Ting Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, P. O. Box 2714, Beijing, 100081, People's Republic of China
| | | | | |
Collapse
|
23
|
Rokem JS, Lantz AE, Nielsen J. Systems biology of antibiotic production by microorganisms. Nat Prod Rep 2007; 24:1262-87. [DOI: 10.1039/b617765b] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Li R, Townsend CA. Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab Eng 2006; 8:240-52. [PMID: 16530442 DOI: 10.1016/j.ymben.2006.01.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 01/10/2006] [Accepted: 01/13/2006] [Indexed: 11/16/2022]
Abstract
Clavulanic acid is a potent beta-lactamase inhibitor used to combat resistance to penicillin and cephalosporin antibiotics. There is a demand for high-yielding fermentation strains for industrial production of this valuable product. Clavulanic acid biosynthesis is initiated by the condensation of L-arginine and D-glyceraldehyde-3-phosphate (G3P). To overcome the limited G3P pool and improve clavulanic acid production, we genetically engineered the glycolytic pathway in Streptomyces clavuligerus. Two genes (gap1 and gap2) whose protein products are distinct glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) were inactivated in S. clavuligerus by targeted gene disruption. A doubled production of clavulanic acid was consistently obtained when gap1 was disrupted, and reversed by complementation. Addition of arginine to the cultured mutant further improved clavulanic acid production giving a greater than 2-fold increase over wild type, suggesting that arginine became limiting for biosynthesis. This is the first reported application of genetic engineering to channel precursor flux to improve clavulanic acid production.
Collapse
Affiliation(s)
- Rongfeng Li
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
25
|
Kasanah N, Hamann MT. Development of antibiotics and the future of marine microorganisms to stem the tide of antibiotic resistance. CURRENT OPINION IN INVESTIGATIONAL DRUGS (LONDON, ENGLAND : 2000) 2004; 5:827-37. [PMID: 15600239 PMCID: PMC4969015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Antibiotics remain essential tools in the control of infectious diseases. With the emergence of new diseases, resistant forms of diseases such as tuberculosis and malaria, as well as the emergence of multidrug-resistant bacteria, it has become essential to develop novel antibiotics. Development of the existing antibiotics involved three strategies, including discovery of new target sites, modification of existing antibiotic structures, and the identification of new resources for novel antibiotics. Marine microorganisms have clearly become an essential new resource in the discovery of new antibiotic leads.
Collapse
|
26
|
Paradkar A, Trefzer A, Chakraburtty R, Stassi D. Streptomyces genetics: a genomic perspective. Crit Rev Biotechnol 2003; 23:1-27. [PMID: 12693442 DOI: 10.1080/713609296] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Streptomycetes are gram-positive, soil-inhabiting bacteria of the order Actinomycetales. These organisms exhibit an unusual, developmentally complex life cycle and produce many economically important secondary metabolites, such as antibiotics, immunosuppressants, insecticides, and anti-tumor agents. Streptomyces species have been the subject of genetic investigation for over 50 years, with many studies focusing on the developmental cycle and the production of secondary metabolites. This information provides a solid foundation for the application of structural and functional genomics to the actinomycetes. The complete DNA sequence of the model organism, Streptomyces coelicolor M145, has been published recently, with others expected to follow soon. As more genomic sequences become available, the rational genetic manipulation of these organisms to elucidate metabolic and regulatory networks, to increase the production of commercially important compounds, and to create novel secondary metabolites will be greatly facilitated. This review presents the current state of the field of genomics as it is being applied to the actinomycetes.
Collapse
Affiliation(s)
- Ashish Paradkar
- Small Molecule Discovery, Diversa Corporation, 4955 Directors Place, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|