1
|
Impact of Microbial Uptake on the Nutrient Plume around Marine Organic Particles: High-Resolution Numerical Analysis. Microorganisms 2022; 10:microorganisms10102020. [PMID: 36296296 PMCID: PMC9611091 DOI: 10.3390/microorganisms10102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
The interactions between marine bacteria and particulate matter play a pivotal role in the biogeochemical cycles of carbon and associated inorganic elements in the oceans. Eutrophic plumes typically form around nutrient-releasing particles and host intense bacterial activities. However, the potential of bacteria to reshape the nutrient plumes remains largely unexplored. We present a high-resolution numerical analysis for the impacts of nutrient uptake by free-living bacteria on the pattern of dissolution around slow-moving particles. At the single-particle level, the nutrient field is parameterized by the Péclet and Damköhler numbers (0 < Pe < 1000, 0 < Da < 10) that quantify the relative contribution of advection, diffusion and uptake to nutrient transport. In spite of reducing the extent of the nutrient plume in the wake of the particle, bacterial uptake enhances the rates of particle dissolution and nutrient depletion. These effects are amplified when the uptake timescale is shorter than the plume lifetime (Pe/Da < 100, Da > 0.0001), while otherwise they are suppressed by advection or diffusion. Our analysis suggests that the quenching of eutrophic plumes is significant for individual phytoplankton cells, as well as marine aggregates with sizes ranging from 0.1 mm to 10 mm and sinking velocities up to 40 m per day. This microscale process has a large potential impact on microbial growth dynamics and nutrient cycling in marine ecosystems.
Collapse
|
2
|
Degradation of chlorotoluenes and chlorobenzenes by the dual-species biofilm of Comamonas testosteroni strain KT5 and Bacillus subtilis strain DKT. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1415-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
3
|
Du M, Gu W, Li X, Fan F, Li Y. Modification of Hexachlorobenzene to Molecules with Lower Long-Range Transport Potentials Using 3D-QSAR Models with a Full Factor Experimental Design. ADVANCES IN MARINE BIOLOGY 2018; 81:129-165. [PMID: 30471655 DOI: 10.1016/bs.amb.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, the hexachlorobenzene molecule was modified by three-dimensional quantitative structure-activity relationship (3D-QSAR) models and a full factor experimental design to obtain new hexachlorobenzene molecules with low migration ability. The 3D-QSAR models (comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA)) were constructed by SYBLY-X 2.0 software, using experimental data of octanol-air partition coefficients (KOA) for 12 chlorobenzenes (CBs) congeners as the dependent variable, and the structural parameters of CBs as independent variables, respectively. A target molecule (hexachlorobenzene; HCB: its long-distance migration capability leads to pollution of the marine environment in Antarctic and Arctic) was modified using the 3D-QSAR contour maps associated with resolution V of the 210-3 full-factorial experimental design method, and 11 modified HCB molecules were produced with a single chlorine atom (-Cl2) and three chlorine atoms (-Cl1, -Cl3, and -Cl5) replaced with electropositive groups (-COOH, -CN, -CF3, -COF, -NO2, -F, -CHF2, -ONO2, and -SiF3) to increase the logKOA. The new molecules had essentially similar biological enrichment functions and toxicities as HCB but were found to be more easily degraded. A 2D-QSAR model and molecular docking technology indicated that both dipole moments and highest occupied orbital energies of the substituents markedly affected migration and degradation of the new molecules. The abilities of the compounds to undergo long distance migration were assessed. The modified HCB molecules (i.e. 2-CN-HCB, 2-CF3-HCB, 1-F-3-COOH-5-NO2-HCB, 1-NO2-3-CN-5-CHF2-HCB and 1-CN-3-F-5-NO2-HCB) moved from a long-range transport potential of the modified molecules to a relatively low mobility class, and the transport potentials of the remaining modified HCB molecules (i.e. 2-COOH-HCB, 2-COF-HCB, 1-COF-3-ONO2-5-NO2-HCB, 1-F-3-CN-5-SiF3-HCB, 1-F-3-COOH-5-SiF3-HCB and 1-CN-3-SiF3-5-ONO2-HCB) also significantly decreased. These results provide a basic theoretical basis for designing environmentally benign molecules based on HCB.
Collapse
Affiliation(s)
- Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Wenwen Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Xixi Li
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Fuqiang Fan
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China.
| |
Collapse
|
4
|
Song Y, Wang F, Kengara FO, Bian Y, Yang X, Gu C, Ye M, Jiang X. Does powder and granular activated carbon perform equally in immobilizing chlorobenzenes in soil? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:74-80. [PMID: 25406989 DOI: 10.1039/c4em00486h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The objective of this study is to compare the efficacies of powder activated carbon (PAC) and granular activated carbon (GAC) as amendments for the immobilization of volatile compounds in soil. Soil artificially-spiked with chlorobenzenes (CBs) was amended with either PAC or GAC to obtain an application rate of 1%. The results showed that the dissipation and volatilization of CBs from the amended soil significantly decreased compared to the unamended soil. The bioavailabilities of CBs, which is expressed as butanol extraction and earthworm accumulation, were significantly reduced in PAC and GAC amended soils. The lower chlorinated and hence more volatile CBs experienced higher reductions in both dissipation and bioavailability in the amended soils. The GAC and PAC equally immobilized more volatile CBs in soil. Therefore, it could be concluded that along with environmental implication, applying GAC was the more promising approach for the effective immobilization of volatile compounds in soil.
Collapse
Affiliation(s)
- Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Liu L, Helbling DE, Kohler HPE, Smets BF. A model framework to describe growth-linked biodegradation of trace-level pollutants in the presence of coincidental carbon substrates and microbes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13358-13366. [PMID: 25321868 DOI: 10.1021/es503491w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pollutants such as pesticides and their degradation products occur ubiquitously in natural aquatic environments at trace concentrations (μg L(-1) and lower). Microbial biodegradation processes have long been known to contribute to the attenuation of pesticides in contaminated environments. However, challenges remain in developing engineered remediation strategies for pesticide-contaminated environments because the fundamental processes that regulate growth-linked biodegradation of pesticides in natural environments remain poorly understood. In this research, we developed a model framework to describe growth-linked biodegradation of pesticides at trace concentrations. We used experimental data reported in the literature or novel simulations to explore three fundamental kinetic processes in isolation. We then combine these kinetic processes into a unified model framework. The three kinetic processes described were: the growth-linked biodegradation of micropollutant at environmentally relevant concentrations; the effect of coincidental assimilable organic carbon substrates; and the effect of coincidental microbes that compete for assimilable organic carbon substrates. We used Monod kinetic models to describe substrate utilization and microbial growth rates for specific pesticide and degrader pairs. We then extended the model to include terms for utilization of assimilable organic carbon substrates by the specific degrader and coincidental microbes, growth on assimilable organic carbon substrates by the specific degrader and coincidental microbes, and endogenous metabolism. The proposed model framework enables interpretation and description of a range of experimental observations on micropollutant biodegradation. The model provides a useful tool to identify environmental conditions with respect to the occurrence of assimilable organic carbon and coincidental microbes that may result in enhanced or reduced micropollutant biodegradation.
Collapse
Affiliation(s)
- Li Liu
- Department of Environmental Engineering, Technical, University of Denmark , Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
6
|
Kinetics and yields of pesticide biodegradation at low substrate concentrations and under conditions restricting assimilable organic carbon. Appl Environ Microbiol 2013; 80:1306-13. [PMID: 24317077 DOI: 10.1128/aem.03622-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fundamentals of growth-linked biodegradation occurring at low substrate concentrations are poorly understood. Substrate utilization kinetics and microbial growth yields are two critically important process parameters that can be influenced by low substrate concentrations. Standard biodegradation tests aimed at measuring these parameters generally ignore the ubiquitous occurrence of assimilable organic carbon (AOC) in experimental systems which can be present at concentrations exceeding the concentration of the target substrate. The occurrence of AOC effectively makes biodegradation assays conducted at low substrate concentrations mixed-substrate assays, which can have profound effects on observed substrate utilization kinetics and microbial growth yields. In this work, we introduce a novel methodology for investigating biodegradation at low concentrations by restricting AOC in our experiments. We modified an existing method designed to measure trace concentrations of AOC in water samples and applied it to systems in which pure bacterial strains were growing on pesticide substrates between 0.01 and 50 mg liter(-1). We simultaneously measured substrate concentrations by means of high-performance liquid chromatography with UV detection (HPLC-UV) or mass spectrometry (MS) and cell densities by means of flow cytometry. Our data demonstrate that substrate utilization kinetic parameters estimated from high-concentration experiments can be used to predict substrate utilization at low concentrations under AOC-restricted conditions. Further, restricting AOC in our experiments enabled accurate and direct measurement of microbial growth yields at environmentally relevant concentrations for the first time. These are critical measurements for evaluating the degradation potential of natural or engineered remediation systems. Our work provides novel insights into the kinetics of biodegradation processes and growth yields at low substrate concentrations.
Collapse
|
7
|
Comparing metabolic functionalities, community structures, and dynamics of herbicide-degrading communities cultivated with different substrate concentrations. Appl Environ Microbiol 2012; 79:367-75. [PMID: 23124226 DOI: 10.1128/aem.02536-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Two 4-chloro-2-methylphenoxyacetic acid (MCPA)-degrading enrichment cultures selected from an aquifer on low (0.1 mg liter(-1)) or high (25 mg liter(-1)) MCPA concentrations were compared in terms of metabolic activity, community composition, population growth, and single cell physiology. Different community compositions and major shifts in community structure following exposure to different MCPA concentrations were observed using both 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and pyrosequencing. The communities also differed in their MCPA-mineralizing activities. The enrichments selected on low concentrations mineralized MCPA with shorter lag phases than those selected on high concentrations. Flow cytometry measurements revealed that mineralization led to cell growth. The presence of low-nucleic acid-content bacteria (LNA bacteria) was correlated with mineralization activity in cultures selected on low herbicide concentrations. This suggests that LNA bacteria may play a role in degradation of low herbicide concentrations in aquifers impacted by agriculture. This study shows that subpopulations of herbicide-degrading bacteria that are adapted to different pesticide concentrations can coexist in the same environment and that using a low herbicide concentration enables enrichment of apparently oligotrophic subpopulations.
Collapse
|
8
|
Optimization of temperature-controlled ionic liquid dispersive liquid phase microextraction combined with high performance liquid chromatography for analysis of chlorobenzenes in water samples. Talanta 2010; 83:36-41. [DOI: 10.1016/j.talanta.2010.08.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/23/2010] [Accepted: 08/23/2010] [Indexed: 11/18/2022]
|
9
|
Marco-Urrea E, Pérez-Trujillo M, Caminal G, Vicent T. Dechlorination of 1,2,3- and 1,2,4-trichlorobenzene by the white-rot fungus Trametes versicolor. JOURNAL OF HAZARDOUS MATERIALS 2009; 166:1141-1147. [PMID: 19179004 DOI: 10.1016/j.jhazmat.2008.12.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 11/05/2008] [Accepted: 12/03/2008] [Indexed: 05/27/2023]
Abstract
The degradation of 1,2,3-, 1,3,5- and 1,2,4-trichlorobenzene (TCB) by the white-rot fungus Trametes versicolor was studied. Time course experiments showed a degradation rate of 2.27 and 2.49 nmol d(-1)mg(-1) dry weight of biomass during the first 4d of incubation in cultures spiked with 6 mg L(-1) of 1,2,3- and 1,2,4-TCB, respectively. A high percent of degradation of 91.1% (1,2,3-TCB) and 79.6 (1,2,4-TCB) was obtained after 7d. However, T. versicolor was not able to degrade 1,3,5-TCB under the conditions tested. For a range of concentrations of 1,2,4-TCB between 6.5 and 23 mg L(-1), a complete dechlorination of the molecule was observed. Cytochrome P450 monooxygenase appears to be involve in the first step of 1,2,4-TCB degradation, as evidenced by marked inhibition of both dechlorination and degradation of 1,2,4-TCB in the presence of the known cyt P450 inhibitors 1-aminobenzotriazole and piperonyl butoxide. Four intermediates formed from 1,2,4-TCB degradation were detected the second day of incubation, which did not appear the seventh day: 2,3,5-trichloromuconate, its corresponding carboxymethylenebutenolide, 2- or 5-chloro-4-oxo-2-hexendioic acid and 2- or 5-chloro-5-hydroxy-4-oxo-2-pentenoic acid. Based on these results, a degradation pathway of 1,2,4-TCB through cyt P450 monooxygenase and epoxide hydrolase was proposed.
Collapse
Affiliation(s)
- Ernest Marco-Urrea
- Departament d'Enginyeria Química and Institut de Ciència i Tecnologia Ambiental, Escola Tècnica Superior d'Enginyeria (ETSE), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
10
|
Sørensen SR, Simonsen A, Aamand J. Constitutive mineralization of low concentrations of the herbicide linuron by a Variovorax sp. strain. FEMS Microbiol Lett 2009; 292:291-6. [PMID: 19187207 DOI: 10.1111/j.1574-6968.2009.01501.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The mineralization of the herbicide linuron at concentrations of microg and mg L(-1) was studied in liquid batch experiments with Variovorax sp. strain SRS16. The strain was highly efficient at mineralizing a range of linuron concentrations (0.002-10 mg L(-1)) with 20-60% of the added (14)C-ring-labeled linuron metabolized to (14)CO(2) within hours to days depending on the initial linuron concentration and incubation period. At mg L(-1) linuron concentrations the mineralization activity by SRS16 was inducible and a shift to constitutive mineralization activity was apparent with a reduction in the linuron concentration to microg L(-1) levels. This study revealed that strain SRS16 is a promising candidate for bioaugmentation of water or soil resources contaminated with low linuron concentrations.
Collapse
Affiliation(s)
- Sebastian R Sørensen
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen K, Denmark.
| | | | | |
Collapse
|
11
|
Ge C, Wan D, Wang Z, Ding Y, Wang Y, Shang Q, Ma F, Luo S. A proteomic analysis of rice seedlings responding to 1,2,4-trichlorobenzene stress. J Environ Sci (China) 2008; 20:309-319. [PMID: 18595398 DOI: 10.1016/s1001-0742(08)60049-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The proteomic analysis of rice (Oryza sativa L.) roots and leaves responding to 1,2,4-trichlorobenzene (TCB) stress was carried out by two dimensional gel electrophoresis, mass spectrometric (MS), and protein database analysis. The results showed that 5 mg/L TCB stress had a significant effect on global proteome in rice roots and leaves. The analysis of the category and function of TCB stress inducible proteins showed that different kinds of responses were produced in rice roots and leaves, when rice seedlings were exposed to 5 mg/L TCB stress. Most responses are essential for rice defending the damage of TCB stress. These responses include detoxication of toxic substances, expression of pathogenesis-related proteins, synthesis of cell wall substances and secondary compounds, regulation of protein and amino acid metabolism, activation of methionine salvage pathway, and also include osmotic regulation and phytohormone metabolism. Comparing the TCB stress inducible proteins between the two cultivars, the beta-glucosidase and pathogenesis-related protein family 10 proteins were particularly induced by TCB stress in the roots of rice cultivar (Oryza sativa L.) Aizaizhan, and the glutathione S-transferase and aci-reductone dioxygenase 4 were induced in the roots of rice cultivar Shanyou 63. This may be one of the important mechanisms for Shanyou 63 having higher tolerance to TCB stress than Aizaizhan.
Collapse
Affiliation(s)
- Cailin Ge
- Jiangsu Provencial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Field JA, Sierra-Alvarez R. Microbial degradation of chlorinated benzenes. Biodegradation 2007; 19:463-80. [PMID: 17917704 DOI: 10.1007/s10532-007-9155-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 09/21/2007] [Indexed: 11/30/2022]
Abstract
Chlorinated benzenes are important industrial intermediates and solvents. Their widespread use has resulted in broad distribution of these compounds in the environment. Chlorobenzenes (CBs) are subject to both aerobic and anaerobic metabolism. Under aerobic conditions, CBs with four or less chlorine groups are susceptible to oxidation by aerobic bacteria, including bacteria (Burkholderia, Pseudomonas, etc.) that grow on such compounds as the sole source of carbon and energy. Sound evidence for the mineralization of CBs has been provided based on stoichiometric release of chloride or mineralization of (14)C-labeled CBs to (14)CO(2). The degradative attack of CBs by these strains is initiated with dioxygenases eventually yielding chlorocatechols as intermediates in a pathway leading to CO(2) and chloride. Higher CBs are readily reductively dehalogenated to lower chlorinated benzenes in anaerobic environments. Halorespiring bacteria from the genus Dehalococcoides are implicated in this conversion. Lower chlorinated benzenes are less readily converted, and mono-chlorinated benzene is recalcitrant to biotransformation under anaerobic conditions.
Collapse
Affiliation(s)
- Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
13
|
Wang F, Grundmann S, Schmid M, Dörfler U, Roherer S, Charles Munch J, Hartmann A, Jiang X, Schroll R. Isolation and characterization of 1,2,4-trichlorobenzene mineralizing Bordetella sp. and its bioremediation potential in soil. CHEMOSPHERE 2007; 67:896-902. [PMID: 17204305 DOI: 10.1016/j.chemosphere.2006.11.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/26/2006] [Accepted: 11/05/2006] [Indexed: 05/13/2023]
Abstract
A soil which has been polluted with chlorinated benzenes for more than 25 years was used for isolation of adapted microorganisms able to mineralize 1,2,4-trichlorobenzene (1,2,4-TCB). A microbial community was enriched from this soil and acclimated in liquid culture under aerobic conditions using 1,2,4-TCB as a sole available carbon source. From this community, two strains were isolated and identified by comparative sequence analysis of their 16S-rRNA coding genes as members of the genus Bordetella with Bordetella sp. QJ2-5 as the highest homological strain and with Bordetella petrii as the closest related described species. The 16S-rDNA of the two isolated strains showed a similarity of 100%. These strains were able to mineralize 1,2,4-TCB within two weeks to approximately 50% in liquid culture experiments. One of these strains was reinoculated to an agricultural soil with low native 1,2,4-TCB degradation capacity to investigate its bioremediation potential. The reinoculated strain kept its biodegradation capability: (14)C-labeled 1,2,4-TCB applied to this inoculated soil was mineralized to about 40% within one month of incubation. This indicates a possible application of the isolated Bordetella sp. for bioremediation of 1,2,4-TCB contaminated sites.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Soil Ecology, GSF - National Research Center for Environment and Health, 85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Monferrán MV, Echenique JR, Wunderlin DA. Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer. CHEMOSPHERE 2005; 61:98-106. [PMID: 16157172 DOI: 10.1016/j.chemosphere.2005.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 01/18/2005] [Accepted: 03/07/2005] [Indexed: 05/04/2023]
Abstract
A subsurface microbial community was isolated from a polluted site of Suquía River (Córdoba-Argentina), acclimated during 15 days in aerobic conditions using 1,2-dichlorobenzene (1,2-DCB) as the sole carbon source. From this acclimated community, we isolated and identified by 16S rDNA analysis a strain of Acidovorax avenae, which was able to perform the complete biodegradation of 1,2-DCB in two days affording stoichiometric amounts of chloride. This pure strain was also tested for biodegradation of chlorobenzene (CB); 1,3-DCB and 1,4-DCB, giving similar results to the experiments using 1,2-DCB. The aromatic-ring-hydroxylating dioxygenase (ARHDO) alpha-subunit gene core, encoding the catalytic site of the large subunit of chlorobenzene dioxygenase, was detected by PCR amplification and confirmed by DNA sequencing. These results suggest that the isolated strain of A. avenae could use a catabolic pathway, via ARHDO system, leading to the formation of chlorocatecols during the first steps of biodegradation, with further chloride release and subsequent paths that showed complete substrate consumption.
Collapse
Affiliation(s)
- Magdalena V Monferrán
- Universidad Nacional de Córdoba-CONICET, Facultad de Ciencias Químicas, Dep. Bioquímica Clínica-CIBICI, Haya de La Torre esq, Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | |
Collapse
|