1
|
The Roles of Nicotinamide Adenine Dinucleotide Phosphate Reoxidation and Ammonium Assimilation in the Secretion of Amino Acids as Byproducts of Clostridium thermocellum. Appl Environ Microbiol 2023; 89:e0175322. [PMID: 36625594 PMCID: PMC9888227 DOI: 10.1128/aem.01753-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Clostridium thermocellum is a cellulolytic thermophile that is considered for the consolidated bioprocessing of lignocellulose to ethanol. Improvements in ethanol yield are required for industrial implementation, but the incompletely understood causes of amino acid secretion impede progress. In this study, amino acid secretion was investigated via gene deletions in ammonium-regulated, nicotinamide adenine dinucleotide phosphate (NADPH)-supplying and NADPH-consuming pathways as well as via physiological characterization in cellobiose-limited or ammonium-limited chemostats. First, the contribution of the NADPH-supplying malate shunt was studied with strains using either the NADPH-yielding malate shunt (Δppdk) or a redox-independent conversion of PEP to pyruvate (Δppdk ΔmalE::Peno-pyk). In the latter, branched-chain amino acids, especially valine, were significantly reduced, whereas the ethanol yield increased from 46 to 60%, suggesting that the secretion of these amino acids balances the NADPH surplus from the malate shunt. The unchanged amino acid secretion in Δppdk falsified a previous hypothesis on an ammonium-regulated PEP-to-pyruvate flux redistribution. The possible involvement of another NADPH-supplier, namely, NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (nfnAB), was also excluded. Finally, the deletion of glutamate synthase (gogat) in ammonium assimilation resulted in the upregulation of NADPH-linked glutamate dehydrogenase activity and decreased amino acid yields. Since gogat in C. thermocellum is putatively annotated as ferredoxin-linked, a claim which is supported by the product redistribution observed in this study, this deletion likely replaced ferredoxin with NADPH in ammonium assimilation. Overall, these findings indicate that a need to reoxidize NADPH is driving the observed amino acid secretion, likely at the expense of the NADH needed for ethanol formation. This suggests that metabolic engineering strategies that simplify the redox metabolism and ammonium assimilation can contribute to increased ethanol yields. IMPORTANCE Improving the ethanol yield of C. thermocellum is important for the industrial implementation of this microorganism in consolidated bioprocessing. A central role of NADPH in driving amino acid byproduct formation was demonstrated by eliminating the NADPH-supplying malate shunt and separately by changing the cofactor specificity in ammonium assimilation. With amino acid secretion diverting carbon and electrons away from ethanol, these insights are important for further metabolic engineering to reach industrial requirements on ethanol yield. This study also provides chemostat data that are relevant for training genome-scale metabolic models and for improving the validity of their predictions, especially considering the reduced degree-of-freedom in the redox metabolism of the strains generated here. In addition, this study advances the fundamental understanding on the mechanisms underlying amino acid secretion in cellulolytic Clostridia as well as on the regulation and cofactor specificity in ammonium assimilation. Together, these efforts aid in the development of C. thermocellum for the sustainable consolidated bioprocessing of lignocellulose to ethanol with minimal pretreatment.
Collapse
|
2
|
Sander K, Chung D, Hyatt D, Westpheling J, Klingeman DM, Rodriguez M, Engle NL, Tschaplinski TJ, Davison BH, Brown SD. Rex in Caldicellulosiruptor bescii: Novel regulon members and its effect on the production of ethanol and overflow metabolites. Microbiologyopen 2019; 8:e00639. [PMID: 29797457 PMCID: PMC6391272 DOI: 10.1002/mbo3.639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 11/23/2022] Open
Abstract
Rex is a global redox-sensing transcription factor that senses and responds to the intracellular [NADH]/[NAD+ ] ratio to regulate genes for central metabolism, and a variety of metabolic processes in Gram-positive bacteria. We decipher and validate four new members of the Rex regulon in Caldicellulosiruptor bescii; a gene encoding a class V aminotransferase, the HydG FeFe Hydrogenase maturation protein, an oxidoreductase, and a gene encoding a hypothetical protein. Structural genes for the NiFe and FeFe hydrogenases, pyruvate:ferredoxin oxidoreductase, as well as the rex gene itself are also members of this regulon, as has been predicted previously in different organisms. A C. bescii rex deletion strain constructed in an ethanol-producing strain made 54% more ethanol (0.16 mmol/L) than its genetic parent after 36 hr of fermentation, though only under nitrogen limited conditions. Metabolomic interrogation shows this rex-deficient ethanol-producing strain synthesizes other reduced overflow metabolism products likely in response to more reduced intracellular redox conditions and the accumulation of pyruvate. These results suggest ethanol production is strongly dependent on the native intracellular redox state in C. bescii, and highlight the combined promise of using this gene and manipulation of culture conditions to yield strains capable of producing ethanol at higher yields and final titer.
Collapse
Affiliation(s)
- Kyle Sander
- Department of Chemical and Biomolecular EngineeringUniversity of TennesseeKnoxvilleTennessee
- Bredesen Center for Interdisciplinary Graduate Research and EducationUniversity of TennesseeKnoxvilleTennessee
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
| | - Daehwan Chung
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Department of GeneticsUniversity of GeorgiaAthensGeorgia
- Present address:
National Renewable Energy LaboratoryGoldenCO
| | - Doug Hyatt
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
| | - Janet Westpheling
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Department of GeneticsUniversity of GeorgiaAthensGeorgia
| | - Dawn M. Klingeman
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
| | - Miguel Rodriguez
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
| | - Nancy L. Engle
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
| | - Timothy J. Tschaplinski
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
| | - Brian H. Davison
- Department of Chemical and Biomolecular EngineeringUniversity of TennesseeKnoxvilleTennessee
- Bredesen Center for Interdisciplinary Graduate Research and EducationUniversity of TennesseeKnoxvilleTennessee
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
| | - Steven D. Brown
- Bredesen Center for Interdisciplinary Graduate Research and EducationUniversity of TennesseeKnoxvilleTennessee
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
- Present address:
LanzaTechSkokieIL
| |
Collapse
|
3
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
4
|
Ravachol J, Borne R, Meynial-Salles I, Soucaille P, Pagès S, Tardif C, Fierobe HP. Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:114. [PMID: 26269713 PMCID: PMC4533799 DOI: 10.1186/s13068-015-0301-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/30/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Ruminiclostridium cellulolyticum and Lachnoclostridium phytofermentans (formerly known as Clostridium cellulolyticum and Clostridium phytofermentans, respectively) are anaerobic bacteria that developed different strategies to depolymerize the cellulose and the related plant cell wall polysaccharides. Thus, R. cellulolyticum produces large extracellular multi-enzyme complexes termed cellulosomes, while L. phytofermentans secretes in the environment some cellulose-degrading enzymes as free enzymes. In the present study, the major cellulase from L. phytofermentans was introduced as a free enzyme or as a cellulosomal component in R. cellulolyticum to improve its cellulolytic capacities. RESULTS The gene at locus Cphy_3367 encoding the major cellulase Cel9A from L. phytofermentans and an engineered gene coding for a modified enzyme harboring a R. cellulolyticum C-terminal dockerin were cloned in an expression vector. After electrotransformation of R. cellulolyticum, both forms of Cel9A were found to be secreted by the corresponding recombinant strains. On minimal medium containing microcrystalline cellulose as the sole source of carbon, the strain secreting the free Cel9A started to grow sooner and consumed cellulose faster than the strain producing the cellulosomal form of Cel9A, or the control strain carrying an empty expression vector. All strains reached the same final cell density but the strain producing the cellulosomal form of Cel9A was unable to completely consume the available cellulose even after an extended cultivation time, conversely to the two other strains. Analyses of their cellulosomes showed that the engineered form of Cel9A bearing a dockerin was successfully incorporated in the complexes, but its integration induced an important release of regular cellulosomal components such as the major cellulase Cel48F, which severely impaired the activity of the complexes on cellulose. In contrast, the cellulosomes synthesized by the control and the free Cel9A-secreting strains displayed similar composition and activity. Finally, the most cellulolytic strain secreting free Cel9A, was also characterized by an early production of lactate, acetate and ethanol as compared to the control strain. CONCLUSIONS Our study shows that the cellulolytic capacity of R. cellulolyticum can be augmented by supplementing the cellulosomes with a free cellulase originating from L. phytofermentans, whereas integration of the heterologous enzyme in the cellulosomes is rather unfavorable.
Collapse
Affiliation(s)
- Julie Ravachol
- />Aix-Marseille Université-CNRS, LCB UMR7283, IMM, 31 chemin Joseph Aiguier, 13402 Marseille, France
| | - Romain Borne
- />Aix-Marseille Université-CNRS, LCB UMR7283, IMM, 31 chemin Joseph Aiguier, 13402 Marseille, France
| | - Isabelle Meynial-Salles
- />Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, 31077 Toulouse, France
- />INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France
- />CNRS, UMR5504, 31400 Toulouse, France
| | - Philippe Soucaille
- />Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, 31077 Toulouse, France
- />INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France
- />CNRS, UMR5504, 31400 Toulouse, France
| | - Sandrine Pagès
- />Aix-Marseille Université-CNRS, LCB UMR7283, IMM, 31 chemin Joseph Aiguier, 13402 Marseille, France
| | - Chantal Tardif
- />Aix-Marseille Université-CNRS, LCB UMR7283, IMM, 31 chemin Joseph Aiguier, 13402 Marseille, France
| | - Henri-Pierre Fierobe
- />Aix-Marseille Université-CNRS, LCB UMR7283, IMM, 31 chemin Joseph Aiguier, 13402 Marseille, France
| |
Collapse
|
5
|
Morrell-Falvey JL, Elkins JG, Wang ZW. Determination of the cellulase activity distribution in Clostridium thermocellum and Caldicellulosiruptor obsidiansis cultures using a fluorescent substrate. J Environ Sci (China) 2015; 34:212-218. [PMID: 26257364 DOI: 10.1016/j.jes.2015.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
This study took advantage of resorufin cellobioside as a fluorescent substrate to determine the distribution of cellulase activity in cellulosic biomass fermentation systems. Cellulolytic biofilms were found to express nearly four orders greater cellulase activity compared to planktonic cultures of Clostridium thermocellum and Caldicellulosiruptor obsidiansis, which can be primarily attributed to the high cell concentration and surface attachment. The formation of biofilms results in cellulases being secreted close to their substrates, which appears to be an energetically favorable stategy for insoluble substrate utilization. For the same reason, cellulases should be closely associated with the surfaces of suspended cell in soluble substrate-fed culture, which has been verified with cellobiose-fed cultures of C. thermocellum and C. obsidiansis. This study addressed the importance of cellulase activity distribution in cellulosic biomass fermentation, and provided theoretical foundation for the leading role of biofilm in cellulose degradation. System optimization and reactor designs that promote biofilm formation in cellulosic biomass hydrolysis may promise an improved cellulosic biofuel process.
Collapse
Affiliation(s)
- Jennifer L Morrell-Falvey
- BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James G Elkins
- BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zhi-Wu Wang
- BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Ohio State University ATI, 1328 Dover Rd, Wooster, OH 44691, USA.
| |
Collapse
|
6
|
Role of transcription and enzyme activities in redistribution of carbon and electron flux in response to N2 and H2 sparging of open-batch cultures of Clostridium thermocellum ATCC 27405. Appl Microbiol Biotechnol 2014; 98:2829-40. [DOI: 10.1007/s00253-013-5500-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 12/18/2013] [Accepted: 12/24/2013] [Indexed: 12/17/2022]
|
7
|
Chagnot C, Zorgani MA, Astruc T, Desvaux M. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective. Front Microbiol 2013; 4:303. [PMID: 24133488 PMCID: PMC3796261 DOI: 10.3389/fmicb.2013.00303] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/22/2013] [Indexed: 01/30/2023] Open
Abstract
Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field.
Collapse
Affiliation(s)
- Caroline Chagnot
- UR454 Microbiologie, INRA Saint-Genès Champanelle, France ; UR370 Qualité des Produits Animaux, INRA Saint-Genès Champanelle, France
| | | | | | | |
Collapse
|
8
|
Chagnot C, Agus A, Renier S, Peyrin F, Talon R, Astruc T, Desvaux M. In vitro colonization of the muscle extracellular matrix components by Escherichia coli O157:H7: the influence of growth medium, temperature and pH on initial adhesion and induction of biofilm formation by collagens I and III. PLoS One 2013; 8:e59386. [PMID: 23516631 PMCID: PMC3596346 DOI: 10.1371/journal.pone.0059386] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/14/2013] [Indexed: 11/18/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 are responsible for repeated food-poisoning cases often caused by contaminated burgers. EHEC infection is predominantly a pediatric illness, which can lead to life-threatening diseases. Ruminants are the main natural reservoir for EHEC and food contamination almost always originates from faecal contamination. In beef meat products, primary bacterial contamination occurs at the dehiding stage of slaughtering. The extracellular matrix (ECM) is the most exposed part of the skeletal muscles in beef carcasses. Investigating the adhesion to the main muscle fibrous ECM proteins, insoluble fibronectin, collagen I, III and IV, laminin-α2 and elastin, results demonstrated that the preceding growth conditions had a great influence on subsequent bacterial attachment. In the tested experimental conditions, maximal adhesion to fibril-forming collagens I or III occurred at 25°C and pH 7. Once initially adhered, exposure to lower temperatures, as applied to meat during cutting and storage, or acidification, as in the course of post-mortem physiological modifications of muscle, had no effect on detachment, except at pHu. In addition, dense biofilm formation occurred on immobilized collagen I or III and was induced in growth medium supplemented with collagen I in solution. From this first comprehensive investigation of EHEC adhesion to ECM proteins with respect to muscle biology and meat processing, new research directions for the development of innovative practices to minimize the risk of meat contamination are further discussed.
Collapse
Affiliation(s)
- Caroline Chagnot
- INRA, UR454 Microbiologie, Clermont-Ferrand, France
- INRA, UR370 Qualité des Produits Animaux, Clermont-Ferrand, France
| | - Allison Agus
- INRA, UR454 Microbiologie, Clermont-Ferrand, France
| | | | - Frédéric Peyrin
- INRA, UR370 Qualité des Produits Animaux, Clermont-Ferrand, France
| | - Régine Talon
- INRA, UR454 Microbiologie, Clermont-Ferrand, France
| | - Thierry Astruc
- INRA, UR370 Qualité des Produits Animaux, Clermont-Ferrand, France
| | | |
Collapse
|
9
|
Carere CR, Rydzak T, Verbeke TJ, Cicek N, Levin DB, Sparling R. Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria. BMC Microbiol 2012; 12:295. [PMID: 23249097 PMCID: PMC3561251 DOI: 10.1186/1471-2180-12-295] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/12/2012] [Indexed: 12/16/2022] Open
Abstract
Background Fermentative bacteria offer the potential to convert lignocellulosic waste-streams into biofuels such as hydrogen (H2) and ethanol. Current fermentative H2 and ethanol yields, however, are below theoretical maxima, vary greatly among organisms, and depend on the extent of metabolic pathways utilized. For fermentative H2 and/or ethanol production to become practical, biofuel yields must be increased. We performed a comparative meta-analysis of (i) reported end-product yields, and (ii) genes encoding pyruvate metabolism and end-product synthesis pathways to identify suitable biomarkers for screening a microorganism’s potential of H2 and/or ethanol production, and to identify targets for metabolic engineering to improve biofuel yields. Our interest in H2 and/or ethanol optimization restricted our meta-analysis to organisms with sequenced genomes and limited branched end-product pathways. These included members of the Firmicutes, Euryarchaeota, and Thermotogae. Results Bioinformatic analysis revealed that the absence of genes encoding acetaldehyde dehydrogenase and bifunctional acetaldehyde/alcohol dehydrogenase (AdhE) in Caldicellulosiruptor, Thermococcus, Pyrococcus, and Thermotoga species coincide with high H2 yields and low ethanol production. Organisms containing genes (or activities) for both ethanol and H2 synthesis pathways (i.e. Caldanaerobacter subterraneus subsp. tengcongensis, Ethanoligenens harbinense, and Clostridium species) had relatively uniform mixed product patterns. The absence of hydrogenases in Geobacillus and Bacillus species did not confer high ethanol production, but rather high lactate production. Only Thermoanaerobacter pseudethanolicus produced relatively high ethanol and low H2 yields. This may be attributed to the presence of genes encoding proteins that promote NADH production. Lactate dehydrogenase and pyruvate:formate lyase are not conducive for ethanol and/or H2 production. While the type(s) of encoded hydrogenases appear to have little impact on H2 production in organisms that do not encode ethanol producing pathways, they do influence reduced end-product yields in those that do. Conclusions Here we show that composition of genes encoding pathways involved in pyruvate catabolism and end-product synthesis pathways can be used to approximate potential end-product distribution patterns. We have identified a number of genetic biomarkers for streamlining ethanol and H2 producing capabilities. By linking genome content, reaction thermodynamics, and end-product yields, we offer potential targets for optimization of either ethanol or H2 yields through metabolic engineering.
Collapse
Affiliation(s)
- Carlo R Carere
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada R3T 5V6
| | | | | | | | | | | |
Collapse
|
10
|
Renier S, Hébraud M, Desvaux M. Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen. Environ Microbiol 2010; 13:835-50. [PMID: 21087384 DOI: 10.1111/j.1462-2920.2010.02378.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The opportunistic and facultative intracellular pathogenic bacterium Listeria monocytogenes causes a rare but severe foodborne disease called listeriosis, the outcome of which can be fatal. The infection cycle and key virulence factors are now well characterized in this species. Nonetheless, this knowledge has not prevented the re-emergence of listeriosis, as recently reported in several European countries. Listeria monocytogenes is particularly problematic in the food industry since it can survive and multiply under conditions frequently used for food preservation. Moreover, this foodborne pathogen also forms biofilms, which increase its persistence and resistance in industrial production lines, leading to contamination of food products. Significant differences have been reported regarding the ability of different isolates to form biofilms, but no clear correlation can be established with serovars or lineages. The architecture of listerial biofilms varies greatly from one strain to another as it ranges from bacterial monolayers to the most recently described network of knitted chains. While the role of polysaccharides as part of the extracellular matrix contributing to listerial biofilm formation remains elusive, the importance of eDNA has been demonstrated. The involvement of flagella in biofilm formation has also been pointed out, but their exact role in the process remains to be clarified because of conflicting results. Two cell-cell communication systems LuxS and Agr have been shown to take part in the regulation of biofilm formation. Several additional molecular determinants have been identified by functional genetic analyses, such as the (p)ppGpp synthetase RelA and more recently BapL. Future directions and questions about the molecular mechanisms of biofilm formation in L. monocytogenes are further discussed, such as correlation between clonal complexes as revealed by MLST and biofilm formation, the swarming over swimming regulation hypothesis regarding the role of the flagella, and the involvement of microbial surface components recognizing adhesive matrix molecules in the colonization of abiotic and biotic surfaces.
Collapse
Affiliation(s)
- Sandra Renier
- INRA, UR454 Microbiology, F-63122 Saint-Genès Champanelle, France
| | | | | |
Collapse
|
11
|
Dumas E, Meunier B, Berdagué JL, Chambon C, Desvaux M, Hébraud M. The origin of Listeria monocytogenes 4b isolates is signified by subproteomic profiling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1530-6. [DOI: 10.1016/j.bbapap.2009.06.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 06/17/2009] [Accepted: 06/29/2009] [Indexed: 11/27/2022]
|
12
|
Magnusson L, Cicek N, Sparling R, Levin D. Continuous hydrogen production during fermentation of α-cellulose by the thermophillic bacteriumClostridium thermocellum. Biotechnol Bioeng 2009; 102:759-66. [DOI: 10.1002/bit.22092] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Abstract
Carbon metabolism in anaerobic cellulolytic bacteria has been investigated essentially in Clostridium thermocellum, Clostridium cellulolyticum, Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus. While cellulose depolymerization into soluble sugars by various cellulases is undoubtedly the first step in bacterial metabolisation of cellulose, it is not the only one to consider. Among anaerobic cellulolytic bacteria, C. cellulolyticum has been investigated metabolically the most in the past few years. Summarizing metabolic flux analyses in continuous culture using either cellobiose (a soluble cellodextrin resulting from cellulose hydrolysis) or cellulose (an insoluble biopolymer), this review aims to stress the importance of the insoluble nature of a carbon source on bacterial metabolism. Furthermore, some general and specific traits of anaerobic cellulolytic bacteria trends, namely, the importance and benefits of (i) cellodextrins with degree of polymerization higher than 2, (ii) intracellular phosphorolytic cleavage, (iii) glycogen cycling on cell bioenergetics, and (iv) carbon overflows in regulation of carbon metabolism, as well as detrimental effects of (i) soluble sugars and (ii) acidic environment on bacterial growth. Future directions for improving bacterial cellulose degradation are discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- INRA (Institut National de la Recherche Agronomique), Centre de Clermont-Ferrand, UR454 Unité de Microbiologie, Site de Theix, Saint-Genès Champanelle, F-63122 France.
| |
Collapse
|
14
|
Creti R, Koch S, Fabretti F, Baldassarri L, Huebner J. Enterococcal colonization of the gastro-intestinal tract: role of biofilm and environmental oligosaccharides. BMC Microbiol 2006; 6:60. [PMID: 16834772 PMCID: PMC1534043 DOI: 10.1186/1471-2180-6-60] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 07/11/2006] [Indexed: 11/17/2022] Open
Abstract
Background Biofilm formation in E. faecalis is presumed to play an important role in a number of enterococcal infections. We have previously identified a genetic locus provisionally named bop that is involved in maltose metabolism and biofilm formation. A transposon insertion into the second gene of the locus (bopB) resulted in loss of biofilm formation, while the non-polar deletion of this gene, together with parts of the flanking genes (bopA and bopC) resulted in increased biofilm formation. A polar effect of the transposon insertion on a transcriptional regulator (bopD) was responsible for the reduced biofilm formation of the transposon mutant. Results The amount of biofilm formed is related to the presence of maltose or glucose in the growth medium. While the wild-type strain was able to produce biofilm in medium containing either glucose or maltose, two mutants of this locus showed opposite effects. When grown in medium containing 1% glucose, the transposon mutant showed reduced biofilm formation (9%), while the deletion mutant produced more biofilm (110%) than the wild-type. When grown in medium containing 1% maltose, the transposon mutant was able to produce more biofilm than the wild-type strain (111%), while the deletion mutant did not produce biofilm (4%). Biofilm formation was not affected by the presence of several other sugar sources. In a gastrointestinal colonization model, the biofilm-negative mutant was delayed in colonization of the mouse intestinal tract. Conclusion The biofilm-positive phenotype of the wild-type strain seems to be associated with colonization of enterococci in the gut and the presence of oligosaccharides in food may influence biofilm formation and therefore colonization of enterococci in the gastrointestinal system.
Collapse
Affiliation(s)
- Roberta Creti
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate – Istituto Superiore di Sanità, Roma, Italy
| | - Stefanie Koch
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesca Fabretti
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate – Istituto Superiore di Sanità, Roma, Italy
- Division of Infectious Diseases, Department of Medicine, University Hospital Freiburg, Germany
| | - Lucilla Baldassarri
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate – Istituto Superiore di Sanità, Roma, Italy
| | - Johannes Huebner
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, University Hospital Freiburg, Germany
| |
Collapse
|
15
|
|
16
|
|
17
|
Desvaux M. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev 2004; 29:741-64. [PMID: 16102601 DOI: 10.1016/j.femsre.2004.11.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 04/27/2004] [Accepted: 11/01/2004] [Indexed: 11/22/2022] Open
Abstract
Clostridium cellulolyticum ATCC 35319 is a non-ruminal mesophilic cellulolytic bacterium originally isolated from decayed grass. As with most truly cellulolytic clostridia, C. cellulolyticum possesses an extracellular multi-enzymatic complex, the cellulosome. The catalytic components of the cellulosome release soluble cello-oligosaccharides from cellulose providing the primary carbon substrates to support bacterial growth. As most cellulolytic bacteria, C. cellulolyticum was initially characterised by limited carbon consumption and subsequent limited growth in comparison to other saccharolytic clostridia. The first metabolic studies performed in batch cultures suggested nutrient(s) limitation and/or by-product(s) inhibition as the reasons for this limited growth. In most recent investigations using chemostat cultures, metabolic flux analysis suggests a self-intoxication of bacterial metabolism resulting from an inefficiently regulated carbon flow. The investigation of C. cellulolyticum physiology with cellobiose, as a model of soluble cellodextrin, and with pure cellulose, as a carbon source more closely related to lignocellulosic compounds, strengthen the idea of a bacterium particularly well adapted, and even restricted, to a cellulolytic lifestyle. The metabolic flux analysis from continuous cultures revealed that (i) in comparison to cellobiose, the cellulose hydrolysis by the cellulosome introduces an extra regulation of entering carbon flow resulting in globally lower metabolic fluxes on cellulose than on cellobiose, (ii) the glucose 1-phosphate/glucose 6-phosphate branch point controls the carbon flow directed towards glycolysis and dissipates carbon excess towards the formation of cellodextrins, glycogen and exopolysaccharides, (iii) the pyruvate/acetyl-CoA metabolic node is essential to the regulation of electronic and energetic fluxes. This in-depth analysis of C. cellulolyticum metabolism has permitted the first attempt to engineer metabolically a cellulolytic microorganism.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Institute for Biomedical Research, The University of Birmingham - The Medical School, Edgbaston, UK.
| |
Collapse
|
18
|
Desvaux M, Guedon E, Petitdemange H. Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. Appl Environ Microbiol 2001; 67:3837-45. [PMID: 11525975 PMCID: PMC93099 DOI: 10.1128/aem.67.9.3837-3845.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hydrolysis and fermentation of insoluble cellulose were investigated using continuous cultures of Clostridium cellulolyticum with increasing amounts of carbon substrate. At a dilution rate (D) of 0.048 h(-1), biomass formation increased proportionately to the cellulose concentration provided by the feed reservoir, but at and above 7.6 g of cellulose x liter(-1) the cell density at steady state leveled off. The percentage of cellulose degradation declined from 32.3 to 8.3 with 1.9 and 27.0 g of cellulose x liter(-1), respectively, while cellodextrin accumulation rose and represented up to 4.0% of the original carbon consumed. The shift from cellulose-limited to cellulose-sufficient conditions was accompanied by an increase of both the acetate/ethanol ratio and lactate biosynthesis. A kinetics study of C. cellulolyticum metabolism in cellulose saturation was performed by varying D with 18.1 g of cellulose x liter(-1). Compared to cellulose limitation (M. Desvaux, E. Guedon, and H. Petitdemange, J. Bacteriol. 183:119-130, 2001), in cellulose-sufficient continuous culture (i) the ATP/ADP, NADH/NAD+, and q(NADH produced)/q(NADH used) ratios were higher and were related to a more active catabolism, (ii) the acetate/ethanol ratio increased while the lactate production decreased as D rose, and (iii) the maximum growth yield (Y(max)X/S) (40.6 g of biomass per mol of hexose equivalent) and the maximum energetic yield (Y(max)ATP) (19.4 g of biomass per mol of ATP) were lowered. C. cellulolyticum was then able to regulate and optimize carbon metabolism under cellulose-saturated conditions. However, the facts that some catabolized hexose and hence ATP were no longer associated with biomass production with a cellulose excess and that concomitantly lactate production and pyruvate leakage rose suggest the accumulation of an intracellular inhibitory compound(s), which could further explain the establishment of steady-state continuous cultures under conditions of excesses of all nutrients. The following differences were found between growth on cellulose in this study and growth under cellobiose-sufficient conditions (E. Guedon, S. Payot, M. Desvaux, and H. Petitdemange, Biotechnol. Bioeng. 67:327-335, 2000): (i) while with cellobiose, a carbon flow into the cell of as high as 5.14 mmol of hexose equivalent g of cells(-1) x h(-1) could be reached, the maximum entering carbon flow obtained here on cellulose was 2.91 mmol of hexose equivalent g of cells(-1) x h(-1); (ii) while the NADH/NAD+ ratio could reach 1.51 on cellobiose, it was always lower than 1 on cellulose; and (iii) while a high proportion of cellobiose was directed towards exopolysaccharide, extracellular protein, and free amino acid excretions, these overflows were more limited under cellulose-excess conditions. Such differences were related to the carbon consumption rate, which was higher on cellobiose than on cellulose.
Collapse
Affiliation(s)
- M Desvaux
- Laboratoire de Biochimie des Bactéries Gram +, Domaine Scientifique Victor Grignard, Université Henri Poincaré, Faculté des Sciences, 54506 Vandouvre-lès-Nancy Cédex, France
| | | | | |
Collapse
|