1
|
Willemin MS, Hamelin R, Armand F, Holliger C, Maillard J. Proteome adaptations of the organohalide-respiring Desulfitobacterium hafniense strain DCB-2 to various energy metabolisms. Front Microbiol 2023; 14:1058127. [PMID: 36733918 PMCID: PMC9888536 DOI: 10.3389/fmicb.2023.1058127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Introduction Desulfitobacterium hafniense was isolated for its ability to use organohalogens as terminal electron acceptors via organohalide respiration (OHR). In contrast to obligate OHR bacteria, Desulfitobacterium spp. show a highly versatile energy metabolism with the capacity to use different electron donors and acceptors and to grow fermentatively. Desulfitobacterium genomes display numerous and apparently redundant members of redox enzyme families which confirm their metabolic potential. Nonetheless, the enzymes responsible for many metabolic traits are not yet identified. Methods In the present work, we conducted an extended proteomic study by comparing the proteomes of Desulfitobacterium hafniense strain DCB-2 cultivated in combinations of electron donors and acceptors, triggering five alternative respiratory metabolisms that include OHR, as well as fermentation. Tandem Mass Tag labelling proteomics allowed us to identify and quantify almost 60% of the predicted proteome of strain DCB-2 (2,796 proteins) in all six growth conditions. Raw data are available via ProteomeXchange with identifier PXD030393. Results and discussion This dataset was analyzed in order to highlight the proteins that were significantly up-regulated in one or a subset of growth conditions and to identify possible key players in the different energy metabolisms. The addition of sodium sulfide as reducing agent in the medium - a very widespread practice in the cultivation of strictly anaerobic bacteria - triggered the expression of the dissimilatory sulfite reduction pathway in relatively less favorable conditions such as fermentative growth on pyruvate, respiration with H2 as electron donor and OHR conditions. The presence of H2, CO2 and acetate in the medium induced several metabolic pathways involved in carbon metabolism including the Wood-Ljungdahl pathway and two pathways related to the fermentation of butyrate that rely on electron-bifurcating enzymes. While the predicted fumarate reductase appears to be constitutively expressed, a new lactate dehydrogenase and lactate transporters were identified. Finally, the OHR metabolism with 3-chloro-4-hydroxyphenylacetate as electron acceptor strongly induced proteins encoded in several reductive dehalogenase gene clusters, as well as four new proteins related to corrinoid metabolism. We believe that this extended proteomic database represents a new landmark in understanding the metabolic versatility of Desulfitobacterium spp. and provides a solid basis for addressing future research questions.
Collapse
Affiliation(s)
- Mathilde Stéphanie Willemin
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Romain Hamelin
- Proteomic Core Facility (PCF), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Florence Armand
- Proteomic Core Facility (PCF), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christof Holliger
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Maillard
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,*Correspondence: Julien Maillard, ✉
| |
Collapse
|
2
|
Li X, Ding L, Yuan H, Li X, Zhu Y. Identification of potential electrotrophic microbial community in paddy soils by enrichment of microbial electrolysis cell biocathodes. J Environ Sci (China) 2020; 87:411-420. [PMID: 31791514 DOI: 10.1016/j.jes.2019.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Electrotrophs are microbes that can receive electrons directly from cathode in a microbial electrolysis cell (MEC). They not only participate in organic biosynthesis, but also be crucial in cathode-based bioremediation. However, little is known about the electrotrophic community in paddy soils. Here, the putative electrotrophs were enriched by cathodes of MECs constructed from five paddy soils with various properties using bicarbonate as an electron acceptor, and identified by 16S rRNA-gene based Illumina sequencing. The electrons were gradually consumed on the cathodes, and 25%-45% of which were recovered to reduce bicarbonate to acetic acid during MEC operation. Firmicutes was the dominant bacterial phylum on the cathodes, and Bacillus genus within this phylum was greatly enriched and was the most abundant population among the detected putative electrotrophs for almost all soils. Furthermore, several other members of Firmicutes and Proteobacteria may also participate in electrotrophic process in different soils. Soil pH, amorphous iron and electrical conductivity significantly influenced the putative electrotrophic bacterial community, which explained about 33.5% of the community structural variation. This study provides a basis for understanding the microbial diversity of putative electrotrophs in paddy soils, and highlights the importance of soil properties in shaping the community of putative electrotrophs.
Collapse
Affiliation(s)
- Xiaomin Li
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, No. 18, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longjun Ding
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, No. 18, Haidian District, Beijing 100085, China.
| | - Haiyan Yuan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, No. 18, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Li
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, No. 18, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, No. 18, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road, No. 1799, Jimei District, Xiamen 361021, China
| |
Collapse
|
3
|
Türkowsky D, Jehmlich N, Diekert G, Adrian L, von Bergen M, Goris T. An integrative overview of genomic, transcriptomic and proteomic analyses in organohalide respiration research. FEMS Microbiol Ecol 2019; 94:4830072. [PMID: 29390082 DOI: 10.1093/femsec/fiy013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Organohalide respiration (OHR) is a crucial process in the global halogen cycle and of interest for bioremediation. However, investigations on OHR are hampered by the restricted genetic accessibility and the poor growth yields of many organohalide-respiring bacteria (OHRB). Therefore, genomics, transcriptomics and proteomics are often used to investigate OHRB. In general, these gene expression studies are more useful when the data of the different 'omics' approaches are integrated and compared among a wide range of cultivation conditions and ideally involve several closely related OHRB. Despite the availability of a couple of proteomic and transcriptomic datasets dealing with OHRB, such approaches are currently not covered in reviews. Therefore, we here present an integrative and comparative overview of omics studies performed with the OHRB Sulfurospirillum multivorans, Dehalococcoides mccartyi, Desulfitobacterium spp. and Dehalobacter restrictus. Genes, transcripts, proteins and the regulatory and biochemical processes involved in OHR are discussed, and a comprehensive view on the unusual metabolism of D. mccartyi, which is one of the few bacteria possibly using a quinone-independent respiratory chain, is provided. Several 'omics'-derived theories on OHRB, e.g. the organohalide-respiratory chain, hydrogen metabolism, corrinoid biosynthesis or one-carbon metabolism are critically discussed on the basis of this integrative approach.
Collapse
Affiliation(s)
- Dominique Türkowsky
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, Germany
| | - Tobias Goris
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|
4
|
Schubert T, Adrian L, Sawers RG, Diekert G. Organohalide respiratory chains: composition, topology and key enzymes. FEMS Microbiol Ecol 2018; 94:4923014. [DOI: 10.1093/femsec/fiy035] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Torsten Schubert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, D-07743 Jena, Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, D-04318 Leipzig, Germany
- Department of Geobiotechnology, Technische Universität Berlin, Ackerstraße 74, D-13355 Berlin, Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
5
|
Affiliation(s)
- Maeva Fincker
- Department of Civil and Environmental Engineering and Department of Chemical Engineering, Stanford University, Stanford, California 94305;,
| | - Alfred M. Spormann
- Department of Civil and Environmental Engineering and Department of Chemical Engineering, Stanford University, Stanford, California 94305;,
| |
Collapse
|
6
|
Leong LEX, Denman SE, Hugenholtz P, McSweeney CS. Amino Acid and Peptide Utilization Profiles of the Fluoroacetate-Degrading Bacterium Synergistetes Strain MFA1 Under Varying Conditions. MICROBIAL ECOLOGY 2016; 71:494-504. [PMID: 26111963 DOI: 10.1007/s00248-015-0641-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 06/10/2015] [Indexed: 05/08/2023]
Abstract
Synergistetes strain MFA1 is an asaccharolytic ruminal bacterium isolated based on its ability to degrade fluoroacetate, a plant toxin. The amino acid and peptide requirements of the bacterium were investigated under different culturing conditions. The growth of strain MFA1 and its fluoroacetate degradation rate were enhanced by peptide-rich protein hydrolysates (tryptone and yeast extract) compared to casamino acid, an amino acid-rich protein hydrolysate. Complete utilization and preference for arginine, asparagine, glutamate, glycine, and histidine as free amino acids from yeast extract were observed, while the utilization of serine, threonine, and lysine in free form and peptide-bound glutamate was stimulated during growth on fluoroacetate. A predominant peptide in yeast extract preferentially utilized by strain MFA1 was partially characterized by high-liquid performance chromatography-mass spectrometry as a hepta-glutamate oligopeptide. Similar utilization profiles of amino acids were observed between the co-culture of strain MFA1 with Methanobrevibacter smithii without fluoroacetate and pure strain MFA1 culture with fluoroacetate. This suggests that growth of strain MFA1 could be enhanced by a reduction of hydrogen partial pressure as a result of hydrogen removal by a methanogen or reduction of fluoroacetate.
Collapse
Affiliation(s)
- Lex E X Leong
- CSIRO Agriculture, St Lucia, QLD, 4067, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
- Infection and Immunity, South Australian Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia
| | | | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | |
Collapse
|
7
|
Genomic, proteomic, and biochemical analysis of the organohalide respiratory pathway in Desulfitobacterium dehalogenans. J Bacteriol 2014; 197:893-904. [PMID: 25512312 DOI: 10.1128/jb.02370-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1(T) consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA.
Collapse
|
8
|
Anaerobic microbial growth near thermodynamic equilibrium as a function of ATP/ADP cycle: The effect of maintenance energy requirements. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Buttet GF, Holliger C, Maillard J. Functional genotyping of Sulfurospirillum spp. in mixed cultures allowed the identification of a new tetrachloroethene reductive dehalogenase. Appl Environ Microbiol 2013; 79:6941-7. [PMID: 23995945 PMCID: PMC3811552 DOI: 10.1128/aem.02312-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/28/2013] [Indexed: 11/20/2022] Open
Abstract
Reductive dehalogenases are the key enzymes involved in the anaerobic respiration of organohalides such as the widespread groundwater pollutant tetrachloroethene. The increasing number of available bacterial genomes and metagenomes gives access to hundreds of new putative reductive dehalogenase genes that display a high level of sequence diversity and for which substrate prediction remains very challenging. In this study, we present the development of a functional genotyping method targeting the diverse reductive dehalogenases present in Sulfurospirillum spp., which allowed us to unambiguously identify a new reductive dehalogenase from our tetrachloroethene-dechlorinating SL2 bacterial consortia. The new enzyme, named PceATCE, shows 92% sequence identity with the well-characterized PceA enzyme of Sulfurospirillum multivorans, but in contrast to the latter, it is restricted to tetrachloroethene as a substrate. Its apparent higher dechlorinating activity with tetrachloroethene likely allowed its selection and maintenance in the bacterial consortia among other enzymes showing broader substrate ranges. The sequence-substrate relationships within tetrachloroethene reductive dehalogenases are also discussed.
Collapse
Affiliation(s)
- Géraldine F Buttet
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental Biotechnology, Lausanne, Switzerland
| | | | | |
Collapse
|
10
|
Physiological adaptation of Desulfitobacterium hafniense strain TCE1 to tetrachloroethene respiration. Appl Environ Microbiol 2011; 77:3853-9. [PMID: 21478312 DOI: 10.1128/aem.02471-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Desulfitobacterium spp. are ubiquitous organisms with a broad metabolic versatility, and some isolates have the ability to use tetrachloroethene (PCE) as terminal electron acceptor. In order to identify proteins involved in this organohalide respiration process, a comparative proteomic analysis was performed. Soluble and membrane-associated proteins obtained from cells of Desulfitobacterium hafniense strain TCE1 that were growing on different combinations of the electron donors lactate and hydrogen and the electron acceptors PCE and fumarate were analyzed. Among proteins increasingly expressed in the presence of PCE compared to fumarate as electron acceptor, a total of 57 proteins were identified by mass spectrometry analysis, revealing proteins involved in stress response and associated regulation pathways, such as PspA, GroEL, and CodY, and also proteins potentially participating in carbon and energy metabolism, such as proteins of the Wood-Ljungdahl pathway and electron transfer flavoproteins. These proteomic results suggest that D. hafniense strain TCE1 adapts its physiology to face the relative unfavorable growth conditions during an apparent opportunistic organohalide respiration.
Collapse
|
11
|
Clarke N, Fuksová K, Gryndler M, Lachmanová Z, Liste HH, Rohlenová J, Schroll R, Schröder P, Matucha M. The formation and fate of chlorinated organic substances in temperate and boreal forest soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2009; 16:127-143. [PMID: 19104865 DOI: 10.1007/s11356-008-0090-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 11/17/2008] [Indexed: 05/25/2023]
Abstract
BACKGROUND, AIM AND SCOPE Chlorine is an abundant element, commonly occurring in nature either as chloride ions or as chlorinated organic compounds (OCls). Chlorinated organic substances were long considered purely anthropogenic products; however, they are, in addition, a commonly occurring and important part of natural ecosystems. Formation of OCls may affect the degradation of soil organic matter (SOM) and thus the carbon cycle with implications for the ability of forest soils to sequester carbon, whilst the occurrence of potentially toxic OCls in groundwater aquifers is of concern with regard to water quality. It is thus important to understand the biogeochemical cycle of chlorine, both inorganic and organic, to get information about the relevant processes in the forest ecosystem and the effects on these from human activities, including forestry practices. A survey is given of processes in the soil of temperate and boreal forests, predominantly in Europe, including the participation of chlorine, and gaps in knowledge and the need for further work are discussed. RESULTS Chlorine is present as chloride ion and/or OCls in all compartments of temperate and boreal forest ecosystems. It contributes to the degradation of SOM, thus also affecting carbon sequestration in the forest soil. The most important source of chloride to coastal forest ecosystems is sea salt deposition, and volcanoes and coal burning can also be important sources. Locally, de-icing salt can be an important chloride input near major roads. In addition, anthropogenic sources of OCls are manifold. However, results also indicate the formation of chlorinated organics by microorganisms as an important source, together with natural abiotic formation. In fact, the soil pool of OCls seems to be a result of the balance between chlorination and degradation processes. Ecologically, organochlorines may function as antibiotics, signal substances and energy equivalents, in descending order of significance. Forest management practices can affect the chlorine cycle, although little is at present known about how. DISCUSSION The present data on the apparently considerable size of the pool of OCls indicate its importance for the functioning of the forest soil system and its stability, but factors controlling their formation, degradation and transport are not clearly understood. It would be useful to estimate the significance and rates of key processes to be able to judge the importance of OCls in SOM and litter degradation. Effects of forest management processes affecting SOM and chloride deposition are likely to affect OCls as well. Further standardisation and harmonisation of sampling and analytical procedures is necessary. CONCLUSIONS AND PERSPECTIVES More work is necessary in order to understand and, if necessary, develop strategies for mitigating the environmental impact of OCls in temperate and boreal forest soils. This includes both intensified research, especially to understand the key processes of formation and degradation of chlorinated compounds, and monitoring of the substances in question in forest ecosystems. It is also important to understand the effect of various forest management techniques on OCls, as management can be used to produce desired effects.
Collapse
Affiliation(s)
- Nicholas Clarke
- Norwegian Forest and Landscape Institute, P.O. Box 115, 1431, As, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Breitenstein A, Andreesen JR, Lechner U. Analysis of an Anaerobic Chemostat Population Stably Dechlorinating 2,4,6-Trichlorophenol. Eng Life Sci 2007. [DOI: 10.1002/elsc.200720205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
13
|
Abstract
Desulfitobacterium spp. are strictly anaerobic bacteria that were first isolated from environments contaminated by halogenated organic compounds. They are very versatile microorganisms that can use a wide variety of electron acceptors, such as nitrate, sulfite, metals, humic acids, and man-made or naturally occurring halogenated organic compounds. Most of the Desulfitobacterium strains can dehalogenate halogenated organic compounds by mechanisms of reductive dehalogenation, although the substrate spectrum of halogenated organic compounds varies substantially from one strain to another, even with strains belonging to the same species. A number of reductive dehalogenases and their corresponding gene loci have been isolated from these strains. Some of these loci are flanked by transposition sequences, suggesting that they can be transmitted by horizontal transfer via a catabolic transposon. Desulfitobacterium spp. can use H2 as electron donor below the threshold concentration that would allow sulfate reduction and methanogenesis. Furthermore, there is some evidence that syntrophic relationships occur between Desulfitobacterium spp. and sulfate-reducing bacteria, from which the Desulfitobacterium cells acquire their electrons by interspecies hydrogen transfer, and it is believed that this relationship also occurs in a methanogenic consortium. Because of their versatility, desulfitobacteria can be excellent candidates for the development of anaerobic bioremediation processes. The release of the complete genome of Desulfitobacterium hafniense strain Y51 and information from the partial genome sequence of D. hafniense strain DCB-2 will certainly help in predicting how desulfitobacteria interact with their environments and other microorganisms, and the mechanisms of actions related to reductive dehalogenation.
Collapse
|
14
|
Abstract
Desulfitobacterium dehalogenans can use chlorinated aromatics including polychlorinated biphenyls as electron acceptors in a process called dehalorespiration. Expression of the cpr gene cluster involved in this process is regulated by CprK, which is a member of the CRP/FNR (cAMP-binding protein/fumarate nitrate reduction regulatory protein) family of helix-turn-helix transcriptional regulators. High affinity interaction of the chlorinated aromatic compound with the effector domain of CprK triggers binding of CprK to an upstream target DNA sequence, which leads to transcriptional activation of the cpr gene cluster. When incubated with oxygen or diamide, CprK undergoes inactivation; subsequent treatment with dithiothreitol restores activity. Using mass spectrometry, this study identifies two classes of redox-active thiol groups that form disulfide bonds upon oxidation. Under oxidative conditions, Cys105, which is conserved in FNR and most other CprK homologs, forms an intramolecular disulfide bond with Cys111, whereas an intermolecular disulfide bond is formed between Cys11 and Cys200. SDS-PAGE and site-directed mutagenesis experiments indicate that the Cys11/Cys200 disulfide bond links two CprK subunits in an inactive dimer. Isothermal calorimetry and intrinsic fluorescence quenching studies show that oxidation does not change the affinity of CprK for the effector. Therefore, reversible redox inactivation is manifested at the level of DNA binding. Our studies reveal a strategy for limiting expression of a redox-sensitive pathway by using a thiol-based redox switch in the transcription factor.
Collapse
Affiliation(s)
- Stelian M Pop
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | | | | | |
Collapse
|
15
|
Joyce MG, Levy C, Gábor K, Pop SM, Biehl BD, Doukov TI, Ryter JM, Mazon H, Smidt H, van den Heuvel RHH, Ragsdale SW, van der Oost J, Leys D. CprK crystal structures reveal mechanism for transcriptional control of halorespiration. J Biol Chem 2006; 281:28318-25. [PMID: 16803881 DOI: 10.1074/jbc.m602654200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Halorespiration is a bacterial respiratory process in which haloorganic compounds act as terminal electron acceptors. This process is controlled at transcriptional level by CprK, a member of the ubiquitous CRP-FNR family. Here we present the crystal structures of oxidized CprK in presence of the ligand ortho-chlorophenolacetic acid and of reduced CprK in absence of this ligand. These structures reveal that highly specific binding of chlorinated, rather than the corresponding non-chlorinated, phenolic compounds in the NH(2)-terminal beta-barrels causes reorientation of these domains with respect to the central alpha-helix at the dimer interface. Unexpectedly, the COOH-terminal DNA-binding domains dimerize in the non-DNA binding state. We postulate the ligand-induced conformational change allows formation of interdomain contacts that disrupt the DNA domain dimer interface and leads to repositioning of the helix-turn-helix motifs. These structures provide a structural framework for further studies on transcriptional control by CRP-FNR homologs in general and of halorespiration regulation by CprK in particular.
Collapse
Affiliation(s)
- M Gordon Joyce
- Manchester Interdisciplinary Biocentre, P. O. Box 88, Manchester, M60 1QD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
John M, Schmitz RPH, Westermann M, Richter W, Diekert G. Growth substrate dependent localization of tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans. Arch Microbiol 2006; 186:99-106. [PMID: 16802174 DOI: 10.1007/s00203-006-0125-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/08/2006] [Accepted: 05/15/2006] [Indexed: 10/24/2022]
Abstract
Sulfurospirillum multivorans is a dehalorespiring organism, which is able to utilize tetrachloroethene as terminal electron acceptor in an anaerobic respiratory chain. The localization of the tetrachloroethene reductive dehalogenase in dependence on different growth substrates was studied using the freeze-fracture replica immunogold labeling technique. When the cells were grown with pyruvate plus fumarate, a major part of the enzyme was either localized in the cytoplasm or membrane associated facing the cytoplasm. In cells grown on pyruvate or formate as electron donors and tetrachloroethene as electron acceptor, most of the enzyme was detected at the periplasmic side of the cytoplasmic membrane. These results were confirmed by immunoblots of the enzyme with and without the twin arginine leader peptide. Trichloroethene exhibited the same effect on the enzyme localization as tetrachloroethene. The data indicated that the localization of the enzyme was dependent on the electron acceptor utilized.
Collapse
Affiliation(s)
- Markus John
- Institute for Microbiology, Friedrich-Schiller-University, Philosophenweg 12, 07743 Jena, Germany
| | | | | | | | | |
Collapse
|
17
|
Nonaka H, Keresztes G, Shinoda Y, Ikenaga Y, Abe M, Naito K, Inatomi K, Furukawa K, Inui M, Yukawa H. Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J Bacteriol 2006; 188:2262-74. [PMID: 16513756 PMCID: PMC1428132 DOI: 10.1128/jb.188.6.2262-2274.2006] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Desulfitobacterium strains have the ability to dechlorinate halogenated compounds under anaerobic conditions by dehalorespiration. The complete genome of the tetrachloroethene (PCE)-dechlorinating strain Desulfitobacterium hafniense Y51 is a 5,727,534-bp circular chromosome harboring 5,060 predicted protein coding sequences. This genome contains only two reductive dehalogenase genes, a lower number than reported in most other dehalorespiring strains. More than 50 members of the dimethyl sulfoxide reductase superfamily and 30 paralogs of the flavoprotein subunit of the fumarate reductase are encoded as well. A remarkable feature of the genome is the large number of O-demethylase paralogs, which allow utilization of lignin-derived phenyl methyl ethers as electron donors. The large genome reveals a more versatile microorganism that can utilize a larger set of specialized electron donors and acceptors than previously thought. This is in sharp contrast to the PCE-dechlorinating strain Dehalococcoides ethenogenes 195, which has a relatively small genome with a narrow metabolic repertoire. A genomic comparison of these two very different strains allowed us to narrow down the potential candidates implicated in the dechlorination process. Our results provide further impetus to the use of desulfitobacteria as tools for bioremediation.
Collapse
Affiliation(s)
- Hiroshi Nonaka
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizu-Cho, Soraku-Gun, Kyoto 619-0292, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The natural production and anthropogenic release of halogenated hydrocarbons into the environment has been the likely driving force for the evolution of an unexpectedly high microbial capacity to dehalogenate different classes of xenobiotic haloorganics. This contribution provides an update on the current knowledge on metabolic and phylogenetic diversity of anaerobic microorganisms that are capable of dehalogenating--or completely mineralizing--halogenated hydrocarbons by fermentative, oxidative, or reductive pathways. In particular, research of the past decade has focused on halorespiring anaerobes, which couple the dehalogenation by dedicated enzyme systems to the generation of energy by electron transport-driven phosphorylation. Significant advances in the biochemistry and molecular genetics of degradation pathways have revealed mechanistic and structural similarities between dehalogenating enzymes from phylogenetically distinct anaerobes. The availability of two almost complete genome sequences of halorespiring isolates recently enabled comparative and functional genomics approaches, setting the stage for the further exploitation of halorespiring and other anaerobic dehalogenating microbes as dedicated degraders in biological remediation processes.
Collapse
Affiliation(s)
- Hauke Smidt
- Laboratory of Microbiology, Wageningen University, 6703CT Wageningen, The Netherlands.
| | | |
Collapse
|
19
|
Eyers L, George I, Schuler L, Stenuit B, Agathos SN, El Fantroussi S. Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics. Appl Microbiol Biotechnol 2004; 66:123-30. [PMID: 15316685 DOI: 10.1007/s00253-004-1703-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 06/22/2004] [Accepted: 06/25/2004] [Indexed: 10/26/2022]
Abstract
Increasing pollution of water and soils by xenobiotic compounds has led in the last few decades to an acute need for understanding the impact of toxic compounds on microbial populations, the catabolic degradation pathways of xenobiotics and the set-up and improvement of bioremediation processes. Recent advances in molecular techniques, including high-throughput approaches such as microarrays and metagenomics, have opened up new perspectives and pointed towards new opportunities in pollution abatement and environmental management. Compared with traditional molecular techniques dependent on the isolation of pure cultures in the laboratory, microarrays and metagenomics allow specific environmental questions to be answered by exploring and using the phenomenal resources of uncultivable and uncharacterized micro-organisms. This paper reviews the current potential of microarrays and metagenomics to investigate the genetic diversity of environmentally relevant micro-organisms and identify new functional genes involved in the catabolism of xenobiotics.
Collapse
Affiliation(s)
- L Eyers
- Unit of Bioengineering, Catholic University of Louvain, Place Croix du Sud 2/19, 1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Hölscher T, Görisch H, Adrian L. Reductive dehalogenation of chlorobenzene congeners in cell extracts of Dehalococcoides sp. strain CBDB1. Appl Environ Microbiol 2003; 69:2999-3001. [PMID: 12732577 PMCID: PMC154522 DOI: 10.1128/aem.69.5.2999-3001.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymatic reductive dehalogenation of tri-, tetra-, penta-, and hexachlorobenzenes was demonstrated in cell extracts with low protein concentration (0.5 to 1 micro g of protein/ml) derived from the chlorobenzene-respiring anaerobe Dehalococcoides sp. strain CBDB1. 1,2,3-trichlorobenzene dehalogenase activity was associated with the membrane fraction. Light-reversible inhibition by alkyl iodides indicated the presence of a corrinoid cofactor.
Collapse
Affiliation(s)
- Tina Hölscher
- Fachgebiet Technische Biochemie, Institut für Biotechnologie, Technische Universität Berlin, Seestrasse 13, D-13353 Berlin, Germany.
| | | | | |
Collapse
|
22
|
Abstract
The rate of microbial respiration can be described by a rate law that gives the respiration rate as the product of a rate constant, biomass concentration, and three terms: one describing the kinetics of the electron-donating reaction, one for the kinetics of the electron-accepting reaction, and a thermodynamic term accounting for the energy available in the microbe's environment. The rate law, derived on the basis of chemiosmotic theory and nonlinear thermodynamics, is unique in that it accounts for both forward and reverse fluxes through the electron transport chain. Our analysis demonstrates how a microbe's respiration rate depends on the thermodynamic driving force, i.e., the net difference between the energy available from the environment and energy conserved as ATP. The rate laws commonly applied in microbiology, such as the Monod equation, are specific simplifications of the general law presented. The new rate law is significant because it affords the possibility of extrapolating in a rigorous manner from laboratory experiment to a broad range of natural conditions, including microbial growth where only limited energy is available. The rate law also provides a new explanation of threshold phenomena, which may reflect a thermodynamic equilibrium where the energy released by electron transfer balances that conserved by ADP phosphorylation.
Collapse
Affiliation(s)
- Qusheng Jin
- Department of Geology, University of Illinois, Urbana 61801-2919, USA
| | | |
Collapse
|
23
|
Abstract
A vast array of structurally diverse aromatic compounds is continually released into the environment due to the decomposition of green plants and as a consequence of human industrial activities. Increasing numbers of bacteria that utilize aromatic compounds in the absence of oxygen have been brought into pure culture in recent years. These include most major metabolic types of anaerobic heterotrophs and acetogenic bacteria. Diverse microbes utilize aromatic compounds for diverse purposes. Chlorinated aromatic compounds can serve as electron acceptors in dehalorespiration. Humic substances serve as electron shuttles to enable the use of inorganic electron acceptors, such as insoluble iron oxides, that are not always easily reduced by microbes. Substituents that are attached to aromatic rings may serve as carbon or energy sources for microbes. Examples include acyl side chains and methyl groups. Finally, aromatic compounds can be completely degraded to serve as carbon and energy sources. Routes by which various types of aromatic compounds, including toluene, ethylbenzene, phenol, benzoate, and dihydroxylated compounds, are degraded have been elucidated in recent years. Biochemical strategies employed by microbes to destabilize the aromatic ring in preparation for degradation have become apparent from this work.
Collapse
Affiliation(s)
- Jane Gibson
- Department of Microbiology, 3-432 Bowen Science Building, The University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
24
|
Cervantes FJ, de Bok FAM, Duong-Dac T, Stams AJM, Lettinga G, Field JA. Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environ Microbiol 2002; 4:51-7. [PMID: 11966825 DOI: 10.1046/j.1462-2920.2002.00258.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Physiologically distinct anaerobic microorganisms were explored for their ability to oxidize different substrates with humic acids or the humic analogue, anthraquinone-2,6-disulphonate (AQDS), as a terminal electron acceptor. Most of the microorganisms evaluated including, for example, the halorespiring bacterium, Desulfitobacterium PCE1, the sulphate-reducing bacterium, Desulfovibrio G11 and the methanogenic archaeon, Methanospirillum hungatei JF1, could oxidize hydrogen linked to the reduction of humic acids or AQDS. Desulfitobacterium dehalogenans and Desulfitobacterium PCE1 could also convert lactate to acetate linked to the reduction of humic substances. Humus served as a terminal electron acceptor supporting growth of Desulfitobacterium species, which may explain the recovery of these microorganisms from organic rich environments in which the presence of chlorinated pollutants or sulphite is not expected. The results suggest that the ubiquity of humus reduction found in many different environments may be as a result of the increasing number of anaerobic microorganisms, which are known to be able to reduce humic substances.
Collapse
Affiliation(s)
- Francisco J Cervantes
- Sub-Department of Environmental Technology, Wageningen University, PO Box 8129, 6700 EV, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|