1
|
Nikolova C, Morris G, Ellis D, Bowler B, Jones M, Mulloy B, Gutierrez T. Characterization of the surface-active exopolysaccharide produced by Halomonas sp TGOS-10: Understanding its role in the formation of marine oil snow. PLoS One 2024; 19:e0299235. [PMID: 38805414 PMCID: PMC11132480 DOI: 10.1371/journal.pone.0299235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 02/06/2024] [Indexed: 05/30/2024] Open
Abstract
In this study, we characterize the exopolymer produced by Halomonas sp. strain TGOS-10 -one of the organisms found enriched in sea surface oil slicks during the Deepwater Horizon oil spill. The polymer was produced during the early stationary phase of growth in Zobell's 2216 marine medium amended with glucose. Chemical and proton NMR analysis showed it to be a relatively monodisperse, high-molecular-mass (6,440,000 g/mol) glycoprotein composed largely of protein (46.6% of total dry weight of polymer). The monosaccharide composition of the polymer is typical to that of other marine bacterial exopolymers which are generally rich in hexoses, with the notable exception that it contained mannose (commonly found in yeast) as a major monosaccharide. The polymer was found to act as an oil dispersant based on its ability to effectively emulsify pure and complex oils into stable oil emulsions-a function we suspect to be conferred by the high protein content and high ratio of total hydrophobic nonpolar to polar amino acids (52.7:11.2) of the polymer. The polymer's chemical composition, which is akin to that of other marine exopolymers also having a high protein-to-carbohydrate (P/C) content, and which have been shown to effect the rapid and non-ionic aggregation of marine gels, appears indicative of effecting marine oil snow (MOS) formation. We previously reported the strain capable of utilising aromatic hydrocarbons when supplied as single carbon sources. However, here we did not detect biodegradation of these chemicals within a complex (surrogate Macondo) oil, suggesting that the observed enrichment of this organism during the Deepwater Horizon spill may be explained by factors related to substrate availability and competition within the complex and dynamic microbial communities that were continuously evolving during that spill.
Collapse
Affiliation(s)
- Christina Nikolova
- Institute of Mechanical, Process, and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Gordon Morris
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - David Ellis
- Department of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Bernard Bowler
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Martin Jones
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Barbara Mulloy
- Institute of Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Tony Gutierrez
- Institute of Mechanical, Process, and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Suja LD, Summers S, Gutierrez T. Role of EPS, Dispersant and Nutrients on the Microbial Response and MOS Formation in the Subarctic Northeast Atlantic. Front Microbiol 2017; 8:676. [PMID: 28484435 PMCID: PMC5399796 DOI: 10.3389/fmicb.2017.00676] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/03/2017] [Indexed: 11/17/2022] Open
Abstract
In this study we report the formation of marine oil snow (MOS), its associated microbial community, the factors influencing its formation, and the microbial response to crude oil in surface waters of the Faroe-Shetland Channel (FSC). The FSC is a subarctic region that is hydrodynamically complex located in the northeast Atlantic where oil extraction is currently occurring and where exploration is likely to expand into its deeper waters (>500 m). A major oil spill in this region may mirror the aftermath that ensued following the Deepwater Horizon (DWH) blowout in the Gulf of Mexico, where the massive influx of Macondo crude oil triggered the formation of copious quantities of rapidly sinking MOS and successional blooms of opportunistic oil-degrading bacteria. In laboratory experiments, we simulated environmental conditions in sea surface waters of the FSC using water collected from this site during the winter of 2015. We demonstrated that the presence of dispersant triggers the formation of MOS, and that nutrient amendments magnify this. Illumina MiSeq sequencing revealed the enrichment on MOS of associated oil-degrading (Cycloclasticus, Thalassolituus, Marinobacter) and EPS-producing (Halomonas, Pseudoalteromonas, Alteromonas) bacteria, and included major representation by Psychrobacter and Cobetia with putative oil-degrading/EPS-producing qualities. The formation of marine snow, in the absence of crude oil and dispersant, in seawater amended with nutrients alone indicated that the de novo synthesis of bacterial EPS is a key factor in MOS formation, and the glycoprotein composition of the MOS aggregates confirmed that its amorphous biopolymeric matrix was of microbial (likely bacterial) origin. The presence of dispersants and crude oil with/without nutrients resulted in distinct microbial responses marked by intermittent, and in some cases short-lived, blooms of opportunistic heterotrophs, principally obligate hydrocarbonoclastic (Alcanivorax, Cycloclasticus, Thalassolituus, Marinobacter) and EPS-producing (Halomonas, Alteromonas, Pseudoalteromonas) bacteria. Interestingly, members of the Vibrionales (principally the genus Vibrio) were strongly enriched by crude oil (with/without dispersant or nutrients), highlighting a putative importance for these organisms in crude oil biodegradation in the FSC. Our findings mirror those observed at DWH and hence underscore their broad relevance.
Collapse
Affiliation(s)
- Laura Duran Suja
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt UniversityEdinburgh, UK
| | - Stephen Summers
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt UniversityEdinburgh, UK
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt UniversityEdinburgh, UK
| |
Collapse
|
3
|
Wang X, Teng Y, Luo Y, Dick RP. Biodegradation of 3,3',4,4'-tetrachlorobiphenyl by Sinorhizobium meliloti NM. BIORESOURCE TECHNOLOGY 2016; 201:261-268. [PMID: 26679048 DOI: 10.1016/j.biortech.2015.11.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
A rhizobial strain, Sinorhizobium meliloti NM, could use 3,3',4,4'-tetrachloro-biphenyl (PCB 77) as the sole carbon and energy source for growth in mineral salt medium. The degradation efficiency of PCB 77 by strain NM and the bacterial growth increased with a decrease in PCB 77 concentration (5-0.25mgL(-1)). The addition of secondary carbon sources, phenolic acids and one surfactant influenced PCB 77 degradation, rhizobial growth and biofilm formation. The highest degradation efficiency was observed in the presence of caffeic acid. Benzoate and chloride ions were detected as the PCB 77 metabolites. The up-regulation of benzoate metabolism-related gene expression was also observed using quantitative reverse transcription-polymerase chain reaction. This report is the first to demonstrate Sinorhizobium using coplanar tetrachlorobiphenyl as a sole carbon and energy source, indicating the potential wide benefit to the field of rhizobia-assisted bioremediation.
Collapse
Affiliation(s)
- Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Richard P Dick
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Pi Y, Bao M, Li Y, Li G, Lu J, Sun P. Characterization of crude oil degrading microbial cultures isolated in Qingdao China. RSC Adv 2015. [DOI: 10.1039/c5ra16628d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
9 hydrocarbon-degrading strains were isolated based on their ability to grow with crude oil as the sole carbon source from the water and sediment samples of Qingdao offshore.
Collapse
Affiliation(s)
- Yongrui Pi
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Yiming Li
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Guangmei Li
- Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology
- North China Sea Environmental Monitoring Center
- State Oceanic Administration
- Qingdao 266033
- China
| | - Jinren Lu
- College of Chemistry & Chemical Engineering
- Ocean University of China
- Qingdao 266100
- China
| | - Peiyan Sun
- Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology
- North China Sea Environmental Monitoring Center
- State Oceanic Administration
- Qingdao 266033
- China
| |
Collapse
|
5
|
Role of Bacterial Exopolysaccharides (EPS) in the Fate of the Oil Released during the Deepwater Horizon Oil Spill. PLoS One 2013; 8:e67717. [PMID: 23826336 PMCID: PMC3694863 DOI: 10.1371/journal.pone.0067717] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/21/2013] [Indexed: 11/19/2022] Open
Abstract
Halomonas species are recognized for producing exopolysaccharides (EPS) exhibiting amphiphilic properties that allow these macromolecules to interface with hydrophobic substrates, such as hydrocarbons. There remains a paucity of knowledge, however, on the potential of Halomonas EPS to influence the biodegradation of hydrocarbons. In this study, the well-characterized amphiphilic EPS produced by Halomonas species strain TG39 was shown to effectively increase the solubilization of aromatic hydrocarbons and enhance their biodegradation by an indigenous microbial community from oil-contaminated surface waters collected during the active phase of the Deepwater Horizon oil spill. Three Halomonas strains were isolated from the Deepwater Horizon site, all of which produced EPS with excellent emulsifying qualities and shared high (97-100%) 16S rRNA sequence identity with strain TG39 and other EPS-producing Halomonas strains. Analysis of pyrosequence data from surface water samples collected during the spill revealed several distinct Halomonas phylotypes, of which some shared a high sequence identity (≥97%) to strain TG39 and the Gulf spill isolates. Other bacterial groups comprising members with well-characterized EPS-producing qualities, such as Alteromonas, Colwellia and Pseudoalteromonas, were also found enriched in surface waters, suggesting that the total pool of EPS in the Gulf during the spill may have been supplemented by these organisms. Roller bottle incubations with one of the Halomonas isolates from the Deepwater Horizon spill site demonstrated its ability to effectively produce oil aggregates and emulsify the oil. The enrichment of EPS-producing bacteria during the spill coupled with their capacity to produce amphiphilic EPS is likely to have contributed to the ultimate removal of the oil and to the formation of oil aggregates, which were a dominant feature observed in contaminated surface waters.
Collapse
|
6
|
|
7
|
Lafortune I, Juteau P, Déziel E, Lépine F, Beaudet R, Villemur R. Bacterial diversity of a consortium degrading high-molecular-weight polycyclic aromatic hydrocarbons in a two-liquid phase biosystem. MICROBIAL ECOLOGY 2009; 57:455-468. [PMID: 18615233 DOI: 10.1007/s00248-008-9417-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 06/05/2008] [Indexed: 05/26/2023]
Abstract
High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) are pollutants that persist in the environment due to their low solubility in water and their sequestration by soil and sediments. Although several PAH-degrading bacterial species have been isolated, it is not expected that a single isolate would exhibit the ability to degrade completely all PAHs. A consortium composed of different microorganisms can better achieve this. Two-liquid phase (TLP) culture systems have been developed to increase the bioavailability of poorly soluble substrates for uptake and biodegradation by microorganisms. By combining a silicone oil-water TLP system with a microbial consortium capable of degrading HMW PAHs, we previously developed a highly efficient PAH-degrading system. In this report, we characterized the bacterial diversity of the consortium with a combination of culture-dependent and culture-independent methods. Polymerase chain reaction (PCR) of part of the 16S ribosomal RNA gene (rDNA) sequences combined with denaturing gradient gel electrophoresis was used to monitor the bacterial population changes during PAH degradation of the consortium when pyrene, chrysene, and benzo[a]pyrene were provided together or separately in the TLP cultures. No substantial changes in bacterial profiles occurred during biodegradation of pyrene and chrysene in these cultures. However, the addition of the low-molecular-weight PAHs phenanthrene or naphthalene in the system favored one bacterial species related to Sphingobium yanoikuyae. Eleven bacterial strains were isolated from the consortium but, interestingly, only one-IAFILS9 affiliated to Novosphingobium pentaromativorans-was capable of growing on pyrene and chrysene as sole source of carbon. A 16S rDNA library was derived from the consortium to identify noncultured bacteria. Among 86 clones screened, 20 were affiliated to different bacterial species-genera. Only three strains were represented in the screened clones. Eighty-five percent of clones and strains were affiliated to Alphaproteobacteria and Betaproteobacteria; among them, several were affiliated to bacterial species known for their PAH degradation activities such as those belonging to the Sphingomonadaceae. Finally, three genes involved in the degradation of aromatic molecules were detected in the consortium and two in IAFILS9. This study provides information on the bacterial composition of a HWM PAH-degrading consortium and its dynamics in a TLP biosystem during PAH degradation.
Collapse
|
8
|
Wolde-Meskel E, Terefework Z, Frostegård Å, Lindström K. Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia. Int J Syst Evol Microbiol 2005; 55:1439-1452. [PMID: 16014464 DOI: 10.1099/ijs.0.63534-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic diversity within 195 rhizobial strains isolated from root nodules of 18 agroforestry species (15 woody and three herbaceous legumes) growing in diverse ecoclimatic zones in southern Ethiopia was investigated by using PCR-RFLP of the ribosomal operon [16S rRNA gene, 23S rRNA gene and the internal transcribed spacer (ITS) region between the 16S rRNA and 23S rRNA genes] and 16S rRNA gene partial sequence (800 and 1350 bp) analyses. All of the isolates and the 28 reference strains could be differentiated by using these methods. The size of the ITS varied among test strains (500-1300 bp), and 58 strains contained double copies. UPGMA dendrograms generated from cluster analyses of the 16S and 23S rRNA gene PCR-RFLP data were in good agreement, and the combined distance matrices delineated 87 genotypes, indicating considerable genetic diversity among the isolates. Furthermore, partial sequence analysis of 67 representative strains revealed 46 16S rRNA gene sequence types, among which 12 were 100% similar to those of previously described species and 34 were novel sequences with 94-99% similarity to those of recognized species. The phylogenetic analyses suggested that strains indigenous to Ethiopia belonged to the genera Agrobacterium, Bradyrhizobium, Mesorhizobium, Methylobacterium, Rhizobium and Sinorhizobium. Many of the rhizobia isolated from previously uninvestigated indigenous woody legumes had novel 16S rRNA gene sequences and were phylogenetically diverse. This study clearly shows that the characterization of symbionts of unexplored legumes growing in previously unexplored biogeographical areas will reveal additional diversity.
Collapse
Affiliation(s)
- Endalkachew Wolde-Meskel
- Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, PO Box 5040, N-1432 Ås, Norway
| | - Zewdu Terefework
- Department of Applied Chemistry and Microbiology, Biocenter 1, FIN-0014 University of Helsinki, Finland
| | - Åsa Frostegård
- Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, PO Box 5040, N-1432 Ås, Norway
| | - Kristina Lindström
- Department of Applied Chemistry and Microbiology, Biocenter 1, FIN-0014 University of Helsinki, Finland
| |
Collapse
|
9
|
Molecular Bacterial Diversity in Water at the Deep-Well Monitoring Site at TOMSK-7. UNDERGROUND INJECTION SCIENCE AND TECHNOLOGY 2005. [DOI: 10.1016/s0167-5648(05)52041-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Jensen-Spaulding A, Cabral K, Shuler ML, Lion LW. Predicting the rate and extent of cadmium and copper desorption from soils in the presence of bacterial extracellular polymer. WATER RESEARCH 2004; 38:2230-2239. [PMID: 15142783 DOI: 10.1016/j.watres.2004.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The movement of cationic transition metals through the subsurface is strongly retarded by sorption to the porous media. However, dissolved organic ligands can compete with soil surfaces by providing binding sites for metals in solution. An extracellular polymer produced by a bacterium isolated from soil was used in this study to observe and model the influence of a naturally occurring ligand on the release of adsorbed metals from two test soils. Experimental results show that the presence of dissolved extracellular polymer enhanced the rate and extent of desorptive release of soil-bound cadmium and copper. A kinetic model that uses a gamma distribution of rate constants to account for the physical and chemical heterogeneity of the soil matrix was employed to describe the release of cadmium and copper in batch experiments. Model parameters describing soil, metal and extracellular polymer interactions were obtained through separate experiments. With these parameters the model successfully predicted the influence of dissolved polymer on the rate and extent of release of cadmium and copper from soil in independent batch experiments. These results suggest that the presence of natural metal-binding ligands such as bacterial extracellular polymers can act to increase the driving force for desorption by lowering the aqueous concentration of free unbound metals in solution.
Collapse
Affiliation(s)
- Anna Jensen-Spaulding
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
11
|
Santamaría M, Díaz-Marrero AR, Hernández J, Gutiérrez-Navarro AM, Corzo J. Effect of thorium on the growth and capsule morphology of Bradyrhizobium. Environ Microbiol 2004; 5:916-24. [PMID: 14510845 DOI: 10.1046/j.1462-2920.2003.00487.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The thorium effect on Bradyrhizobium growth was assayed in liquid media. Th4+ inhibited the growth of Bradyrhizobium (Chamaecytisus) BGA-1, but this effect decreased in the presence of suspensions of live or dead bacterial cells. Th4+ induced the formation of a gel-like precipitate when added to a dense suspension of B. (Chamaecytisus) BGA-1 cells. Viable Bradyrhizobium cells remained in suspension after precipitate formation. Thorium was recovered in the precipitate, in which polysaccharide, lipopolysaccharide and proteins were also found. After Th4+ addition, the morphology of B. (Chamaecytisus) BGA-1 or Bradyrhizobium japonicum USDA 110 sedimented cells studied by scanning electron microscopy changed from an entangled network of capsulated bacteria to uncapsulated individual cells and an amorphous precipitate. Energy-dispersive X-ray spectroscopy showed that thorium was mainly in the amorphous fraction. Precipitate was also formed between B. (Chamaecytisus) BGA-1 and Al3+, which was also toxic to this bacterium. Precipitate induced by Th4+ or Al3+ was found in all Bradyrhizobium and Sinorhizobium strains tested, but not in Rhizobium, Salmonella typhimurium, Aerobacter aerogenes or Escherichia coli. These results suggest a specific defence mechanism based on metal precipitation by extracellular polymers.
Collapse
Affiliation(s)
- Mónica Santamaría
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, Tenerife, Spain
| | | | | | | | | |
Collapse
|
12
|
Jensen-Spaulding A, Shuler ML, Lion LW. Mobilization of adsorbed copper and lead from naturally aged soil by bacterial extracellular polymers. WATER RESEARCH 2004; 38:1121-1128. [PMID: 14975644 DOI: 10.1016/j.watres.2003.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2002] [Revised: 10/06/2003] [Accepted: 11/21/2003] [Indexed: 05/24/2023]
Abstract
Sorption of pollutants is a dominant phase transfer process affecting the fate and transport of metals through the subsurface. The movement of contaminants is retarded by sorption to the stationary subsurface porous media and can seriously hinder remediation efforts. Research has shown that the binding of adsorbed metals becomes more pronounced the longer the contaminant is in the subsurface and the release rates of aged metal contaminants have not received the research attention given to freshly added metals in laboratory studies. Metal release rates are also influenced by the presence of dissolved ligands that compete with mineral soil surfaces by providing binding sites. Dissolved organic matter such as bacterial extracellular polymers are common in natural soil solutions and the metal binding properties of bacterial polymers are well established. Therefore, binding of metals to dissolved biopolymers may result in mobilization of an adsorbed metal. This is important for cases where the metals are assumed to be relatively immobile such as in the case of land applied biosolids. In addition, naturally occurring adherent bacteria commonly produce extracellular polymers and thus may modify the bioavailability of meal contaminants at the point of their attachment. In this study samples from three sites, one a land applied sludge test site, were used to investigate the ability of bacterial extracellular polymers to release metals from soils with long-term exposures. The presence of ?200mg/L bacterial extracellular polymer was found to increase the short-term (less than 350h) release of Cu and Pb by a factor of 2-4-fold.
Collapse
Affiliation(s)
- Anna Jensen-Spaulding
- School of Civil and Environmental Engineering, Cornell University, 371 Hollister Hall, Ithaca, NY 14853, USA
| | | | | |
Collapse
|