1
|
Chen Q, Cheng S, Zhang X, Zhang S, Zhou X, Jia Z, Hao J. One-pot enantioselective synthesis of chiral phenyllactic acids by combining stereocomplementary d- and l-lactate dehydrogenases with multi-enzyme expression fine-tuning. Int J Biol Macromol 2024; 279:135133. [PMID: 39208882 DOI: 10.1016/j.ijbiomac.2024.135133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Chiral phenyllactic acid (PLA) is a new type of antiseptic agent and a valuable precursor for active ingredients in pharmaceuticals and agrochemicals. In this study, we designed a multi-enzyme cascade that combined stereocomplementary d- and l-lactate dehydrogenases with threonine aldolase, phenylserine dehydratase, and formate dehydrogenase for the one-pot conversion of achiral glycine and benzaldehyde to synthesize d-PLA and l-PLA. To overcome the imbalance of multi-enzymes in a single cell, two enzyme modules, overexpressing four enzymes, were assembled in Escherichia coli cells to construct whole-cell catalysis systems (WCCSs). Furthermore, by optimizing reaction conditions and components, recombinant E. coli (WCCS 26) was able to produce 100 mM d-PLA with >99 % ee using a fed-batch strategy, while E. coli (WCCS 60) produced 47.2 mM l-PLA with >99 % ee. This study presents a sustainable and efficient method for synthesizing chiral PLAs from food-grade achiral starting materials.
Collapse
Affiliation(s)
- Qijia Chen
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; Fermentation Technology Innovation Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Shuangshuang Cheng
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiaohe Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Sisi Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiaolei Zhou
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhenhua Jia
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051, China.
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; Fermentation Technology Innovation Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
2
|
Wu H, Guang C, Zhang W, Mu W. Recent development of phenyllactic acid: physicochemical properties, biotechnological production strategies and applications. Crit Rev Biotechnol 2023; 43:293-308. [PMID: 34965820 DOI: 10.1080/07388551.2021.2010645] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phenyllactic acid (PLA) is capable of inhibiting the growth of many microorganisms, showing a broad-spectrum antimicrobial property, which allows it to hold vast applications in the: food, feed, pharmaceutical, and cosmetic industries, especially in the field of food safety. Recently, the production of PLA has garnered considerable attention due to the increasing awareness of food safety from the public. Accordingly, this review mainly updates the recent development for the production of PLA through microbial fermentation and whole-cell catalysis (expression single-, double-, and triple-enzyme) strategies. Firstly, the: physicochemical properties, existing sources, and measurement methods of PLA are systematically covered. Then, the inhibition spectrum of PLA is summarized, and synchronously, the antimicrobial and anti-biofilm mechanisms of PLA on commonly pathogenic microorganisms in foods are described in detail, thereby clarifying the reason for extending the shelf life of foods. Additionally, the factors affecting the production of PLA are summarized from the biosynthesis and catabolism pathway of PLA in microorganisms, as well as external environmental parameters insights. Finally, the downstream treatment process and applications of PLA are discussed and outlined. In the future, clinical data should be supplemented with the metabolic kinetics of PLA in humans and to evaluate animal toxicology, to enable regulatory use of PLA as a food additive. A food-grade host, such as Bacillus subtilis and Lactococcus lactis, should also be developed as a cell vector expressing enzymes for PLA production from a food safety perspective.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Wang Q, Geng S, Wang L, Wen Z, Sun X, Huang H. Bacterial mandelic acid degradation pathway and its application in biotechnology. J Appl Microbiol 2022; 133:273-286. [PMID: 35294082 DOI: 10.1111/jam.15529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/22/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
Mandelic acid and its derivatives are an important class of chemical synthetic blocks, which is widely used in drug synthesis and stereochemistry research. In nature, mandelic acid degradation pathway has been widely identified and analyzed as a representative pathway of aromatic compounds degradation. The most studied mandelic acid degradation pathway from Pseudomonas putida consists of mandelate racemase, S-mandelate dehydrogenase, benzoylformate decarboxylase, benzaldehyde dehydrogenase and downstream benzoic acid degradation pathways. Because of the ability to catalyze various reactions of aromatic substrates, pathway enzymes have been widely used in biocatalysis, kinetic resolution, chiral compounds synthesis or construction of new metabolic pathways. In this paper, the physiological significance and the existing range of the mandelic acid degradation pathway were introduced first. Then each of the enzymes in the pathway is reviewed one by one, including the researches on enzymatic properties and the applications in biotechnology as well as efforts that have been made to modify the substrate specificity or improving catalytic activity by enzyme engineering to adapt different applications. The composition of the important metabolic pathway of bacterial mandelic acid degradation pathway as well as the researches and applications of pathway enzymes is summarized in this review for the first time.
Collapse
Affiliation(s)
- Qingzhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Shanshan Geng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Lingru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Zhang D, Zhu X, Hu D, Wen Z, Zhang C, Wu M. Improvement in the catalytic performance of a phenylpyruvate reductase from Lactobacillus plantarum by site-directed and saturation mutagenesis based on the computer-aided design. 3 Biotech 2021; 11:69. [PMID: 33489686 DOI: 10.1007/s13205-020-02633-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/28/2020] [Indexed: 01/02/2023] Open
Abstract
To enhance the specific activity and catalytic efficiency (k cat/K m) of an NADH-dependent LpPPR, its directed modification was performed based on the computer-aided design using molecular docking simulation and multiple sequence alignment. Firstly, five single-site variants of an LpPPR-encoding gene (lpppr) were amplified and expressed in E. coli BL21 (DE3). The asymmetric reduction of 20 mM phenylpyruvic acid (PPA) was carried out using 50 mg/mL E. coli/lpppr R53Q or /lpppr A79V whole wet cells at 37 °C for 20 min, giving d-phenyllactic acid (PLA) with 41.1 or 44.3% yield, being 1.17- or 1.26-fold that by E. coli/lpppr. Secondly, double-site variants were obtained by saturation mutagenesis of Ala79 in LpPPRR53Q. Among all tested E. coli transformants, E. coli/lpppr R53Q/A79V exhibited the highest d-PLA yield of 85.3%. The specific activity and k cat/K m of the purified LpPPRR53Q/A79V increased to 67.5 U/mg and 169.8 mM-1 s-1, which were 3.0- and 13.2-fold those of LpPPR, respectively. Finally, the catalytic mechanism analysis of LpPPRR53Q/A79V by molecular docking simulation indicated that the replacement of Arg53 in LpPPR with Gln expanded its substrate-binding pocket, while that Ala79 with Val formed an additional π-sigma interaction with phenyl group of PPA. SUPPLEMENTARY MATERIAL The online version of this article (10.1007/s13205-020-02633-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xiuxiu Zhu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122 China
| | - Die Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122 China
| | - Zheng Wen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Chen Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122 China
| | - Minchen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
5
|
Chen L, Bai Y, Fan TP, Zheng X, Cai Y. Characterization of a d-Lactate Dehydrogenase from Lactobacillus fermentum JN248 with High Phenylpyruvate Reductive Activity. J Food Sci 2017; 82:2269-2275. [PMID: 28881036 DOI: 10.1111/1750-3841.13863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 11/28/2022]
Abstract
Phenyllactic acid (PLA) is a novel antimicrobial compound. A novel NADH-dependent d-lactate dehydrogenase (d-LDH), named as LF-d-LDH0653, with high phenylpyruvate (PPA) reducing activity was isolated from Lactobacillus fermentum JN248. Its optimum pH and temperature were 8.0 and 50 °C, respectively. The Michaelis-Menten constant (Km ), turnover number (kcat ), and catalytic efficiency (kcat /Km ) for NADH were 1.20 mmol/L, 67.39 s-1 , and 56.16 (mmol/L)-1 s-1 , respectively. The (Km ), (kcat ), and (kcat /Km ) for phenylpyruvate were 1.68 mmol/L, 122.66 s-1 , and 73.01 (mmol/L)-1 s-1 , respectively. This enzyme can catalyze phenylpyruvate and the product presented excellent optical purity (enantioselectivity >99%). The results suggest that LF-d-LDH0653 is a promising biocatalyst for the efficient synthesis of optically pure d-PLA. PRACTICAL APPLICATION A novel d-LDH with phenylpyruvate reducing activity has been isolated and identified. It could be used as a reference for improving the production of optically pure d-PLA. d-PLA has a potential for application as antimicrobial an agent in dairy industry and baking industry, pharmaceutical agent in medicine and cosmetics.
Collapse
Affiliation(s)
- Lixia Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan Univ., 1800 Lihu Rd., Wuxi, Jiangsu 214122, China
| | - Yajun Bai
- College of Life Sciences, Northwest Univ., Xi'an, Shanxi 710069, China
| | - Tai-Ping Fan
- College of Life Sciences, Northwest Univ., Xi'an, Shanxi 710069, China.,Dept. of Pharmacology, Univ. of Cambridge, Cambridge, CB2 1T, U.K
| | - Xiaohui Zheng
- College of Life Sciences, Northwest Univ., Xi'an, Shanxi 710069, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan Univ., 1800 Lihu Rd., Wuxi, Jiangsu 214122, China
| |
Collapse
|
6
|
The ternary complex structure of d-mandelate dehydrogenase with NADH and anilino(oxo)acetate. Biochem Biophys Res Commun 2017; 486:665-670. [PMID: 28327357 DOI: 10.1016/j.bbrc.2017.03.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/17/2017] [Indexed: 01/08/2023]
Abstract
Enterococcus faecium NAD-dependent d-mandelate dehydrogenase (d-ManDH) belongs to a ketopantoate reductase (KPR)-related d-2-hydroxyacid dehydrogenase family, and exhibits broad substrate specificity toward bulky hydrophobic 2-ketoacids, preferring C3-branched substrates. The ternary complex structure of d-ManDH with NADH and anilino(oxo)acetate (AOA) revealed that the substrate binding induces a shear motion of the N-terminal domain along the C-terminal domain, following the hinge motion induced by the NADH binding, and allows the bound NADH molecule to form favorable interactions with a 2-ketoacid substrate. d-ManDH possesses a sufficiently wide pocket that accommodates the C3 branched side chains of substrates like KPR, but unlike the pocket of KPR, the pocket of d-ManDH comprises an entirely hydrophobic surface and an expanded space, in which the AOA benzene is accommodated. The expanded space mostly comprises a mobile loop structure, which likely modulates the shape and size of the space depending on the substrate.
Collapse
|
7
|
Xu GC, Zhang LL, Ni Y. Enzymatic preparation of D-phenyllactic acid at high space-time yield with a novel phenylpyruvate reductase identified from Lactobacillus sp. CGMCC 9967. J Biotechnol 2015; 222:29-37. [PMID: 26712480 DOI: 10.1016/j.jbiotec.2015.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/29/2022]
Abstract
An NADH-dependent phenylpyruvate reductase (LaPPR) was identified through screening the shotgun library of Lactobacillus sp. CGMCC 9967. It belongs to D-3-phosphoglycerate dehydrogenase (PGDH) subfamily of 2-hydroxy acid dehydrogenase superfamily. LaPPR was stable at pH 6.5 and 30 °C, with a half-life of 152 h. LaPPR has a substrate preference towards aromatic to aliphatic keto acids, and various keto acids could be reduced into D-hydroxy acids with excellent enantioselectivity (>99%). By construction the coexpression system with glucose dehydrogenase, as much as 100 g L(-1) phenylpyruvic acid was asymmetrically reduced into D-phenyllactic acid with 91.3% isolation yield and 243 g L(-1) d(-1) productivity. The results suggest that LaPPR is a promising biocatalyst for the efficient synthesis of optically pure D-phenyllactic acid.
Collapse
Affiliation(s)
- Guo-Chao Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ling-Ling Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Zhu L, Xu X, Wang L, Dong H, Yu B. The D-Lactate Dehydrogenase from Sporolactobacillus inulinus Also Possessing Reversible Deamination Activity. PLoS One 2015; 10:e0139066. [PMID: 26398356 PMCID: PMC4580590 DOI: 10.1371/journal.pone.0139066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/07/2015] [Indexed: 11/18/2022] Open
Abstract
Hydroxyacid dehydrogenases are responsible for the conversion of 2-keto acids to 2-hydroxyacids and have a wide range of biotechnological applications. In this study, a D-lactate dehydrogenase (D-LDH) from a Sporolactobacillus inulinus strain was experimentally verified to have both the D-LDH and glutamate dehydrogenase (GDH) activities (reversible deamination). The catalytic mechanism was demonstrated by identification of key residues from the crystal structure analysis and site-directed mutagenesis. The Arg234 and Gly79 residues of this enzyme play a significant role in both D-LDH and GDH activities. His295 and Phe298 in DLDH744 were identified to be key residues for lactate dehydrogenase (LDH) activity only whereas Tyr101 is a unique residue that is critical for GDH activity. Characterization of the biochemical properties contributes to understanding of the catalytic mechanism of this novel D-lactate dehydrogenase enzyme.
Collapse
Affiliation(s)
- Lingfeng Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoling Xu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Hui Dong
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
- * E-mail: (BY) (HD)
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- * E-mail: (BY) (HD)
| |
Collapse
|
9
|
Diez V, Loznik M, Taylor S, Winn M, Rattray NJW, Podmore H, Micklefield J, Goodacre R, Medema MH, Müller U, Bovenberg R, Janssen DB, Takano E. Functional Exchangeability of Oxidase and Dehydrogenase Reactions in the Biosynthesis of Hydroxyphenylglycine, a Nonribosomal Peptide Building Block. ACS Synth Biol 2015; 4:796-807. [PMID: 25713978 DOI: 10.1021/sb500368w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A key problem in the engineering of pathways for the production of pharmaceutical compounds is the limited diversity of biosynthetic enzymes, which restricts the attainability of suitable traits such as less harmful byproducts, enhanced expression features, or different cofactor requirements. A promising synthetic biology approach is to redesign the biosynthetic pathway by replacing the native enzymes by heterologous proteins from unrelated pathways. In this study, we applied this method to effectively re-engineer the biosynthesis of hydroxyphenylglycine (HPG), a building block for the calcium-dependent antibiotic of Streptomyces coelicolor, a nonribosomal peptide. A key step in HPG biosynthesis is the conversion of 4-hydroxymandelate to 4-hydroxyphenylglyoxylate, catalyzed by hydroxymandelate oxidase (HmO), with concomitant generation of H2O2. The same reaction can also be catalyzed by O2-independent mandelate dehydrogenase (MdlB), which is a catabolic enzyme involved in bacterial mandelate utilization. In this work, we engineered alternative HPG biosynthetic pathways by replacing the native HmO in S. coelicolor by both heterologous oxidases and MdlB dehydrogenases from various sources and confirmed the restoration of calcium-dependent antibiotic biosynthesis by biological and UHPLC-MS analysis. The alternative enzymes were isolated and kinetically characterized, confirming their divergent substrate specificities and catalytic mechanisms. These results demonstrate that heterologous enzymes with different physiological contexts can be used in a Streptomyces host to provide an expanded library of enzymatic reactions for a synthetic biology approach. This study thus broadens the options for the engineering of antibiotic production by using enzymes with different catalytic and structural features.
Collapse
Affiliation(s)
| | | | | | | | | | - Helen Podmore
- ThermoFisher Scientific, 1 Boundary
Way, Hemel Hempstead, Herts, HP2 7GE, United Kingdom
| | | | | | | | - Ulrike Müller
- DSM Biotechnology Center, R&D, P.O. Box 1, 2600 AM Delft, The Netherlands
| | - Roel Bovenberg
- DSM Biotechnology Center, R&D, P.O. Box 1, 2600 AM Delft, The Netherlands
| | | | | |
Collapse
|
10
|
Fan CW, Xu GC, Ma BD, Bai YP, Zhang J, Xu JH. A novel d-mandelate dehydrogenase used in three-enzyme cascade reaction for highly efficient synthesis of non-natural chiral amino acids. J Biotechnol 2015; 195:67-71. [DOI: 10.1016/j.jbiotec.2014.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 11/30/2022]
|
11
|
Furukawa N, Miyanaga A, Togawa M, Nakajima M, Taguchi H. Diverse allosteric and catalytic functions of tetrameric d-lactate dehydrogenases from three Gram-negative bacteria. AMB Express 2014; 4:76. [PMID: 25401076 PMCID: PMC4230899 DOI: 10.1186/s13568-014-0076-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/29/2014] [Indexed: 11/10/2022] Open
Abstract
NAD-dependent d-lactate dehydrogenases (d-LDHs) reduce pyruvate into d-lactate with oxidation of NADH into NAD+. Although non-allosteric d-LDHs from Lactobacilli have been extensively studied, the catalytic properties of allosteric d-LDHs from Gram-negative bacteria except for Escherichia coli remain unknown. We characterized the catalytic properties of d-LDHs from three Gram-negative bacteria, Fusobacterium nucleatum (FNLDH), Pseudomonas aeruginosa (PALDH), and E. coli (ECLDH) to gain an insight into allosteric mechanism of d-LDHs. While PALDH and ECLDH exhibited narrow substrate specificities toward pyruvate like usual d-LDHs, FNLDH exhibited a broad substrate specificity toward hydrophobic 2-ketoacids such as 2-ketobutyrate and 2-ketovalerate, the former of which gave a 2-fold higher kcat/S0.5 value than pyruvate. Whereas the three enzymes consistently showed hyperbolic shaped pyruvate saturation curves below pH 6.5, FNLDH and ECLDH, and PALDH showed marked positive and negative cooperativity, respectively, in the pyruvate saturation curves above pH 7.5. Oxamate inhibited the catalytic reactions of FNLDH competitively with pyruvate, and the PALDH reaction in a mixed manner at pH 7.0, but markedly enhanced the reactions of the two enzymes at low concentration through canceling of the apparent homotropic cooperativity at pH 8.0, although it constantly inhibited the ECLDH reaction. Fructose 1,6-bisphosphate and certain divalent metal ions such as Mg2+ also markedly enhanced the reactions of FNLDH and PALDH, but none of them enhanced the reaction of ECLDH. Thus, our study demonstrates that bacterial d-LDHs have highly divergent allosteric and catalytic properties.
Collapse
|
12
|
Mandelate Racemase and Mandelate Dehydrogenase Coexpressed RecombinantEscherichia coliin the Synthesis of Benzoylformate. Biosci Biotechnol Biochem 2014; 77:1236-9. [DOI: 10.1271/bbb.121012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
A New Family ofD-2-Hydroxyacid Dehydrogenases That ComprisesD-Mandelate Dehydrogenases and 2-Ketopantoate Reductases. Biosci Biotechnol Biochem 2014; 72:1087-94. [DOI: 10.1271/bbb.70827] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Characterization ofD-Lactate Dehydrogenase ProducingD-3-Phenyllactic Acid fromPediococcus pentosaceus. Biosci Biotechnol Biochem 2014; 76:853-5. [DOI: 10.1271/bbb.110955] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Miyanaga A, Fujisawa S, Furukawa N, Arai K, Nakajima M, Taguchi H. The crystal structure of d-mandelate dehydrogenase reveals its distinct substrate and coenzyme recognition mechanisms from those of 2-ketopantoate reductase. Biochem Biophys Res Commun 2013; 439:109-14. [DOI: 10.1016/j.bbrc.2013.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/07/2013] [Indexed: 11/26/2022]
|
16
|
Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound. Appl Microbiol Biotechnol 2012; 95:1155-63. [PMID: 22782253 DOI: 10.1007/s00253-012-4269-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/22/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
3-Phenyllactic acid (PLA), which is an organic acid widely existing in honey and lactic acid bacteria fermented food, can be produced by many microorganisms, especially lactic acid bacteria. It was proved as an ideal antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi. In addition, it could be used as feed additives to replace antibiotics in livestock feeds. This article presented a review of recent studies on the existing resource, antimicrobial activity, and measurement of PLA. In addition, microorganism strains and dehydrogenases producing PLA were reviewed in detail, the metabolic pathway and regulation of PLA synthesis in LAB strains were discussed, and high-level bioproduction of PLA by microorganism fermentation was also summarized.
Collapse
|
17
|
The D-2-hydroxyacid dehydrogenase incorrectly annotated PanE is the sole reduction system for branched-chain 2-keto acids in Lactococcus lactis. J Bacteriol 2008; 191:873-81. [PMID: 19047348 DOI: 10.1128/jb.01114-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroxyacid dehydrogenases of lactic acid bacteria, which catalyze the stereospecific reduction of branched-chain 2-keto acids to 2-hydroxyacids, are of interest in a variety of fields, including cheese flavor formation via amino acid catabolism. In this study, we used both targeted and random mutagenesis to identify the genes responsible for the reduction of 2-keto acids derived from amino acids in Lactococcus lactis. The gene panE, whose inactivation suppressed hydroxyisocaproate dehydrogenase activity, was cloned and overexpressed in Escherichia coli, and the recombinant His-tagged fusion protein was purified and characterized. The gene annotated panE was the sole gene responsible for the reduction of the 2-keto acids derived from leucine, isoleucine, and valine, while ldh, encoding L-lactate dehydrogenase, was responsible for the reduction of the 2-keto acids derived from phenylalanine and methionine. The kinetic parameters of the His-tagged PanE showed the highest catalytic efficiencies with 2-ketoisocaproate, 2-ketomethylvalerate, 2-ketoisovalerate, and benzoylformate (V(max)/K(m) ratios of 6,640, 4,180, 3,300, and 2,050 U/mg/mM, respectively), with NADH as the exclusive coenzyme. For the reverse reaction, the enzyme accepted d-2-hydroxyacids but not l-2-hydroxyacids. Although PanE showed the highest degrees of identity to putative NADP-dependent 2-ketopantoate reductases (KPRs), it did not exhibit KPR activity. Sequence homology analysis revealed that, together with the d-mandelate dehydrogenase of Enterococcus faecium and probably other putative KPRs, PanE belongs to a new family of D-2-hydroxyacid dehydrogenases which is unrelated to the well-described D-2-hydroxyisocaproate dehydrogenase family. Its probable physiological role is to regenerate the NAD(+) necessary to catabolize branched-chain amino acids, leading to the production of ATP and aroma compounds.
Collapse
|
18
|
Abstract
Lactic acid bacteria (LAB) constitute a diverse group of Gram positive obligately fermentative microorganisms which include both beneficial and pathogenic strains. LAB generally have complex nutritional requirements and therefore they are usually associated with nutrient-rich environments such as animal bodies, plants and foodstuffs. Amino acids represent an important resource for LAB and their utilization serves a number of physiological roles such as intracellular pH control, generation of metabolic energy or redox power, and resistance to stress. As a consequence, the regulation of amino acid catabolism involves a wide set of both general and specific regulators and shows significant differences among LAB. Moreover, due to their fermentative metabolism, LAB amino acid catabolic pathways in some cases differ significantly from those described in best studied prokaryotic model organisms such as Escherichia coli or Bacillus subtilis. Thus, LAB amino acid catabolism constitutes an interesting case for the study of metabolic pathways. Furthermore, LAB are involved in the production of a great variety of fermented products so that the products of amino acid catabolism are also relevant for the safety and the quality of fermented products.
Collapse
Affiliation(s)
- María Fernández
- Instituto de Productos Lácteos de Asturias CSIC, Crta de Infiesto s/n, Villaviciosa, Asturias, Spain
| | | |
Collapse
|
19
|
Hirano JI, Miyamoto K, Ohta H. Purification and characterization of thermostable H2O2-forming NADH oxidase from 2-phenylethanol-assimilating Brevibacterium sp. KU1309. Appl Microbiol Biotechnol 2008; 80:71-8. [DOI: 10.1007/s00253-008-1535-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 05/06/2008] [Accepted: 05/08/2008] [Indexed: 11/29/2022]
|
20
|
Broadbent JR, Gummalla S, Hughes JE, Johnson ME, Rankin SA, Drake MA. Overexpression of Lactobacillus casei D-hydroxyisocaproic acid dehydrogenase in cheddar cheese. Appl Environ Microbiol 2004; 70:4814-20. [PMID: 15294819 PMCID: PMC492331 DOI: 10.1128/aem.70.8.4814-4820.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 05/05/2004] [Indexed: 11/20/2022] Open
Abstract
Metabolism of aromatic amino acids by lactic acid bacteria is an important source of off-flavor compounds in Cheddar cheese. Previous work has shown that alpha-keto acids produced from Trp, Tyr, and Phe by aminotransferase enzymes are chemically labile and may degrade spontaneously into a variety of off-flavor compounds. However, dairy lactobacilli can convert unstable alpha-keto acids to more-stable alpha-hydroxy acids via the action of alpha-keto acid dehydrogenases such as d-hydroxyisocaproic acid dehydrogenase. To further characterize the role of this enzyme in cheese flavor, the Lactobacillus casei d-hydroxyisocaproic acid dehydrogenase gene was cloned into the high-copy-number vector pTRKH2 and transformed into L. casei ATCC 334. Enzyme assays confirmed that alpha-keto acid dehydrogenase activity was significantly higher in pTRKH2:dhic transformants than in wild-type cells. Reduced-fat Cheddar cheeses were made with Lactococcus lactis starter only, starter plus L. casei ATCC 334, and starter plus L. casei ATCC 334 transformed with pTRKH2:dhic. After 3 months of aging, the cheese chemistry and flavor attributes were evaluated instrumentally by gas chromatography-mass spectrometry and by descriptive sensory analysis. The culture system used significantly affected the concentrations of various ketones, aldehydes, alcohols, and esters and one sulfur compound in cheese. Results further indicated that enhanced expression of d-hydroxyisocaproic acid dehydrogenase suppressed spontaneous degradation of alpha-keto acids, but sensory work indicated that this effect retarded cheese flavor development.
Collapse
Affiliation(s)
- Jeffery R Broadbent
- Western Dairy Center, Department of Nutrition and Food Sciences, Utah State University, Logan, UT 84322-8700, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Tokuda C, Ishikura Y, Shigematsu M, Mutoh H, Tsuzuki S, Nakahira Y, Tamura Y, Shinoda T, Arai K, Takahashi O, Taguchi H. Conversion of Lactobacillus pentosus D-lactate dehydrogenase to a D-hydroxyisocaproate dehydrogenase through a single amino acid replacement. J Bacteriol 2003; 185:5023-6. [PMID: 12897026 PMCID: PMC166478 DOI: 10.1128/jb.185.16.5023-5026.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single amino acid replacement of Tyr52 with Leu drastically increased the activity of Lactobacillus pentosus NAD-dependent D-lactate dehydrogenase toward larger aliphatic or aromatic 2-ketoacid substrates by 3 or 4 orders of magnitude and decreased the activity toward pyruvate by about 30-fold, converting the enzyme into a highly active D-2-hydroxyisocaproate dehydrogenase.
Collapse
Affiliation(s)
- Chizuka Tokuda
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|