1
|
Rossi F, Rizzotti L, Felis GE, Torriani S. Horizontal gene transfer among microorganisms in food: Current knowledge and future perspectives. Food Microbiol 2014; 42:232-43. [DOI: 10.1016/j.fm.2014.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/10/2014] [Indexed: 01/01/2023]
|
2
|
Ceuppens S, Li D, Uyttendaele M, Renault P, Ross P, Ranst MV, Cocolin L, Donaghy J. Molecular Methods in Food Safety Microbiology: Interpretation and Implications of Nucleic Acid Detection. Compr Rev Food Sci Food Saf 2014; 13:551-577. [DOI: 10.1111/1541-4337.12072] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractBecause of increasing demand for rapid results, molecular techniques are now applied for the detection of microorganisms in foodstuffs. However, interpretation problems can arise for the results generated by molecular methods in relation to the associated public health risk. Discrepancies between results obtained by molecular and conventional culture methods stem from the difference in target, namely nucleic acids instead of actively growing microorganisms. Nucleic acids constitute 5% to 15% of the dry weight of all living cells and are relatively stable, even after cell death, so they may be present in a food matrix after the foodborne microorganisms have been inactivated. Therefore, interpretation of the public health significance of positive results generated by nucleic acid detection methods warrants some additional consideration. This review discusses the stability of nucleic acids in general and highlights the persistence of microbial nucleic acids after diverse food‐processing techniques based on data from the scientific literature. Considerable amounts of DNA and RNA (intact or fragmented) persist after inactivation of bacteria and viruses by most of the commonly applied treatments in the food industry. An overview of the existing adaptations for molecular assays to cope with these problems is provided, including large fragment amplification, flotation, (enzymatic) pretreatment, and various binding assays. Finally, the negligible risks of ingesting free microbial nucleic acids are discussed and this review ends with the future perspectives of molecular methods such as next‐generation sequencing in diagnostic and source attribution food microbiology.
Collapse
Affiliation(s)
- Siele Ceuppens
- Faculty of Bioscience Engineering Laboratory of Food Microbiology and Food Preservation (LFMFP) Dept. of Food Safety and Food Quality Ghent Univ. Ghent Belgium
| | - Dan Li
- Faculty of Bioscience Engineering Laboratory of Food Microbiology and Food Preservation (LFMFP) Dept. of Food Safety and Food Quality Ghent Univ. Ghent Belgium
| | - Mieke Uyttendaele
- Faculty of Bioscience Engineering Laboratory of Food Microbiology and Food Preservation (LFMFP) Dept. of Food Safety and Food Quality Ghent Univ. Ghent Belgium
| | - Pierre Renault
- Inst. Scientifique de Recherche Agronomique (INRA) France
| | - Paul Ross
- Moorepark Biotechnology Centre Teagasc Moorepark Fermoy Co. Cork Ireland
| | | | - Luca Cocolin
- Dept. of Agricultural Forest and Food Sciences Univ. of Torino Grugliasco Torino Italy
| | - John Donaghy
- Food Safety Microbiology Group Nestle Research Center Lausanne Switzerland
| |
Collapse
|
3
|
Rizzi A, Raddadi N, Sorlini C, Nordgrd L, Nielsen KM, Daffonchio D. The Stability and Degradation of Dietary DNA in the Gastrointestinal Tract of Mammals: Implications for Horizontal Gene Transfer and the Biosafety of GMOs. Crit Rev Food Sci Nutr 2012; 52:142-61. [DOI: 10.1080/10408398.2010.499480] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Kleter GA, Peijnenburg AACM, Aarts HJM. Health considerations regarding horizontal transfer of microbial transgenes present in genetically modified crops. J Biomed Biotechnol 2010; 2005:326-52. [PMID: 16489267 PMCID: PMC1364539 DOI: 10.1155/jbb.2005.326] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The potential effects of horizontal gene transfer on human health
are an important item in the safety assessment of genetically
modified organisms. Horizontal gene transfer from genetically
modified crops to gut microflora most likely occurs with
transgenes of microbial origin. The characteristics of microbial
transgenes other than antibiotic-resistance genes in
market-approved genetically modified crops are reviewed. These
characteristics include the microbial source, natural function,
function in genetically modified crops, natural prevalence,
geographical distribution, similarity to other microbial genes,
known horizontal transfer activity, selective conditions and
environments for horizontally transferred genes, and potential
contribution to pathogenicity and virulence in humans and animals.
The assessment of this set of data for each of the microbial genes
reviewed does not give rise to health concerns. We recommend
including the above-mentioned items into the premarket safety
assessment of genetically modified crops carrying transgenes other
than those reviewed in the present study.
Collapse
Affiliation(s)
- Gijs A Kleter
- RIKILT, Institute of Food Safety, Wageningen University and Research Center, Wageningen, The Netherlands.
| | | | | |
Collapse
|
5
|
Wilcks A, Jacobsen BB. Lack of detectable DNA uptake by transformation of selected recipients in mono-associated rats. BMC Res Notes 2010; 3:49. [PMID: 20193062 PMCID: PMC2845597 DOI: 10.1186/1756-0500-3-49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 03/01/2010] [Indexed: 11/10/2022] Open
Abstract
Background An important concern revealed in the public discussion of the use of genetically modified (GM) plants for human consumption, is the potential transfer of DNA from these plants to bacteria present in the gastrointestinal tract. Especially, there is a concern that antibiotic resistance genes used for the construction of GM plants end up in pathogenic bacteria, eventually leading to untreatable disease. Findings Three different bacterial species (Escherichia coli, Bacillus subtilis, Streptococcus gordonii), all natural inhabitants of the food and intestinal tract environment were used as recipients for uptake of DNA. As source of DNA both plasmid and genomic DNA from GM plants were used in in vitro and in vivo transformation studies. Mono-associated rats, creating a worst-case scenario, did not give rise to any detectable transfer of DNA. Conclusion Although we were unable to detect any transformation events in our experiment, it cannot be ruled out that this could happen in the GI tract. However, since several steps are required before expression of plant-derived DNA in intestinal bacteria, we believe this is unlikely, and antibiotic resistance development in this environment is more in danger by the massive use of antibiotics than the consumption of GM food harbouring antibiotic resistance genes.
Collapse
Affiliation(s)
- Andrea Wilcks
- Division of Microbiology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark.
| | | |
Collapse
|
6
|
Shedova E, Albrecht C, Zverlov VV, Schwarz WH. Stimulation of bacterial DNA transformation by cattle saliva: implications for using genetically modified plants in animal feed. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9910-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Detection of feed-derived maize DNA in goat milk and evaluation of the potential of horizontal transfer to bacteria. Eur Food Res Technol 2008. [DOI: 10.1007/s00217-008-0896-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Nordgård L, Nguyen T, Midtvedt T, Benno Y, Traavik T, Nielsen KM. Lack of detectable DNA uptake by bacterial gut isolates grown in vitro and by Acinetobacter baylyi colonizing rodents in vivo. ACTA ACUST UNITED AC 2007; 6:149-60. [PMID: 17961488 DOI: 10.1051/ebr:2007029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biological risk assessment of food containing recombinant DNA has exposed knowledge gaps related to the general fate of DNA in the gastrointestinal tract (GIT). Here, a series of experiments is presented that were designed to determine if genetic transformation of the naturally competent bacterium Acinetobacter baylyi BD413 occurs in the GIT of mice and rats, with feed-introduced bacterial DNA containing a kanamycin resistance gene (nptII). Strain BD413 was found in various gut locations in germ-free mice at 10(3)-10(5) CFU per gram GIT content 24-48 h after administration. However, subsequent DNA exposure of the colonized mice did not result in detectable bacterial transformants, with a detection limit of 1 transformant per 10(3)-10(5) bacteria. Further attempts to increase the likelihood of detection by introducing weak positive selection with kanamycin of putative transformants arising in vivo during a 4-week-long feeding experiment (where the mice received DNA and the recipient cells regularly) did not yield transformants either. Moreover, the in vitro exposure of actively growing A. baylyi cells to gut contents from the stomach, small intestine, cecum or colon contents of rats (with a normal microbiota) fed either purified DNA (50 microg) or bacterial cell lysates did not produce bacterial transformants. The presence of gut content of germfree mice was also highly inhibitory to transformation of A. baylyi, indicating that microbially-produced nucleases are not responsible for the sharp 500- to 1,000,000-fold reduction of transformation frequencies seen. Finally, a range of isolates from the genera Enterococcus, Streptococcus and Bifidobacterium spp. was examined for competence expression in vitro, without yielding any transformants. In conclusion, model choice and methodological constraints severely limit the sample size and, hence, transfer frequencies that can be measured experimentally in the GIT. Our observations suggest the contents of the GIT shield or adsorb DNA, preventing detectable exposure of feed-derived DNA fragments to competent bacteria.
Collapse
Affiliation(s)
- Lise Nordgård
- Norwegian Institute of Gene Ecology, Science Park, 9294, Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
9
|
Brinkmann N, Tebbe CC. Leaf-feeding larvae of Manduca sexta (Insecta, Lepidoptera) drastically reduce copy numbers of aadA antibiotic resistance genes from transplastomic tobacco but maintain intact aadA genes in their feces. ENVIRONMENTAL BIOSAFETY RESEARCH 2007; 6:121-33. [PMID: 17961486 DOI: 10.1051/ebr:2007028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The objective of this study was to evaluate the effect of insect larval feeding on the fate and genetic transformability of recombinant DNA from a transplastomic plant. Leaves of tobacco plants with an aadA antibiotic resistance gene inserted into their chloroplast genome were incubated with larvae of the tobacco hornworm Manduca sexta (Lepidoptera). The specifically designed Acinetobacter strain BD413 pBAB(2) was chosen to analyze the functional integrity of the aadA transgene for natural transformation after gut passages. No gene transfer was detected after simultaneous feeding of leaves and the Acinetobacter BD413 pBAB(2) as a recipient, even though 15% of ingested Acinetobacter BD413 cells could be recovered as viable cells from feces 6 h after feeding. Results with real-time PCR indicated that an average of 98.2 to 99.99% of the aadA gene was degraded during the gut passage, but the range in the number of aadA genes in feces of larvae fed with transplastomic leaves was enormous, varying from 5 x 10(6) to 1 x 10(9) copies.g(-1). DNA extracted from feces of larvae fed with transplastomic leaves was still able to transform externally added competent Acinetobacter BD413 pBAB(2) in vitro. Transformation frequencies with concentrated feces DNA were in the same range as those found with leaves (10(-4)-10(-6) transformants per recipient) or purified plasmid DNA (10(-3)-10(-7)). The presence of functionally intact DNA was also qualitatively observed after incubation of 30 mg freshly shed feces directly with competent Acinetobacter BD413 pBAB(2), demonstrating that aadA genes in feces have a potential to undergo further horizontal gene transfer under environmental conditions.
Collapse
Affiliation(s)
- Nicole Brinkmann
- Institute of Agroecology, Federal Agricultural Research Centre (FAL), Bundesallee 50, 38116, Braunschweig, Germany
| | | |
Collapse
|
10
|
Lutz B, Wiedemann S, Albrecht C. Degradation of transgenic Cry1Ab DNA and protein in Bt-176 maize during the ensiling process. J Anim Physiol Anim Nutr (Berl) 2006; 90:116-23. [PMID: 16519756 DOI: 10.1111/j.1439-0396.2005.00571.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Maize silage is commonly used as feed for farm animals. The aim of this study was to monitor the time-dependent degradation of non-recombinant chloroplast DNA (exemplified by the rubisco gene) in comparison with the recombinant cry1Ab gene in the course of the ensiling process. In parallel, the Cry1Ab protein content and fragment sizes were determined. Fragments of the rubisco (173, 896, 1197, 1753 and 2521 bp) and of the cry1Ab gene (211, 420, 727 and 1,423 bp) were selected to investigate the DNA degradation process. The detection of the Cry1Ab protein was performed using an enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Rubisco gene fragments of 173 bp were still detectable after 61 days, while fragments of 1,197 and 2,521 bp were detectable up to 30 days and on the first day only respectively. Polymerase chain reaction (PCR) analyses revealed that fragments of the cry1Ab gene with sizes of 211 and 420 bp were detectable up to 61 days, fragments with sizes of 727 and 1,423 bp, 30 and 6 days respectively. The ELISA showed a decrease of the Cry1Ab protein in maize silage during the ensiling process. No marked degradation was observed during the first 43 h. Thereafter, a sharp decrease was measured. After 61 days, 23.6 +/- 0.9% of the initial Cry1Ab protein was still detectable. Immunoblotting confirmed the results of the ELISA showing a positive signal of approximately 60 kDa size for 8 days of ensiling; no further immunoactive fragments were detectable by immunoblotting. In conclusion, the ensiling process markedly decreases the presence of long functional cry1Ab gene fragments and full size Cry1Ab protein.
Collapse
Affiliation(s)
- B Lutz
- Department of Physiology Weihenstephan, Technical University Munich, Weihenstephaner Berg 3, Freising, Germany
| | | | | |
Collapse
|
11
|
Bauer T, Hammes WP, Haase NU, Hertel C. Effect of food components and processing parameters on DNA degradation in food. ACTA ACUST UNITED AC 2005; 3:215-23. [PMID: 16028798 DOI: 10.1051/ebr:2005005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The effect of food components on degradation of DNA by DNase I (EC 3.1.21.1) was monitored by electrotransformation of Escherichia coil, making it possible to determine the number of plasmid molecules capable of giving rise to transformed cells. The transformation frequency increased linearly with the plasmid number within the range of 2 x 10(6) to 2 x 10(10). DNA degradation was reduced by one order of magnitude in the presence of 0.05% (w.v(-1)) maltol or 1 mM putrescine. Complete inhibition of degradation was observed with > or = 0.2% (w.v(-1)) maltol, > or = 0.01% (w.v(-1)) octyl gallate or > or = 0.5 mM of spermine. To monitor degradation of plant DNA during food processing, a real-time PCR system was established. The ratio of copy numbers of a potato gbss DNA fragment of 325 bp and a nested 96 bp fragment was determined. The latter served as internal reference for normalization. The system made it possible to exclude process-dependent changes of DNA concentration in the food matrix. Processing of genetically modified potatoes to dried potato sticks, crisps or flakes was studied and drying steps were shown to exert the strongest effect on DNA degradation, resulting in a drop of the ratio from 0.73 to 0.16.
Collapse
Affiliation(s)
- Torsten Bauer
- Institute of Food Technology, University of Hohenheim, 70593 Stuttgart, Germany
| | | | | | | |
Collapse
|
12
|
Licht TR, Wilcks A. Conjugative Gene Transfer in the Gastrointestinal Environment. ADVANCES IN APPLIED MICROBIOLOGY 2005; 58C:77-95. [PMID: 16543030 DOI: 10.1016/s0065-2164(05)58002-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Tine Rask Licht
- Department of Microbiological Food Safety Danish Institute for Food and Veterinary Research DK‐2860 Søborg, Denmark
| | | |
Collapse
|
13
|
Providenti MA, Mautner SI, Chaudhry O, Bombardier M, Scroggins R, Gregorich E, Smith ML. Determining the environmental fate of a filamentous fungus,Trichoderma reesei, in laboratory-contained intact soil-core microcosms using competitive PCR and viability plating. Can J Microbiol 2004; 50:623-31. [PMID: 15467788 DOI: 10.1139/w04-053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trichoderma spp. are used extensively in industry and are routinely disposed of in landfill sites as spent biomass from fermentation plants. However, little is known regarding the environmental fate of this biomass. We tracked the survival of T. reesei strain QM6A#4 (a derivative of strain QM6A marked with a recombinant construct) over a 6-month period in laboratory-contained, intact soil-core microcosms incubated in a growth chamber. Survival was tested in 3 different soils and the effect of a plant rhizosphere (bush lima beans, Phaseolus limensis) was investigated. Levels and viability of the fungus were determined, respectively, by quantitative competitive polymerase chain reaction analysis of total soil DNA extracts and dilution-plating of soil on a semiselective growth medium. Whereas chemically killed QM6A#4 became undetectable within 3 d, QM6A#4 added as a live inoculum decreased ~4- to ~160-fold over the first 1–3 months and then reached a steady state. After 4 months, soil cores were subjected to a 1.5-month simulated winter period, which did not significantly affect QM6A#4 levels. Throughout the experiment, QM6A#4 remained viable. These results indicate that, following release into the environment, live T. reesei will persist in soil for at least 2 seasons.Key words: competitive PCR, genetically engineered microorganisms (GEMs), genetically modified organism (GMO), survival of microorganisms, microcosm, Trichoderma.
Collapse
Affiliation(s)
- Miguel A Providenti
- Institute of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | | | | | | | | | | | | |
Collapse
|