1
|
RedCorn R, Lamb JR, Gottshall E, Stahl DA, Winkler MK. Light-weight oxygen supply for portable biological nitrogen removal from urine and sweat. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
2
|
Abstract
High-resolution imaging with secondary ion mass spectrometry (nanoSIMS) has become a standard method in systems biology and environmental biogeochemistry and is broadly used to decipher ecophysiological traits of environmental microorganisms, metabolic processes in plant and animal tissues, and cross-kingdom symbioses. When combined with stable isotope-labeling-an approach we refer to as nanoSIP-nanoSIMS imaging offers a distinctive means to quantify net assimilation rates and stoichiometry of individual cell-sized particles in both low- and high-complexity environments. While the majority of nanoSIP studies in environmental and microbial biology have focused on nitrogen and carbon metabolism (using 15N and 13C tracers), multiple advances have pushed the capabilities of this approach in the past decade. The development of a high-brightness oxygen ion source has enabled high-resolution metal analyses that are easier to perform, allowing quantification of metal distribution in cells and environmental particles. New preparation methods, tools for automated data extraction from large data sets, and analytical approaches that push the limits of sensitivity and spatial resolution have allowed for more robust characterization of populations ranging from marine archaea to fungi and viruses. NanoSIMS studies continue to be enhanced by correlation with orthogonal imaging and 'omics approaches; when linked to molecular visualization methods, such as in situ hybridization and antibody labeling, these techniques enable in situ function to be linked to microbial identity and gene expression. Here we present an updated description of the primary materials, methods, and calculations used for nanoSIP, with an emphasis on recent advances in nanoSIMS applications, key methodological steps, and potential pitfalls.
Collapse
Affiliation(s)
- Jennifer Pett-Ridge
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| | - Peter K Weber
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| |
Collapse
|
3
|
Methods for Studying Bacterial–Fungal Interactions in the Microenvironments of Soil. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to their small size, microorganisms directly experience only a tiny portion of the environmental heterogeneity manifested in the soil. The microscale variations in soil properties constrain the distribution of fungi and bacteria, and the extent to which they can interact with each other, thereby directly influencing their behavior and ecological roles. Thus, to obtain a realistic understanding of bacterial–fungal interactions, the spatiotemporal complexity of their microenvironments must be accounted for. The objective of this review is to further raise awareness of this important aspect and to discuss an overview of possible methodologies, some of easier applicability than others, that can be implemented in the experimental design in this field of research. The experimental design can be rationalized in three different scales, namely reconstructing the physicochemical complexity of the soil matrix, identifying and locating fungi and bacteria to depict their physical interactions, and, lastly, analyzing their molecular environment to describe their activity. In the long term, only relevant experimental data at the cell-to-cell level can provide the base for any solid theory or model that may serve for accurate functional prediction at the ecosystem level. The way to this level of application is still long, but we should all start small.
Collapse
|
4
|
Lukumbuzya M, Kristensen JM, Kitzinger K, Pommerening-Röser A, Nielsen PH, Wagner M, Daims H, Pjevac P. A refined set of rRNA-targeted oligonucleotide probes for in situ detection and quantification of ammonia-oxidizing bacteria. WATER RESEARCH 2020; 186:116372. [PMID: 32916620 DOI: 10.1016/j.watres.2020.116372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Ammonia-oxidizing bacteria (AOB) of the betaproteobacterial genera Nitrosomonas and Nitrosospira are key nitrifying microorganisms in many natural and engineered ecosystems. Since many AOB remain uncultured, fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes has been one of the most widely used approaches to study the community composition, abundance, and other features of AOB directly in environmental samples. However, the established and widely used AOB-specific 16S rRNA-targeted FISH probes were designed up to two decades ago, based on much smaller rRNA gene sequence datasets than available today. Several of these probes cover their target AOB lineages incompletely and suffer from a weak target specificity, which causes cross-hybridization of probes that should detect different AOB lineages. Here, a set of new highly specific 16S rRNA-targeted oligonucleotide probes was developed and experimentally evaluated that complements the existing probes and enables the specific detection and differentiation of the known, major phylogenetic clusters of betaproteobacterial AOB. The new probes were successfully applied to visualize and quantify AOB in activated sludge and biofilm samples from seven pilot- and full-scale wastewater treatment systems. Based on its improved target group coverage and specificity, the refined probe set will facilitate future in situ analyses of AOB.
Collapse
Affiliation(s)
- Michael Lukumbuzya
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Jannie Munk Kristensen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Katharina Kitzinger
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Andreas Pommerening-Röser
- University of Hamburg, Institute of Plant Science and Microbiology, Microbiology and Biotechnology, Hamburg, Germany
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; University of Vienna, The Comammox Research Platform, Vienna, Austria
| | - Holger Daims
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; University of Vienna, The Comammox Research Platform, Vienna, Austria.
| | - Petra Pjevac
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Hu J, Zhao Y, Yang W, Wang J, Liu H, Zheng P, Hu B. Surface ammonium loading rate shifts ammonia-oxidizing communities in surface water-fed rapid sand filters. FEMS Microbiol Ecol 2020; 96:5899051. [PMID: 32860687 DOI: 10.1093/femsec/fiaa179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023] Open
Abstract
Nitrification is important in drinking water treatment plants (DWTPs) for ammonia removal and is widely considered as a stepwise process mediated by ammonia- and nitrite-oxidizing microorganisms. The recent discovery of complete ammonia oxidizers (comammox) has challenged the long-held assumption that the division of metabolic labor in nitrification is obligate. However, little is known about the role of comammox Nitrospira in DWTPs. Here, we explored the relative importance of comammox Nitrospira, canonical ammonia-oxidizing archaea (AOA) and bacteria (AOB) in 12 surface water-fed rapid sand filters (RSFs). Quantitative PCR results showed that all the three ammonia-oxidizing guilds had the potential to dominate nitrification in DWTPs. Spearman's correlation and redundancy analysis revealed that the surface ammonium loading rate (SLR) was the key environmental factor influencing ammonia-oxidizing communities. Comammox Nitrospira were likely to dominate the nitrification under a higher SLR. PCR and phylogenetic analysis indicated that most comammox Nitrospira belonged to clade A, with clade B comammox Nitrospira almost absent. This work reveals obvious differences in ammonia-oxidizing communities between surface water-fed and groundwater-fed RSFs. The presence of comammox Nitrospira can support the stability of drinking water production systems under high SLR and warrants further investigation of their impact on drinking water quality.
Collapse
Affiliation(s)
- Jiajie Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Weiling Yang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Huan Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| |
Collapse
|
6
|
Lukumbuzya M, Schmid M, Pjevac P, Daims H. A Multicolor Fluorescence in situ Hybridization Approach Using an Extended Set of Fluorophores to Visualize Microorganisms. Front Microbiol 2019; 10:1383. [PMID: 31275291 PMCID: PMC6593226 DOI: 10.3389/fmicb.2019.01383] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/03/2019] [Indexed: 01/21/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes is a key method for the detection of (uncultured) microorganisms in environmental and medical samples. A major limitation of standard FISH protocols, however, is the small number of phylogenetically distinct target organisms that can be detected simultaneously. In this study, we introduce a multicolor FISH approach that uses eight fluorophores with distinct spectral properties, which can unambiguously be distinguished by confocal laser scanning microscopy combined with white light laser technology. Hybridization of rRNA-targeted DNA oligonucleotide probes, which were mono-labeled with these fluorophores, to Escherichia coli cultures confirmed that the fluorophores did not affect probe melting behavior. Application of the new multicolor FISH method enabled the differentiation of seven (potentially up to eight) phylogenetically distinct microbial populations in an artificial community of mixed pure cultures (five bacteria, one archaeon, and one yeast strain) and in activated sludge from a full-scale wastewater treatment plant. In contrast to previously published multicolor FISH approaches, this method does not rely on combinatorial labeling of the same microorganisms with different fluorophores, which is prone to biases. Furthermore, images acquired by this method do not require elaborate post-processing prior to analysis. We also demonstrate that the newly developed multicolor FISH method is compatible with an improved cell fixation protocol for FISH targeting Gram-negative bacterial populations. This fixation approach uses agarose embedding during formaldehyde fixation to better preserve the three-dimensional structure of spatially complex samples such as biofilms and activated sludge flocs. The new multicolor FISH approach should be highly suitable for studying structural and functional aspects of microbial communities in virtually all types of samples that can be analyzed by conventional FISH methods.
Collapse
Affiliation(s)
- Michael Lukumbuzya
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Markus Schmid
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Holger Daims
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.,The Comammox Research Platform, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Abstract
Chip-SIP is a stable isotope probing (SIP) method for linking microbial identity and function in mixed communities and is capable of analyzing multiple isotopes (13C, 15N, and 18O) simultaneously. This method uses a high-density microarray to separate taxon-specific 16S (or 18S) rRNA genes and a high sensitivity magnetic sector secondary ion mass spectrometer (SIMS) to determine the relative isotope incorporation of the rRNA at each probe location. Using a maskless array synthesizer (MAS), we synthesize multiple unique sequences to target hundreds of taxa at the ribosomal operational taxonomic unit (OTU) level on an array surface, and then analyze it with a NanoSIMS 50, using its high-spatial resolution imaging capability to generate isotope ratios for individual probes. The Chip-SIP method has been used in diverse systems, including surface marine and estuarine water, rhizosphere, and peat soils, to quantify taxon-specific relative incorporation of different substrates in complex microbial communities. Depending on the hypothesis and experimental design, Chip-SIP allows the user to compare the same community incorporating different substrates, different communities incorporating the same substrate(s), or quantify how a community responds to treatment effects, such as temperature or nutrient concentrations.
Collapse
|
8
|
Nierychlo M, Miłobędzka A, Petriglieri F, McIlroy B, Nielsen PH, McIlroy SJ. The morphology and metabolic potential of the Chloroflexi in full-scale activated sludge wastewater treatment plants. FEMS Microbiol Ecol 2018; 95:5199189. [DOI: 10.1093/femsec/fiy228] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/20/2018] [Indexed: 01/07/2023] Open
Affiliation(s)
- Marta Nierychlo
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Aleksandra Miłobędzka
- Microbial Ecology and Environmental Biotechnology Department, Faculty of Biology, Institute of Botany, Biological and Chemical Research Centre, University of Warsaw; Żwirki i Wigury 101, Warsaw 02–089, Poland
- Department of Biology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw 00–653, Poland
| | - Francesca Petriglieri
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Bianca McIlroy
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Simon Jon McIlroy
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| |
Collapse
|
9
|
|
10
|
Yao Q, Peng DC. Nitrite oxidizing bacteria (NOB) dominating in nitrifying community in full-scale biological nutrient removal wastewater treatment plants. AMB Express 2017; 7:25. [PMID: 28116698 PMCID: PMC5256632 DOI: 10.1186/s13568-017-0328-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 11/10/2022] Open
Abstract
Nitrification activities and microbial populations of ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) were investigated in 10 full-scale biological nutrient removal wastewater treatment plants in Xi’an, China. Aerobic batch tests were used to determine the nitrifying activities while fluorescence in situ hybridization was used to quantify the fractions of AOB and NOB in the activated sludge. The results showed that nitrifying bacteria accounted for 1–10% of the total population. Nitrosomonas and Nitrospira were the dominant bacteria for AOB and NOB respectively. Moreover, the average percentage of AOB was 1.27% and that of NOB was 4.02%. The numerical ratios of NOB/AOB varied between 1.72 and 5.87. The average ammonium uptake rate and nitrite uptake rate were 3.25 ± 0.52 mg (NH4+–N)/g(VSS) h and 4.49 ± 0.49 mg (NO2−–N)/g(VSS) h, respectively. Correspondingly, the activity of NOB was 1.08–2.00 times higher than that of AOB. Thus, NOB was the dominating bacteria in nitrifying communities. The year-round data of Dianzicun (W6) also expressed a similar trend. Since NOB had higher activities than that of AOB, a large nitrite oxidation pool could be formed, which guaranteed that no nitrite would be accumulated. Therefore, stable nitrification could be achieved. A conceptual model was proposed to describe the population variation of AOB and NOB in a nitrifying community.
Collapse
|
11
|
Kouba V, Vejmelkova D, Proksova E, Wiesinger H, Concha M, Dolejs P, Hejnic J, Jenicek P, Bartacek J. High-Rate Partial Nitritation of Municipal Wastewater after Psychrophilic Anaerobic Pretreatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11029-11038. [PMID: 28845968 DOI: 10.1021/acs.est.7b02078] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Partial nitritation/anammox can provide energy-efficient nitrogen removal from the main stream of municipal wastewater. The main bottleneck is the growth of nitrite oxidizing bacteria (NOB) at low temperatures (<15 °C). To produce effluent suitable for anammox, real municipal wastewater after anaerobic pretreatment was treated by enriched ammonium oxidizing bacteria (AOB) in suspended sludge SBR at 12 °C. NOB were continually washed out using aerobic duration control strategy (ADCS). Solids retention time was set to 9-16 days. Using this approach, average ammonia conversion higher than 57% at high oxidation rate of 0.4 ± 0.1 kg-N kg-VSS-1 d-1 was achieved for more than 100 days. Nitrite accumulation (N-NO2-/N-NOX) of 92% was maintained. Thus, consistently small amounts of present NOB were efficiently suppressed. Our mathematical model explained how ADCS enhanced the inhibition of NOB growth via NH3 and HNO2. This approach will produce effluent suitable for anammox even under winter conditions in mild climates.
Collapse
Affiliation(s)
- Vojtech Kouba
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| | - Dana Vejmelkova
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| | - Eva Proksova
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| | - Helene Wiesinger
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Martin Concha
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| | - Petr Dolejs
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| | - Jakub Hejnic
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| | - Pavel Jenicek
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| | - Jan Bartacek
- University of Chemistry and Technology , Technicka 5, 166 28 Prague, Czech Republic
| |
Collapse
|
12
|
Yao Q, Peng D, Wang B, Chen Y, Li J, Zhao Q, Wang B. Effect of free ammonium and free nitrous acid on the activity, aggregate morphology and extracellular polymeric substance distribution of ammonium oxidizing bacteria in partial nitrification. J Biosci Bioeng 2017; 124:319-326. [DOI: 10.1016/j.jbiosc.2017.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/15/2022]
|
13
|
Zhang X, Zheng S, Sun J, Xiao X. Elucidation of microbial nitrogen-transformation mechanisms in activated sludge by comprehensive evaluation of nitrogen-transformation activity. BIORESOURCE TECHNOLOGY 2017; 234:15-22. [PMID: 28315600 DOI: 10.1016/j.biortech.2017.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
Using prepared nitrifying sludge, anaerobic ammonia oxidization (anammox) sludge and two heterotrophic ammonia oxidization bacterial (AOB) species as inocula, this study elucidated the effect of oxygen conditions, assay media, and selective metabolic inhibitors on various microbial nitrogen (N)-transformation activities including aerobic chemolithotrophic ammonia and nitrite oxidization, aerobic heterotrophic ammonia oxidization, anammox, and aerobic and anoxic denitrification. The oxygen conditions and assay media effectively differentiated among almost all ammonia removal pathways except for separating aerobic chemolithotrophic ammonia oxidization from aerobic heterotrophic ammonia oxidization. A final allylthiourea concentration of 10mg·L-1 was optimal for accurate determination of aerobic heterotrophic ammonia oxidization activity in the presence of aerobic chemolithotrophic AOB. Finally, this study developed a simple and reliable method to individually determine and compare the comprehensive N-transformation activity characteristics of several activated sludge samples from different origins, and to elucidate the major microbial N-transformation mechanisms for ammonia removal and N2 production.
Collapse
Affiliation(s)
- Xueyu Zhang
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Shaokui Zheng
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China.
| | - Jian Sun
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Xuze Xiao
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
Szabó E, Liébana R, Hermansson M, Modin O, Persson F, Wilén BM. Microbial Population Dynamics and Ecosystem Functions of Anoxic/Aerobic Granular Sludge in Sequencing Batch Reactors Operated at Different Organic Loading Rates. Front Microbiol 2017; 8:770. [PMID: 28507540 PMCID: PMC5410608 DOI: 10.3389/fmicb.2017.00770] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/13/2017] [Indexed: 11/13/2022] Open
Abstract
The granular sludge process is an effective, low-footprint alternative to conventional activated sludge wastewater treatment. The architecture of the microbial granules allows the co-existence of different functional groups, e.g., nitrifying and denitrifying communities, which permits compact reactor design. However, little is known about the factors influencing community assembly in granular sludge, such as the effects of reactor operation strategies and influent wastewater composition. Here, we analyze the development of the microbiomes in parallel laboratory-scale anoxic/aerobic granular sludge reactors operated at low (0.9 kg m-3d-1), moderate (1.9 kg m-3d-1) and high (3.7 kg m-3d-1) organic loading rates (OLRs) and the same ammonium loading rate (0.2 kg NH4-N m-3d-1) for 84 days. Complete removal of organic carbon and ammonium was achieved in all three reactors after start-up, while the nitrogen removal (denitrification) efficiency increased with the OLR: 0% at low, 38% at moderate, and 66% at high loading rate. The bacterial communities at different loading rates diverged rapidly after start-up and showed less than 50% similarity after 6 days, and below 40% similarity after 84 days. The three reactor microbiomes were dominated by different genera (mainly Meganema, Thauera, Paracoccus, and Zoogloea), but these genera have similar ecosystem functions of EPS production, denitrification and polyhydroxyalkanoate (PHA) storage. Many less abundant but persistent taxa were also detected within these functional groups. The bacterial communities were functionally redundant irrespective of the loading rate applied. At steady-state reactor operation, the identity of the core community members was rather stable, but their relative abundances changed considerably over time. Furthermore, nitrifying bacteria were low in relative abundance and diversity in all reactors, despite their large contribution to nitrogen turnover. The results suggest that the OLR has considerable impact on the composition of the granular sludge communities, but also that the granule communities can be dynamic even at steady-state reactor operation due to high functional redundancy of several key guilds. Knowledge about microbial diversity with specific functional guilds under different operating conditions can be important for engineers to predict the stability of reactor functions during the start-up and continued reactor operation.
Collapse
Affiliation(s)
- Enikö Szabó
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Raquel Liébana
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburg, Sweden
| | - Oskar Modin
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of TechnologyGothenburg, Sweden
| |
Collapse
|
15
|
Gokal J, Awolusi OO, Enitan AM, Kumari S, Bux F. Chapter 4 Molecular Characterization and Quantification of Microbial Communities in Wastewater Treatment Systems. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Xu C, Han H, Jia S, Zhao Q. Influence of phenol on ammonia removal in an intermittent aeration bioreactor treating biologically pretreated coal gasification wastewater. J Environ Sci (China) 2016; 43:99-105. [PMID: 27155414 DOI: 10.1016/j.jes.2015.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/29/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
A laboratory-scale intermittent aeration bioreactor was investigated to treat biologically pretreated coal gasification wastewater that was mainly composed of NH3-N and phenol. The results showed that increasing phenol loading had an adverse effect on NH3-N removal; the concentration in effluent at phenol loading of 40mgphenol/(L·day) was 7.3mg/L, 36.3% of that at 200mg phenol/(L·day). The enzyme ammonia monooxygenase showed more sensitivity than hydroxylamine oxidoreductase to the inhibitory effect of phenol, with 32.2% and 10.5% activity inhibition, respectively at 200mg phenol/(L·day). Owing to intermittent aeration conditions, nitritation-type nitrification and simultaneous nitrification and denitrification (SND) were observed, giving a maximum SND efficiency of 30.5%. Additionally, ammonia oxidizing bacteria (AOB) and denitrifying bacteria were the main group identified by fluorescent in situ hybridization. However, their relative abundance represented opposite variations as phenol loading increased, ranging from 30.1% to 17.5% and 7.6% to 18.2% for AOB and denitrifying bacteria, respectively.
Collapse
Affiliation(s)
- Chunyan Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shengyong Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qian Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
17
|
Mayali X, Stewart B, Mabery S, Weber PK. Temporal succession in carbon incorporation from macromolecules by particle-attached bacteria in marine microcosms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:68-75. [PMID: 26525158 DOI: 10.1111/1758-2229.12352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 05/26/2023]
Abstract
We investigated bacterial carbon assimilation from stable isotope-labelled macromolecular substrates (proteins; lipids; and two types of polysaccharides, starch and cellobiose) while attached to killed diatom detrital particles during laboratory microcosms incubated for 17 days. Using Chip-SIP (secondary ion mass spectrometry analysis of RNA microarrays), we identified generalist operational taxonomic units (OTUs) from the Gammaproteobacteria, belonging to the genera Colwellia, Glaciecola, Pseudoalteromonas and Rheinheimera, and from the Bacteroidetes, genera Owenweeksia and Maribacter, that incorporated the four tested substrates throughout the incubation period. Many of these OTUs exhibited the highest isotope incorporation relative to the others, indicating that they were likely the most active. Additional OTUs from the Gammaproteobacteria, Bacteroidetes and Alphaproteobacteria exhibited generally (but not always) lower activity and did not incorporate all tested substrates at all times, showing species succession in organic carbon incorporation. We also found evidence to suggest that both generalist and specialist OTUs changed their relative substrate incorporation over time, presumably in response to changing substrate availability as the particles aged. This pattern was demonstrated by temporal succession from relatively higher starch incorporation early in the incubations, eventually switching to higher cellobiose incorporation after 2 weeks.
Collapse
Affiliation(s)
- Xavier Mayali
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Benjamin Stewart
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Shalini Mabery
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Peter K Weber
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| |
Collapse
|
18
|
Levén L, Wijnbladh E, Tuvesson M, Kragelund C, Hallin S. Control of Microthrix parvicella and sludge bulking by ozone in a full-scale WWTP. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:866-872. [PMID: 26901730 DOI: 10.2166/wst.2015.560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bulking and rising sludge are common problems in wastewater treatment plants (WWTPs) and are primarily caused by increased growth of filamentous bacteria such as Microthrix parvicella. It has a negative impact on sludge settling properties in activated sludge (AS) process, in addition to being responsible for foam formation. Different methods can be used to control sludge bulking. The aim of this study was to evaluate the dosage of on-site generated ozone in the recycled AS flow in a full-scale WWTP having problems caused by M. parvicella. The evaluation of the experiment was assessed by process data, microscopic analysis and microbial screening on the experimental and control line before, during and after the period of ozone dosage. The ozone treatment resulted in decreased abundance of M. parvicella and improved the settling properties, without impairing the overall process performance. Both chemical oxygen demand (COD)- and N-removal were unaffected and the dominant populations involved in nitrification, as analysed by fluorescent in situ hybridization, remained during the experimental period. When the ozone treatment was terminated, the problems with sludge bulking reappeared, indicating the importance of continuous evaluation of the process.
Collapse
Affiliation(s)
- Lotta Levén
- Institute of Agricultural and Environmental Engineering, JTI, PO Box 7033, SE-750 07 Uppsala, Sweden E-mail:
| | - Erik Wijnbladh
- Department of Microbiology, Swedish University of Agricultural Sciences, PO Box 7025, SE-750 07 Uppsala, Sweden
| | | | - Caroline Kragelund
- Department of Biotechnology, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark and Danish Technological Institute, Kongsvang Alle 29, DK-8000, Denmark
| | - Sara Hallin
- Department of Microbiology, Swedish University of Agricultural Sciences, PO Box 7025, SE-750 07 Uppsala, Sweden
| |
Collapse
|
19
|
Patra AK, Yu Z. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis. Front Microbiol 2015; 6:297. [PMID: 25914694 PMCID: PMC4392297 DOI: 10.3389/fmicb.2015.00297] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/26/2015] [Indexed: 11/13/2022] Open
Abstract
In a previous study origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L) on the rumen bacterial community composition and population was further examined using the recently developed RumenBactArray. Species richness (expressed as number of operational taxonomic units, OTUs) in the phylum Firmicutes, especially those in the class Clostridia, was decreased by ORO and GAO, but increased by PEO, while that in the phylum Bacteroidetes was increased by ORO and PEO. Species richness in the genus Butyrivibrio was lowered by all the EOs. Increases of Bacteroidetes OTUs mainly resulted from increases of Prevotella OTUs. Overall, 67 individual OTUs showed significant differences (P ≤ 0.05) in relative abundance across the EO treatments. The predominant OTUs affected by EOs were diverse, including those related to Syntrophococcus sucromutans, Succiniclasticum ruminis, and Lachnobacterium bovis, and those classified to Prevotella, Clostridium, Roseburia, Pseudobutyrivibrio, Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Bacteroidales, and Clostridiales. In total, 60 OTUs were found significantly (P ≤ 0.05) correlated with feed degradability, ammonia concentration, and molar percentage of volatile fatty acids. Taken together, this study demonstrated extensive impact of EOs on rumen bacterial communities in an EO type-dependent manner, especially those in the predominant families Prevotellaceae, Lachnospiraceae, and Ruminococcaceae. The information from this study may aid in understanding the effect of EOs on feed digestion and fermentation by rumen bacteria.
Collapse
Affiliation(s)
- Amlan K Patra
- Department of Animal Sciences, The Ohio State University Columbus, OH, USA ; Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences Kolkata, India
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University Columbus, OH, USA
| |
Collapse
|
20
|
Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci U S A 2014; 112:E194-203. [PMID: 25550518 DOI: 10.1073/pnas.1420406112] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics.
Collapse
|
21
|
Gougoulias C, Clark JM, Shaw LJ. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:2362-71. [PMID: 24425529 PMCID: PMC4283042 DOI: 10.1002/jsfa.6577] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 05/04/2023]
Abstract
It is well known that atmospheric concentrations of carbon dioxide (CO2) (and other greenhouse gases) have increased markedly as a result of human activity since the industrial revolution. It is perhaps less appreciated that natural and managed soils are an important source and sink for atmospheric CO2 and that, primarily as a result of the activities of soil microorganisms, there is a soil-derived respiratory flux of CO2 to the atmosphere that overshadows by tenfold the annual CO2 flux from fossil fuel emissions. Therefore small changes in the soil carbon cycle could have large impacts on atmospheric CO2 concentrations. Here we discuss the role of soil microbes in the global carbon cycle and review the main methods that have been used to identify the microorganisms responsible for the processing of plant photosynthetic carbon inputs to soil. We discuss whether application of these techniques can provide the information required to underpin the management of agro-ecosystems for carbon sequestration and increased agricultural sustainability. We conclude that, although crucial in enabling the identification of plant-derived carbon-utilising microbes, current technologies lack the high-throughput ability to quantitatively apportion carbon use by phylogentic groups and its use efficiency and destination within the microbial metabolome. It is this information that is required to inform rational manipulation of the plant-soil system to favour organisms or physiologies most important for promoting soil carbon storage in agricultural soil.
Collapse
Affiliation(s)
- Christos Gougoulias
- Soil Research Centre, Department of Geography and Environmental Science, School of Archaeology, Geography and Environmental Science, University of ReadingRG6 6DW, United Kingdom
| | - Joanna M Clark
- Soil Research Centre, Department of Geography and Environmental Science, School of Archaeology, Geography and Environmental Science, University of ReadingRG6 6DW, United Kingdom
| | - Liz J Shaw
- Soil Research Centre, Department of Geography and Environmental Science, School of Archaeology, Geography and Environmental Science, University of ReadingRG6 6DW, United Kingdom
| |
Collapse
|
22
|
Agreement between amoA gene-specific quantitative PCR and fluorescence in situ hybridization in the measurement of ammonia-oxidizing bacteria in activated sludge. Appl Environ Microbiol 2014; 80:5901-10. [PMID: 25002435 DOI: 10.1128/aem.01383-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial abundance is central to most investigations in microbial ecology, and its accurate measurement is a challenging task that has been significantly facilitated by the advent of molecular techniques over the last 20 years. Fluorescence in situ hybridization (FISH) is considered the gold standard of quantification techniques; however, it is expensive and offers low sample throughput, both of which limit its wider application. Quantitative PCR (qPCR) is an alternative that offers significantly higher throughput, and it is used extensively in molecular biology. The accuracy of qPCR can be compromised by biases in the DNA extraction and amplification steps. In this study, we compared the accuracy of these two established quantification techniques to measure the abundance of a key functional group in biological wastewater treatment systems, the ammonia-oxidizing bacteria (AOB), in samples from a time-series experiment monitoring a set of laboratory-scale reactors and a full-scale plant. For the qPCR analysis, we tested two different sets of AOB-specific primers, one targeting the 16SrRNA gene and one targeting the ammonia monooxygenase (amoA) gene. We found that there was a positive linear logarithmic relationship between FISH and the amoA gene-specific qPCR, where the data obtained from both techniques was equivalent at the order of magnitude level. The 16S rRNA gene-specific qPCR assay consistently underestimated AOB numbers.
Collapse
|
23
|
Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Mar Drugs 2014; 12:3516-59. [PMID: 24918453 PMCID: PMC4071589 DOI: 10.3390/md12063516] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 12/30/2022] Open
Abstract
Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity) and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups) are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds.
Collapse
|
24
|
Brugère JF, Mihajlovski A, Missaoui M, Peyret P. Tools for stools: the challenge of assessing human intestinal microbiota using molecular diagnostics. Expert Rev Mol Diagn 2014; 9:353-65. [DOI: 10.1586/erm.09.16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Microbial diversity in the era of omic technologies. BIOMED RESEARCH INTERNATIONAL 2013; 2013:958719. [PMID: 24260747 PMCID: PMC3821902 DOI: 10.1155/2013/958719] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 11/17/2022]
Abstract
Human life and activity depends on microorganisms, as they are responsible for providing basic elements of life. Although microbes have such a key role in sustaining basic functions for all living organisms, very little is known about their biology since only a small fraction (average 1%) can be cultured under laboratory conditions. This is even more evident when considering that >88% of all bacterial isolates belong to four bacterial phyla, the Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Advanced technologies, developed in the last years, promise to revolutionise the way that we characterize, identify, and study microbial communities. In this review, we present the most advanced tools that microbial ecologists can use for the study of microbial communities. Innovative microbial ecological DNA microarrays such as PhyloChip and GeoChip that have been developed for investigating the composition and function of microbial communities are presented, along with an overview of the next generation sequencing technologies. Finally, the Single Cell Genomics approach, which can be used for obtaining genomes from uncultured phyla, is outlined. This tool enables the amplification and sequencing of DNA from single cells obtained directly from environmental samples and is promising to revolutionise microbiology.
Collapse
|
26
|
Short MD, Abell GCJ, Bodrossy L, van den Akker B. Application of a novel functional gene microarray to probe the functional ecology of ammonia oxidation in nitrifying activated sludge. PLoS One 2013; 8:e77139. [PMID: 24155925 PMCID: PMC3796556 DOI: 10.1371/journal.pone.0077139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/30/2013] [Indexed: 11/30/2022] Open
Abstract
We report on the first study trialling a newly-developed, functional gene microarray (FGA) for characterising bacterial and archaeal ammonia oxidisers in activated sludge. Mixed liquor (ML) and media biofilm samples from a full-scale integrated fixed-film activated sludge (IFAS) plant were analysed with the FGA to profile the diversity and relative abundance of ammonia-oxidising archaea and bacteria (AOA and AOB respectively). FGA analyses of AOA and AOB communities revealed ubiquitous distribution of AOA across all samples – an important finding for these newly-discovered and poorly characterised organisms. Results also revealed striking differences in the functional ecology of attached versus suspended communities within the IFAS reactor. Quantitative assessment of AOB and AOA functional gene abundance revealed a dominance of AOB in the ML and approximately equal distribution of AOA and AOB in the media-attached biofilm. Subsequent correlations of functional gene abundance data with key water quality parameters suggested an important functional role for media-attached AOB in particular for IFAS reactor nitrification performance and indicate possible functional redundancy in some IFAS ammonia oxidiser communities. Results from this investigation demonstrate the capacity of the FGA to resolve subtle ecological shifts in key microbial communities in nitrifying activated sludge and indicate its value as a tool for better understanding the linkages between the ecology and performance of these engineered systems.
Collapse
Affiliation(s)
- Michael D. Short
- UNSW Water Research Centre, School of Civil and Environmental Engineering, the University of New South Wales, Kensington, New South Wales, Australia
- SA Water Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Guy C. J. Abell
- CSIRO Marine and Atmospheric Research and Wealth from Oceans National Research Flagship, Hobart, Tasmania, Australia
- * E-mail:
| | - Levente Bodrossy
- CSIRO Marine and Atmospheric Research and Wealth from Oceans National Research Flagship, Hobart, Tasmania, Australia
| | - Ben van den Akker
- UNSW Water Research Centre, School of Civil and Environmental Engineering, the University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
27
|
Terada A, Sugawara S, Yamamoto T, Zhou S, Koba K, Hosomi M. Physiological characteristics of predominant ammonia-oxidizing bacteria enriched from bioreactors with different influent supply regimes. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Mußmann M, Ribot M, von Schiller D, Merbt SN, Augspurger C, Karwautz C, Winkel M, Battin TJ, Martí E, Daims H. Colonization of freshwater biofilms by nitrifying bacteria from activated sludge. FEMS Microbiol Ecol 2013; 85:104-15. [DOI: 10.1111/1574-6941.12103] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/12/2013] [Accepted: 02/24/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Marc Mußmann
- Department of Microbial Ecology; Ecology Center; University of Vienna; Vienna; Austria
| | - Miquel Ribot
- Biogeodynamics and Biodiversity Group; Center for Advanced Studies of Blanes (CEAB-CSIC); Blanes; Spain
| | - Daniel von Schiller
- Biogeodynamics and Biodiversity Group; Center for Advanced Studies of Blanes (CEAB-CSIC); Blanes; Spain
| | - Stephanie N. Merbt
- Biogeodynamics and Biodiversity Group; Center for Advanced Studies of Blanes (CEAB-CSIC); Blanes; Spain
| | - Clemens Augspurger
- Department of Freshwater Ecology and Hydrobotany; Ecology Center; University of Vienna; Vienna; Austria
| | - Clemens Karwautz
- Institute of Groundwater Ecology; Helmholtz Center Munich; Neuherberg; Germany
| | - Matthias Winkel
- Max Planck Institute for Marine Microbiology; Bremen; Germany
| | | | - Eugènia Martí
- Biogeodynamics and Biodiversity Group; Center for Advanced Studies of Blanes (CEAB-CSIC); Blanes; Spain
| | - Holger Daims
- Department of Microbial Ecology; Ecology Center; University of Vienna; Vienna; Austria
| |
Collapse
|
29
|
Tourlousse DM, Kurisu F, Tobino T, Furumai H. Sensitive and substrate-specific detection of metabolically active microorganisms in natural microbial consortia using community isotope arrays. FEMS Microbiol Lett 2013; 342:70-5. [DOI: 10.1111/1574-6968.12112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Dieter M. Tourlousse
- Research Center for Water Environment Technology; Graduate School of Engineering; The University of Tokyo; Tokyo; Japan
| | - Futoshi Kurisu
- Research Center for Water Environment Technology; Graduate School of Engineering; The University of Tokyo; Tokyo; Japan
| | - Tomohiro Tobino
- Environmental Science Center; The University of Tokyo; Tokyo; Japan
| | - Hiroaki Furumai
- Research Center for Water Environment Technology; Graduate School of Engineering; The University of Tokyo; Tokyo; Japan
| |
Collapse
|
30
|
Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova M, Leigh MB, Macek T. Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 2012; 31:154-65. [PMID: 23022353 DOI: 10.1016/j.biotechadv.2012.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/17/2012] [Accepted: 09/17/2012] [Indexed: 12/24/2022]
Abstract
Microbial biodegradation and biotransformation reactions are essential to most bioremediation processes, yet the specific organisms, genes, and mechanisms involved are often not well understood. Stable isotope probing (SIP) enables researchers to directly link microbial metabolic capability to phylogenetic and metagenomic information within a community context by tracking isotopically labeled substances into phylogenetically and functionally informative biomarkers. SIP is thus applicable as a tool for the identification of active members of the microbial community and associated genes integral to the community functional potential, such as biodegradative processes. The rapid evolution of SIP over the last decade and integration with metagenomics provide researchers with a much deeper insight into potential biodegradative genes, processes, and applications, thereby enabling an improved mechanistic understanding that can facilitate advances in the field of bioremediation.
Collapse
Affiliation(s)
- Ondrej Uhlik
- Institute of Chemical Technology Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, 166 28 Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
31
|
Mota CR, So MJ, de los Reyes FL. Identification of nitrite-reducing bacteria using sequential mRNA fluorescence in situ hybridization and fluorescence-assisted cell sorting. MICROBIAL ECOLOGY 2012; 64:256-267. [PMID: 22370876 DOI: 10.1007/s00248-012-0018-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/25/2012] [Indexed: 05/31/2023]
Abstract
Sequential mRNA fluorescence in situ hybridization (mRNA FISH) and fluorescence-assisted cell sorting (SmRFF) was used for the identification of nitrite-reducing bacteria in mixed microbial communities. An oligonucleotide probe labeled with horseradish peroxidase (HRP) was used to target mRNA of nirS, the gene that encodes nitrite reductase, the enzyme responsible for the dissimilatory reduction of nitrite to nitric oxide. Clones for nirS expression were constructed and used to provide proof of concept for the SmRFF method. In addition, cells from pure cultures of Pseudomonas stutzeri and denitrifying activated sludge were hybridized with the HRP probe, and tyramide signal amplification was performed, conferring a strongly fluorescent signal to cells containing nirS mRNA. Flow cytometry-assisted cell sorting was used to detect and physically separate two subgroups from a mixed microbial community: non-fluorescent cells and an enrichment of fluorescent, nitrite-reducing cells. Denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of 16S ribosomal RNA (rRNA) genes were used to compare the fragments amplified from the two sorted subgroups. Sequences from bands isolated from DGGE profiles suggested that the dominant, active nitrite reducers were closely related to Acidovorax BSB421. Furthermore, following mRNA FISH detection of nitrite-reducing bacteria, 16S rRNA FISH was used to detect ammonia-oxidizing and nitrite-oxidizing bacteria on the same activated sludge sample. We believe that the molecular approach described can be useful as a tool to help address the longstanding challenge of linking function to identity in natural and engineered habitats.
Collapse
Affiliation(s)
- Cesar R Mota
- School of Civil Engineering and Geosciences, Newcastle University, Cassie Building, Newcastle, UK
| | | | | |
Collapse
|
32
|
Almstrand R, Lydmark P, Lindgren PE, Sörensson F, Hermansson M. Dynamics of specific ammonia-oxidizing bacterial populations and nitrification in response to controlled shifts of ammonium concentrations in wastewater. Appl Microbiol Biotechnol 2012; 97:2183-91. [DOI: 10.1007/s00253-012-4047-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 12/01/2022]
|
33
|
Musat N, Foster R, Vagner T, Adam B, Kuypers MMM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 2012; 36:486-511. [DOI: 10.1111/j.1574-6976.2011.00303.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/22/2011] [Indexed: 11/30/2022] Open
|
34
|
Mayali X, Weber PK, Brodie EL, Mabery S, Hoeprich PD, Pett-Ridge J. High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use. ISME JOURNAL 2011; 6:1210-21. [PMID: 22158395 DOI: 10.1038/ismej.2011.175] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Most microorganisms remain uncultivated, and typically their ecological roles must be inferred from diversity and genomic studies. To directly measure functional roles of uncultivated microbes, we developed Chip-stable isotope probing (SIP), a high-sensitivity, high-throughput SIP method performed on a phylogenetic microarray (chip). This approach consists of microbial community incubations with isotopically labeled substrates, hybridization of the extracted community rRNA to a microarray and measurement of isotope incorporation--and therefore substrate use--by secondary ion mass spectrometer imaging (NanoSIMS). Laboratory experiments demonstrated that Chip-SIP can detect isotopic enrichment of 0.5 atom % (13)C and 0.1 atom % (15)N, thus permitting experiments with short incubation times and low substrate concentrations. We applied Chip-SIP analysis to a natural estuarine community and quantified amino acid, nucleic acid or fatty acid incorporation by 81 distinct microbial taxa, thus demonstrating that resource partitioning occurs with relatively simple organic substrates. The Chip-SIP approach expands the repertoire of stable isotope-enabled methods available to microbial ecologists and provides a means to test genomics-generated hypotheses about biogeochemical function in any natural environment.
Collapse
Affiliation(s)
- Xavier Mayali
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Raszka A, Surmacz-Górska J, Zabczyński S, Miksch K. The population dynamics of nitrifiers in ammonium-rich systems. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2011; 83:2159-2169. [PMID: 22368958 DOI: 10.2175/106143011x12989211841331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Non-optimal pH, dissolved oxygen concentration, the presence of toxic substances, or the influence of grazers are known to cause disturbances in nitrification. Because activated sludge is a mixture of different organisms, bacteria, and higher organisms, the stability of processes such as carbon removal, nitrification, denitrification, and dephosphatation depends on a range of interactions. These interactions occur both between and within trophic levels. Understanding of the ecology of microorganisms involved in bioprocesses is essential for effective control of startup and operation of a particular process. The aim of the study was to gain further insight into the dynamics of nitrifiers in activated sludge at various sludge ages while treating higher concentrations of ammonium. The results confirmed the importance of Nitrosococcus mobilis and Nitrobacter sp. as the dominant nitrifiers responsible for nitritation and nitratation, respectively, in the presence of unlimited ammonium. The size of the dominant bacteria colony was larger compared to the other species present and reached 25 microm. Problems with nitrification occurred in all high-ammonium loaded reactors. The dynamics of nitrifier population was monitored by oxygen uptake rate (OUR) using a test enabling the OUR measurement separately for ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). The results reveal the hypersensitivity of nitrifiers to the substrate and products of incomplete nitrification.
Collapse
Affiliation(s)
- Anna Raszka
- Environmental Biotechnology Department, Silesian University of Technology, Gliwice, Poland.
| | | | | | | |
Collapse
|
36
|
Joss A, Derlon N, Cyprien C, Burger S, Szivak I, Traber J, Siegrist H, Morgenroth E. Combined nitritation-anammox: advances in understanding process stability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:9735-9742. [PMID: 21981764 DOI: 10.1021/es202181v] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Efficient nitrogen removal from wastewater containing high concentrations of ammonium but little organic substrate has recently been demonstrated by several full-scale applications of the combined nitritation-anammox process. While the process efficiency is in most cases very good, process instabilities have been observed to result in temporary process failures. In the current study, conditions resulting in instability and strategies to regain efficient operation were evaluated. First, data from full-scale operation is presented, showing a sudden partial loss of activity followed by recovery within less than 1 month. Results from laboratory-scale experiments indicate that these dynamics observed in full scale can be caused by partial inhibition of the ammonia oxidizing bacteria (AOB), while anammox inhibition is a secondary effect due to temporarily reduced O(2) depletion. Complete anammox inhibition is observed at 0.2 mg O(2) · L(-1), resulting in NO(2)(-) accumulation. However, this inhibition of anammox is reversible within minutes after O(2) depletion. Thus, variable AOB activity was identified as the key to reactor stability. With appropriate interpretation of the online NH(4)(+) signal, accumulation of NO(2)(-) can be detected indirectly and used to signal an imbalance of O(2) supply and AOB activity (no suitable online NO(2)(-) electrode is currently available). Second, increased abundance of nitrite-oxidizing bacteria (NOB; competing with anammox for NO(2)(-)) is known as another cause of instability. Based on a comparison of parallel full-scale reactors, it is suggested that an infrequent and short-term increased O(2) supply (e.g., for maintenance of aerators) that exceeds prompt depletion of oxygen by AOB may have caused increased NOB abundance. The volumetric air supply as a proxy for O(2) supply thus needs to be linked to AOB activity. Further, NOB can be washed out of the system during regular operation if the system is operated at a sludge age in the range of 45 days and by controlling the air supply according to the NO(3)(-) concentration in the treated effluent. Early detection of growing NOB abundance while the population is still low can help guide process operation and it is suggested that molecular methods of quantifying NOB abundance should be tested.
Collapse
Affiliation(s)
- Adriano Joss
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstr 133, 8600 Duebendorf, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim K, Kim JJ, Masui R, Kuramitsu S, Sung MH. A commensal symbiotic interrelationship for the growth of Symbiobacterium toebii with its partner bacterium, Geobacillus toebii. BMC Res Notes 2011; 4:437. [PMID: 22023733 PMCID: PMC3208422 DOI: 10.1186/1756-0500-4-437] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 10/24/2011] [Indexed: 11/10/2022] Open
Abstract
Background Symbiobacterium toebii is a commensal symbiotic thermophile that absolutely requires its partner bacterium Geobacillus toebii for growth. Despite development of an independent cultivation method using cell-free extracts, the growth of Symbiobacterium remains unknown due to our poor understanding of the symbiotic relationship with its partner bacterium. Here, we investigated the interrelationship between these two bacteria for growth of S. toebii using different cell-free extracts of G. toebii. Results Symbiobacterium toebii growth-supporting factors were constitutively produced through almost all growth phases and under different oxygen tensions in G. toebii, indicating that the factor may be essential components for growth of G. toebii as well as S. toebii. The growing conditions of G. toebii under different oxygen tension dramatically affected to the initial growth of S. toebii and the retarded lag phase was completely shortened by reducing agent, L-cysteine indicating an evidence of commensal interaction of microaerobic and anaerobic bacterium S. toebii with a facultative aerobic bacterium G. toebii. In addition, the growth curve of S. toebii showed a dependency on the protein concentration of cell-free extracts of G. toebii, demonstrating that the G. toebii-derived factors have nutrient-like characters but not quorum-sensing characters. Conclusions Not only the consistent existence of the factor in G. toebii during all growth stages and under different oxygen tensions but also the concentration dependency of the factor for proliferation and optimal growth of S. toebii, suggests that an important biosynthetic machinery lacks in S. toebii during evolution. The commensal symbiotic bacterium, S. toebii uptakes certain ubiquitous and essential compound for its growth from environment or neighboring bacteria that shares the equivalent compounds. Moreover, G. toebii grown under aerobic condition shortened the lag phase of S. toebii under anaerobic and microaerobic conditions, suggests a possible commensal interaction that G. toebii scavengers ROS/RNS species and helps the initial growth of S. toebii.
Collapse
Affiliation(s)
- Kwang Kim
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
38
|
Kostić T, Sessitsch A. Microbial Diagnostic Microarrays for the Detection and Typing of Food- and Water-Borne (Bacterial) Pathogens. ACTA ACUST UNITED AC 2011; 1:3-24. [PMID: 27605332 PMCID: PMC5007712 DOI: 10.3390/microarrays1010003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 01/02/2023]
Abstract
Reliable and sensitive pathogen detection in clinical and environmental (including food and water) samples is of greatest importance for public health. Standard microbiological methods have several limitations and improved alternatives are needed. Most important requirements for reliable analysis include: (i) specificity; (ii) sensitivity; (iii) multiplexing potential; (iv) robustness; (v) speed; (vi) automation potential; and (vii) low cost. Microarray technology can, through its very nature, fulfill many of these requirements directly and the remaining challenges have been tackled. In this review, we attempt to compare performance characteristics of the microbial diagnostic microarrays developed for the detection and typing of food and water pathogens, and discuss limitations, points still to be addressed and issues specific for the analysis of food, water and environmental samples.
Collapse
Affiliation(s)
- Tanja Kostić
- AIT Austrian Institute of Technology GmbH, Health & Environment Department, Bioresources Unit, Konrad Lorenz Strasse 24, A-3430 Tulln an der Donau, Austria.
- Christian Doppler Laboratory for Molecular Food Analytics, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Health & Environment Department, Bioresources Unit, Konrad Lorenz Strasse 24, A-3430 Tulln an der Donau, Austria
| |
Collapse
|
39
|
Almstrand R, Lydmark P, Sörensson F, Hermansson M. Nitrification potential and population dynamics of nitrifying bacterial biofilms in response to controlled shifts of ammonium concentrations in wastewater trickling filters. BIORESOURCE TECHNOLOGY 2011; 102:7685-7691. [PMID: 21703852 DOI: 10.1016/j.biortech.2011.05.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/21/2011] [Accepted: 05/23/2011] [Indexed: 05/31/2023]
Abstract
Nitrogen removal in wastewater treatment is energy consuming and often carried out in biofilm nitrifying trickling filters (NTFs). We investigated nitrification potential and population dynamics of nitrifying bacteria in pilot-plant NTFs fed with full-scale plant wastewater with high (8-9 mg NH(4)(+)l(-1)) or low (<0.5mg NH(4)(+)l(-1)) ammonium concentrations. After ammonium shifts, nitrification potentials stabilized after 10-43 days depending on feed regime. An NTF fed with 3 days of high, and 4 days of low load per week reached a high nitrification potential, whereas a high load for 1 day a week gave a low potential. Nitrosomonas oligotropha dominated the AOB and changes in nitrification potentials were not explained by large population shifts to other AOBs. Although nitrification potentials were generally correlated with the relative amounts of AOB and NOB, this was not always the case. Ammonium feed strategies can be used to optimize wastewater treatment performance.
Collapse
Affiliation(s)
- R Almstrand
- Department of Cell and Molecular Biology/Microbiology, University of Gothenburg, Sweden
| | | | | | | |
Collapse
|
40
|
Shotgun isotope array for rapid, substrate-specific detection of microorganisms in a microbial community. Appl Environ Microbiol 2011; 77:7430-2. [PMID: 21873478 DOI: 10.1128/aem.00121-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The shotgun isotope array method has been proposed to be an effective new tool for use in substrate-specific microbe exploration without any prior knowledge of the community composition. Proof of concept was demonstrated by detection of acetate-degrading microorganisms in activated sludge and further verified by independent stable isotope probing (SIP).
Collapse
|
41
|
Daims H, Wagner M. In situ techniques and digital image analysis methods for quantifying spatial localization patterns of nitrifiers and other microorganisms in biofilm and flocs. Methods Enzymol 2011; 496:185-215. [PMID: 21514465 DOI: 10.1016/b978-0-12-386489-5.00008-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The spatial localization patterns of microorganisms in multispecies biofilms reflect numerous phenomena that influence sessile microbial life, such as substrate concentration gradients within the biofilm and biological interactions with other biofilm populations. Quantitative and population-specific in situ analyses of spatial patterns have a high potential to provide novel insights into the biology of biofilm organisms, including yet uncultured microbes, but such approaches have been developed and used in a few studies only. Here, we outline digital image analysis methods to quantify the coaggregation, mutual avoidance, or random distribution of microbial populations in biofilm and flocs. A protocol is provided for fluorescence in situ hybridization with rRNA-targeted probes, which preserves the three-dimensional biofilm architecture for confocal microscopy and image analysis, and the combined use of these approaches is demonstrated by spatial analyses of nitrifying bacteria in complex biofilm samples.
Collapse
Affiliation(s)
- Holger Daims
- Department of Microbial Ecology, Ecology Center, University of Vienna, Vienna, Austria
| | | |
Collapse
|
42
|
Kovatcheva-Datchary P, Zoetendal EG, Venema K, de Vos WM, Smidt H. Tools for the tract: understanding the functionality of the gastrointestinal tract. Therap Adv Gastroenterol 2011; 2:9-22. [PMID: 21180550 DOI: 10.1177/1756283x09337646] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract comprises a series of complex and dynamic organs ranging from the stomach to the distal colon, which harbor immense microbial assemblages that are known to be vital for human health. Until recently, most of the details concerning our gut microbiota remained obscure. Over the past several years, however, a number of crucial technological and conceptual innovations have been introduced to shed more light on the composition and functionality of human gut microbiota. Recently developed high throughput approaches, including next-generation sequencing technologies and phylogenetic microarrays targeting ribosomal RNA gene sequences, allow for comprehensive analysis of the diversity and dynamics of the gut microbiota composition. Nevertheless, most of the microbes especially in the human large intestine still remain uncultured, and the in situ functions of distinct groups of the gut microbiota are therefore largely unknown, but pivotal to the understanding of their role in human physiology. Apart from functional and metagenomics approaches, stable isotope probing is a promising tool to link the metabolic activity and diversity of microbial communities, including yet uncultured microbes, in a complex environment. Advancements in current stable isotope probing approaches integrated with the application of high-throughput diagnostic microarray-based phylogenetic profiling and metabolic flux analysis should facilitate the understanding of human microbial ecology and will enable the development of innovative strategies to treat or prevent intestinal diseases of as yet unknown etiology.
Collapse
Affiliation(s)
- Petia Kovatcheva-Datchary
- TI Food and Nutrition, Wageningen, The Netherlands; and Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Kumar S, Dagar SS, Mohanty AK, Sirohi SK, Puniya M, Kuhad RC, Sangu KPS, Griffith GW, Puniya AK. Enumeration of methanogens with a focus on fluorescence in situ hybridization. Naturwissenschaften 2011; 98:457-72. [PMID: 21475941 DOI: 10.1007/s00114-011-0791-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/19/2011] [Accepted: 03/20/2011] [Indexed: 10/18/2022]
Abstract
Methanogens, the members of domain Archaea are potent contributors in global warming. Being confined to the strict anaerobic environment, their direct cultivation as pure culture is quite difficult. Therefore, a range of culture-independent methods have been developed to investigate their numbers, substrate uptake patterns, and identification in complex microbial communities. Unlike other approaches, fluorescence in situ hybridization (FISH) is not only used for faster quantification and accurate identification but also to reveal the physiological properties and spatiotemporal dynamics of methanogens in their natural environment. Aside from the methodological aspects and application of FISH, this review also focuses on culture-dependent and -independent techniques employed in enumerating methanogens along with associated problems. In addition, the combination of FISH with micro-autoradiography that could also be an important tool in investigating the activities of methanogens is also discussed.
Collapse
Affiliation(s)
- Sanjay Kumar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, India
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Loy A, Pester M, Steger D. Phylogenetic microarrays for cultivation-independent identification and metabolic characterization of microorganisms in complex samples. Methods Mol Biol 2011; 688:187-206. [PMID: 20938840 DOI: 10.1007/978-1-60761-947-5_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High-throughput sequencing and hybridization technologies promise new insights into the natural diversity and dynamics of microorganisms. Among these new technologies are phylogenetic oligonucleotide microarrays (phylochips) that depend on the standard molecules for taxonomic and environmental studies of microorganisms: the ribosomal RNAs and their encoding genes. The beauty of phylochip hybridization is that a sample can be analyzed with hundreds to thousands of rRNA (gene)-targeted probes simultaneously, lending itself to the efficient diagnosis of many target organisms in many samples. An emerging application of phylochips is the highly parallel analysis of structure-function relationships of microbial community members by employing in vivo substrate-mediated isotope labeling of rRNA (via the isotope array approach). This chapter provides an introduction to phylochip and isotope array analysis and detailed wet-lab protocols for preparation, labeling, and hybridization of target nucleic acids.
Collapse
Affiliation(s)
- Alexander Loy
- Department of Microbial Ecology, Faculty of Life Sciences, University of Vienna, Wien, Austria.
| | | | | |
Collapse
|
45
|
Abstract
Ammonia-oxidizing bacteria (AOB) have a key role in the conversion of ammonia to nitrite in wastewater treatment plants (WWTPs). The characterization of AOB communities in such systems requires the use of genomic methods as AOB are difficult to isolate from environmental samples. Fluorescence in situ hybridization (FISH) using fluorescently labeled probes targeting 16S rRNA molecules provides a robust tool for the detection and quantification of AOB populations in biofilms and activated sludge flocs. The abundance of AOB may be also determined by real-time quantitative polymerase chain reaction (qPCR) using primers that amplify either the 16S rRNA or amoA genes. The evaluation of changes in the AOB community in time and space can be undertaken by PCR amplification of these gene fragments followed by denaturing gradient gel electrophoresis (PCR-DGGE). In this chapter, we summarize the most commonly applied procedures for the analysis of the AOB in wastewater, emphasizing their advantages and limitations.
Collapse
Affiliation(s)
- Micol Bellucci
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
46
|
mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl Environ Microbiol 2010; 77:1118-22. [PMID: 21148691 DOI: 10.1128/aem.01733-10] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mathematical models of RNA-targeted fluorescence in situ hybridization (FISH) for perfectly matched and mismatched probe/target pairs are organized and automated in web-based mathFISH (http://mathfish.cee.wisc.edu). Offering the users up-to-date knowledge of hybridization thermodynamics within a theoretical framework, mathFISH is expected to maximize the probability of success during oligonucleotide probe design.
Collapse
|
47
|
Dominiak DM, Nielsen JL, Nielsen PH. Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms. Environ Microbiol 2010; 13:710-21. [PMID: 21118344 DOI: 10.1111/j.1462-2920.2010.02375.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new approach for quantification of extracellular DNA (eDNA) in mixed biofilms at microscale resolution was developed and combined with other staining techniques to assess the origin, abundance and role of eDNA in activated sludge biofilms. Most eDNA was found in close proximity to living cells in microcolonies, suggesting that most of it originated from an active secretion or alternatively, by lysis of a sub-population of cells. When the staining was combined with fluorescence in situ hybridization for identification of the microorganisms, it was found that the eDNA content varied among the different probe-defined species. The highest amount of eDNA was found in and around the microcolonies of denitrifiers belonging to the genera Curvibacter and Thauera, the ammonium-oxidizing Nitrosomonas and the nitrite-oxidizing Nitrospira. Other floc-formers also produced eDNA, although in lower amounts. The total eDNA content in activated sludge varied from 4 to 52 mg per gram volatile suspended solids in different wastewater treatment plants. Very high local concentrations within some microcolonies were found with up to approximately 300 mg of eDNA per g of organic matter. DNase digestion of activated sludge led to general floc disintegration and disruption of the microcolonies with high eDNA content, implying that eDNA was an important structural component in activated sludge biofilms.
Collapse
Affiliation(s)
- Dominik Marek Dominiak
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
48
|
Evidence for different contributions of archaea and bacteria to the ammonia-oxidizing potential of diverse Oregon soils. Appl Environ Microbiol 2010; 76:7691-8. [PMID: 20889792 DOI: 10.1128/aem.01324-10] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A method was developed to determine the contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to the nitrification potentials (NPs) of soils taken from forest, pasture, cropped, and fallowed (19 years) lands. Soil slurries were exposed to acetylene to irreversibly inactivate ammonia monooxygenase, and upon the removal of acetylene, the recovery of nitrification potential (RNP) was monitored in the presence and absence of bacterial or eukaryotic protein synthesis inhibitors. For unknown reasons, and despite measureable NPs, RNP did not occur consistently in forest soil samples; however, pasture, cropped, and fallowed soil RNPs commenced after lags that ranged from 12 to 30 h after acetylene removal. Cropped soil RNP was completely prevented by the bacterial protein synthesis inhibitor kanamycin (800 μg/ml), whereas a combination of kanamycin plus gentamicin (800 μg/ml each) only partially prevented the RNP (60%) of fallowed soils. Pasture soil RNP was completely insensitive to either kanamycin, gentamicin, or a combination of the two. Unlike cropped soil, pasture and fallowed soil RNPs occurred at both 30°C and 40°C and without supplemental NH(4)(+) (≤ 10 μM NH(4)(+) in solution), and pasture soil RNP demonstrated ∼ 50% insensitivity to 100 μM allyl thiourea (ATU). In addition, fallowed and pasture soil RNPs were insensitive to the fungal inhibitors nystatin and azoxystrobin. This combination of properties suggests that neither fungi nor AOB contributed to pasture soil RNP and that AOA were responsible for the RNP of the pasture soils. Both AOA and AOB may contribute to RNP in fallowed soil, while RNP in cropped soils was dominated by AOB.
Collapse
|
49
|
de los Reyes FL. Challenges in determining causation in structure-function studies using molecular biological techniques. WATER RESEARCH 2010; 44:4948-4957. [PMID: 20696455 DOI: 10.1016/j.watres.2010.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 05/29/2023]
Abstract
The use of molecular biological techniques for determining the levels and types of different microbial populations in bioreactors has led to the emergence of the microbial community 'structure-function' paradigm that is often used in research. Typically, lab- or full-scale systems are monitored for the relevant parameters, and these parameters are related to the changes in microbial populations. Research in activated sludge phenomena, such as filamentous bulking, filamentous foaming, nitrogen removal, and phosphorus removal, are replete with many examples of this 'structure-function' paradigm, most commonly those that involve 16S rRNA gene-based analysis of the microbial populations. In many cases, such studies assume a causal microbial population (e.g., a species that causes bulking or foaming), or conclude in identifying a causal population. However, assigning cause to specific organisms and populations is problematic in a complex environment such as wastewater bioreactors. The Koch-Henle postulates, the gold standard in evaluating causation of disease, have limitations when applied to systems with mixed microbial communities with complex interactions, particularly if pure cultures are not available. Molecular techniques that allow specific identification and quantification of organisms have been used by researchers to overcome the limitations of culture-based techniques, and at the same time, raised new questions on the applicability of causation postulates in environmental systems. In this paper, various causation criteria improving on the Koch-Henle postulates are presented. Complicating issues in assigning cause in wastewater bioreactors are identified. Approaches for determining cause-effect relationships are illustrated using 16S rDNA-based investigations of filaments that cause bulking and foaming in activated sludge. The hope is that a causation framework that accounts for the assumptions in molecular studies, as applied to wastewater treatment research, will lead to improved experimental design and analysis of data.
Collapse
Affiliation(s)
- Francis L de los Reyes
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC 27695-7908, USA.
| |
Collapse
|
50
|
Terada A, Lackner S, Kristensen K, Smets BF. Inoculum effects on community composition and nitritation performance of autotrophic nitrifying biofilm reactors with counter-diffusion geometry. Environ Microbiol 2010; 12:2858-72. [PMID: 20545751 DOI: 10.1111/j.1462-2920.2010.02267.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The link between nitritation success in a membrane-aerated biofilm reactor (MABR) and the composition of the initial ammonia- and nitrite-oxidizing bacterial (AOB and NOB) population was investigated. Four identically operated flat-sheet type MABRs were initiated with two different inocula: from an autotrophic nitrifying bioreactor (Inoculum A) or from a municipal wastewater treatment plant (Inoculum B). Higher nitritation efficiencies (NO(2)(-)-N/NH(4)(+)-N) were obtained in the Inoculum B- (55.2-56.4%) versus the Inoculum A- (20.2-22.1%) initiated reactors. The biofilms had similar oxygen penetration depths (100-150 µm), but the AOB profiles [based on 16S rRNA gene targeted real-time quantitative PCR (qPCR)] revealed different peak densities at or distant from the membrane surface in the Inoculum B- versus A-initiated reactors, respectively. Quantitative fluorescence in situ hybridization (FISH) revealed that the predominant AOB in the Inoculum A- and B-initiated reactors were Nitrosospira spp. (48.9-61.2%) versus halophilic and halotolerant Nitrosomonas spp. (54.8-63.7%), respectively. The latter biofilm displayed a higher specific AOB activity than the former biofilm (1.65 fmol cell(-1) h(-1) versus 0.79 fmol cell(-1) h(-1) ). These observations suggest that the AOB and NOB population compositions of the inoculum may determine dominant AOB in the MABR biofilm, which in turn affects the degree of attainable nitritation in an MABR.
Collapse
Affiliation(s)
- Akihiko Terada
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | |
Collapse
|