1
|
Williams M, Shamsi S, Williams T, Hernandez-Jover M. Bacteria of Zoonotic Interest Identified on Edible Freshwater Fish Imported to Australia. Foods 2023; 12:foods12061288. [PMID: 36981215 PMCID: PMC10048124 DOI: 10.3390/foods12061288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/22/2023] Open
Abstract
Previous research has shown that freshwater edible fish imported into Australia are not compliant with Australian importation guidelines and as a result may be high risk for bacterial contamination. In the present study, the outer surface of imported freshwater fish were swabbed, cultured, confirmatory tests performed and antimicrobial patterns investigated. Channidae fish (Sp. A/n = 66) were contaminated with zoonotic Salmonella sp./Staphylococcus aureus (n = 1/66) and other bacteria implicated in cases of opportunistic human infection, these being Pseudomonas sp. (including P. mendocina and P. pseudoalcaligenes (n = 34/66)); Micrococcus sp. (n = 32/66); Comamonas testosteroni (n = 27/66) and Rhizobium radiobacter (n = 3/66). Pangasiidae fish (Species B/n = 47) were contaminated with zoonotic Vibrio fluvialis (n = 10/47); Salmonella sp. (n = 6/47) and environmental bacteria Micrococcus sp. (n = 3/47). One sample was resistant to all antimicrobials tested and is considered to be Methicillin Resistant S. aureus. Mud, natural diet, or vegetation identified in Sp. A fish/or packaging were significantly associated with the presence of Pseudomonas spp. The study also showed that visibly clean fish (Sp. B) may harbour zoonotic bacteria and that certain types of bacteria are common to fish groups, preparations, and contaminants. Further investigations are required to support the development of appropriate food safety recommendations in Australia.
Collapse
Affiliation(s)
- Michelle Williams
- School of Agricultural, Environmental and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: or
| | - Shokoofeh Shamsi
- School of Agricultural, Environmental and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Thomas Williams
- Institute for Future Farming Systems, CQUniversity, Rockhampton, QLD 4701, Australia
| | - Marta Hernandez-Jover
- School of Agricultural, Environmental and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
2
|
VfqI-VfqR quorum sensing circuit modulates type VI secretion system VflT6SS2 in Vibrio fluvialis. Biochem Biophys Rep 2022; 31:101282. [PMID: 35669988 PMCID: PMC9166416 DOI: 10.1016/j.bbrep.2022.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
V. fluvialis is an emerging foodborne pathogen and could cause cholera-like gastroenteritis syndrome and poses a potential threat to public health. VflT6SS2 is a functionally active type VI secretion system (T6SS) in V. fluvialis which confers bactericidal activity. VflT6SS2 is composed of one major cluster and three hcp-vgrG orphan clusters. Previously, we identified two quorum sensing (QS) systems CqsA/LuxS-HapR and VfqI-VfqR in V. fluvialis and demonstrated that the former regulates VflT6SS2. However, whether VfqI-VfqR QS regulates VflT6SS2 is unknown. In this study, we showed that the mRNA abundances of VflT6SS2 tssD2 (hcp), tssI2 (vgrG) and tssB2 (vipA) were all significantly decreased in VfqI or/and VfqR deletion mutant(s). Consistently, Hcp expression/secretion was reduced too in these mutants. Complementation assay with VfqR mutant further confirmed that the reduced Hcp expression/secretion and impaired antibacterial virulence are restored by introducing VfqR-expressing plasmid. Reporter fusion analyses revealed that VfqR modulates the promoter activities of VflT6SS2. Bioinformatical prediction and further reporter fusion assay in E. coli supported that VfqR acts as a transcriptional factor to bind and regulate the gene expression of the VflT6SS2 major cluster. However, VfqR seems to promote transcription of hcp (tssD2) in the orphan clusters through elevating the expression of vasH which is encoded by the VflT6SS2 major cluster. Additionally, we found that the regulation intensity of VfqR on VflT6SS2 is weaker than that of HapR. In conclusion, our current study disclosed that in V. fluvialis, VfqI-VfqR circuit upregulates the expression and function of VflT6SS2 by directly or indirectly activating its transcription. These findings will enhance our understanding of the complicated regulatory network between QS and T6SS in V. fluvialis. VfqI-VfqR quorum sensing (QS) circuit positively modulates VflT6SS2 in V. fluvialis. VfqR directly activates VflT6SS2 major cluster while indirectly activates hcp orphan clusters. VfqR functions as a secondary QS regulator manipulating VflT6SS2 comparing with HapR.
Collapse
|
3
|
Accurate Identification of Diverse N-acyl Homoserine Lactones in Marine Vibrio fluvialis by UHPLC-MS/MS. Curr Microbiol 2022; 79:181. [PMID: 35508788 DOI: 10.1007/s00284-022-02879-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/12/2022] [Indexed: 11/03/2022]
Abstract
Vibrio fluvialis is a marine opportunistic pathogen that frequently causes diseases in aquatic animals and humans. V. fluvialis can produce quorum sensing signaling molecules to coordinate cell density-dependent behavioral changes, including N-acyl homoserine lactone (AHL), which acts as a vital mediator of virulence-associated gene expression. Currently, several AHL molecules in V. fluvialis have been detected via biological and physicochemical methods, although different detection approaches have generated diverse AHL profiles. Here, we describe the AHL-producing bacterium, V. fluvialis BJ-1, which was isolated from marine sediments from the East China Sea. V. fluvialis BJ-1 could stimulate AHL-mediated β-galactosidase synthesis of the biosensor Agrobacterium tumefaciens NTL4 (pZLR4) but could not induce violacein production in the AHL reporter strain, Chromobacterium violaceum CV026. This bacterial isolate exhibited strong AHL-producing activity at low cell density; however, the AHL activity declined when population density remained at high levels. Analysis of the AHLs by Ultra-High-Performance Liquid Chromatography tandem Mass Spectrometry demonstrated that V. fluvialis BJ-1 produced five different AHL signaling molecules, including two linear chain AHL products (C8- and C10-HSL), and three β-carbon-oxidative AHL products (3-O-C8-, 3-O-C10- and 3-O-C12-HSL). Significantly, the present study is the first to accurately define the AHL profile of marine V. fluvialis. In future, the coupling of UHPLC to ESI-MS/MS is expected to be utilized for the accurate determination of AHL profiles in marine Vibrio.
Collapse
|
4
|
Onohuean H, Okoh AI, Nwodo UU. Epidemiologic potentials and correlational analysis of Vibrio species and virulence toxins from water sources in greater Bushenyi districts, Uganda. Sci Rep 2021; 11:22429. [PMID: 34789791 PMCID: PMC8599681 DOI: 10.1038/s41598-021-01375-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Adequate water supply is one of the public health issues among the population living in low-income settings. Vibriosis remain a significant health challenge drawing the attention of both healthcare planners and researchers in South West districts of Uganda. Intending to clamp down the disease cases in the safest water deprive locality, we investigated the virulent toxins as contaminants and epidemiologic potentials of Vibrio species recovered from surface waters in greater Bushenyi districts, Uganda. Surface water sources within 46 villages located in the study districts were obtained between June and October 2018. Standard microbiological and molecular methods were used to analyse samples. Our results showed that 981 presumptive isolates retrieved cell counts of 10-100 CFU/g, with, with (640) 65% confirmed as Vibrio genus using polymerase chain reaction, which is distributed as follows; V. vulnificus 46/640 (7.2%), V. fluvialis 30/594 (5.1), V. parahaemolyticus 21/564 (3.7), V. cholera 5/543 (0.9), V. alginolyticus 62/538 (11.5) and V. mimicus 20/476 (4.2). The virulence toxins observed were heat-stable enterotoxin (stn) 46 (82.10%), V. vulnificus virulence gene (vcgCPI) 40 (87.00%), extracellular haemolysin gene {vfh 21 (70.00)} and Heme utilization protein gene {hupO 5 (16.70)}. The cluster analysis depicts hupO (4.46% n = 112); vfh (18.75%, n = 112); vcgCPI and stn (35.71%, & 41.07%, n = 112). The principal component analysis revealed the toxins (hupO, vfh) were correlated with the isolate recovered from Bohole water (BW) source, while (vcgCPI, stn) toxins are correlated with natural raw water (NRW) and open springs (OS) water sources isolates. Such observation indicates that surface waters sources are highly contaminated with an odds ratio of 1.00, 95% CI (70.48-90.5), attributed risk of (aR = 64.29) and relative risk of (RR = 73.91). In addition, it also implies that the surface waters sources have > 1 risk of contamination with vfh and > six times of contamination with hupO (aR = 40, - 66). This is a call of utmost importance to the population, which depends on these water sources to undertake appropriate sanitation, personal hygienic practices and potential measures that ensure water quality.
Collapse
Affiliation(s)
- Hope Onohuean
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag 1314, Alice, 5700, Eastern Cape, South Africa.
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Western-Campus, Ishaka-Bushenyi, Uganda.
| | - Anthony I Okoh
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag 1314, Alice, 5700, Eastern Cape, South Africa
| | - Uchechukwu U Nwodo
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag 1314, Alice, 5700, Eastern Cape, South Africa
| |
Collapse
|
5
|
Jung J, Gillevet PM, Sikaroodi M, Andrews J, Song B, Shields JD. Comparative study of the hemolymph microbiome between live and recently dead American lobsters Homarus americanus. DISEASES OF AQUATIC ORGANISMS 2021; 143:147-158. [PMID: 33629659 DOI: 10.3354/dao03568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lobsters and other crustaceans do not have sterile hemolymph. Despite this, little is known about the microbiome in the hemolymph of the lobster Homarus americanus. The purpose of this study was to characterize the hemolymph microbiome in lobsters. The lobsters were part of a larger study on the effect of temperature on epizootic shell disease, and several died during the course of the study, providing an opportunity to examine differences in the microbiomes between live and recently dead (1-24 h) animals. The hemolymph microbiomes of live lobsters was different from those in dead animals and both were different from the tank microbiome in which the animals had been held. The microbiomes of live lobsters were more diverse and had a different suite of bacteria than those from dead animals. The dominant taxa in live lobsters belonged to Flavobacteriaceae and Rhodobacteraceae, whereas Vibrionaceae and Enterobacteriaceae were predominant in the dead lobsters. Although aquarium microbiomes overlapped with the hemolymph microbiomes, there was less overlap and lower abundance of taxa in comparison with hemolymph from live lobsters. Previous studies reporting bacteria in the digestive tract of lobsters suggested that Vibrionaceae and Enterobacteriaceae had invaded the hemolymph via the gut. Our study suggests that hemolymph bacteria abundant in live lobsters do not originate from the tank milieu and comprise a rich, natural, or native background of bacterial constituents.
Collapse
Affiliation(s)
- Jibom Jung
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | | | | | | | | | | |
Collapse
|
6
|
de Souza Valente C, Wan AHL. Vibrio and major commercially important vibriosis diseases in decapod crustaceans. J Invertebr Pathol 2021; 181:107527. [PMID: 33406397 DOI: 10.1016/j.jip.2020.107527] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022]
Abstract
Bacteria fromthe Vibriogenus are autochthonous to aquatic environments and ubiquitous in aquaculture production systems. Many Vibrio species are non-pathogenic and can be commonly found in healthy farmed aquatic animals. However, some Vibrio species and strains are pathogenic leading to a variety of 'vibriosis' diseases. These diseases can have a significant negative impact on animal production, including farmed crustaceans such as shrimps, lobsters, and crabs. As such, vibriosis can pose a threat to meeting growing food demand and global food security. Preventive management is essential to avoid the onset of vibriosis. This includes a robust health management plan, the use of prophylaxis and treatment measures, and enhancing animal health through nutrition. Furthermore, the use of probiotics, prebiotics, synbiotics, quorum sensing disruption, green water, biofloc, bacteriophages, and immune priming could also play a role in preventing and controlling a vibriosis outbreak. This review aims to inform and update the reader about the current state of knowledge about Vibrio and associated vibriosis in farmed crustaceans (i.e. shrimp, lobster, and crabs). Furthermore, the review will identify potential knowledge gaps in the literature, which serves as a basis for future research priorities.
Collapse
Affiliation(s)
- Cecília de Souza Valente
- Aquaculture and Nutrition Research Unit, Room 204, Annex Building, Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Galway City H91 TK33, Ireland; Aquaculture and Nutrition Research Unit, Carna Research Station, Ryan Institute, National University of Ireland Galway, Carna, Connemara, Co. Galway H91 V8Y1, Ireland.
| | - Alex H L Wan
- Aquaculture and Nutrition Research Unit, Room 204, Annex Building, Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Galway City H91 TK33, Ireland; Aquaculture and Nutrition Research Unit, Carna Research Station, Ryan Institute, National University of Ireland Galway, Carna, Connemara, Co. Galway H91 V8Y1, Ireland
| |
Collapse
|
7
|
Arunkumar M, LewisOscar F, Thajuddin N, Pugazhendhi A, Nithya C. In vitro and in vivo biofilm forming Vibrio spp: A significant threat in aquaculture. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Girard L. Quorum sensing in Vibrio spp.: the complexity of multiple signalling molecules in marine and aquatic environments. Crit Rev Microbiol 2019; 45:451-471. [PMID: 31241379 DOI: 10.1080/1040841x.2019.1624499] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Quorum sensing (QS) is a density-dependent mechanism enabling bacteria to coordinate their actions via the release of small diffusible molecules named autoinducers (AIs). Vibrio spp. are able to adapt to changing environmental conditions by using a wide range of physiological mechanisms and many species pose a threat for human health and diverse marine and estuarine ecosystems worldwide. Cell-to-cell communication controls many of their vital functions such as niche colonization, survival strategies, or virulence. In this review, I summarize (1) the different known QS pathways (2) the diversity of AIs as well as their biological functions, and (3) the QS-mediated interactions between Vibrio and other organisms. However, the current knowledge is limited to a few pathogenic or bioluminescent species and in order to provide a genus-wide view an inventory of QS genes among 87 Vibrio species has been made. The large diversity of signal molecules and their differential effects on a particular physiological function suggest that the complexity of multiple signalling systems within bacterial communities is far from being fully understood. I question here the real level of specificity of such communication in the environment and discuss the different perspectives in order to better apprehend QS in natural habitats.
Collapse
Affiliation(s)
- Léa Girard
- Centre of Microbial and Plant Genetics , KU Leuven , Belgium
| |
Collapse
|
9
|
Ben-Horin T, Lafferty KD, Bidegain G, Lenihan HS. Fishing diseased abalone to promote yield and conservation. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150211. [PMID: 26880843 PMCID: PMC4760141 DOI: 10.1098/rstb.2015.0211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2015] [Indexed: 12/27/2022] Open
Abstract
Past theoretical models suggest fishing disease-impacted stocks can reduce parasite transmission, but this is a good management strategy only when the exploitation required to reduce transmission does not overfish the stock. We applied this concept to a red abalone fishery so impacted by an infectious disease (withering syndrome) that stock densities plummeted and managers closed the fishery. In addition to the non-selective fishing strategy considered by past disease-fishing models, we modelled targeting (culling) infected individuals, which is plausible in red abalone because modern diagnostic tools can determine infection without harming landed abalone and the diagnostic cost is minor relative to the catch value. The non-selective abalone fishing required to eradicate parasites exceeded thresholds for abalone sustainability, but targeting infected abalone allowed the fishery to generate yield and reduce parasite prevalence while maintaining stock densities at or above the densities attainable if the population was closed to fishing. The effect was strong enough that stock and yield increased even when the catch was one-third uninfected abalone. These results could apply to other fisheries as the diagnostic costs decline relative to catch value.
Collapse
Affiliation(s)
- Tal Ben-Horin
- College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, USA Haskin Shellfish Research Laboratory, Rutgers University, Port Norris, NJ 08349, USA
| | - Kevin D Lafferty
- US Geological Survey, Western Ecological Research Center, c/o Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Gorka Bidegain
- Gulf Coast Research Laboratory, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Hunter S Lenihan
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
10
|
Nongogo V, Okoh AI. Occurrence of Vibrio pathotypes in the final effluents of five wastewater treatment plants in Amathole and Chris Hani District Municipalities in South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:7755-66. [PMID: 25093653 PMCID: PMC4143831 DOI: 10.3390/ijerph110807755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/16/2014] [Accepted: 07/25/2014] [Indexed: 01/22/2023]
Abstract
We assessed the occurrence of Vibrio pathogens in the final effluents of five wastewater treatment plants (WWTPs) located in Amathole and Chris Hani District Municipalities in South Africa over a 12 months period between September 2012 and August 2013 using standard membrane filtration technique followed by cultivation on thiosulphate citrate-bile salts-sucrose (TCBS) agar. The identities of the presumptive Vibrio isolates were confirmed using polymerase chain reaction (PCR) including delineation into V. parahaemolyticus, V. vulnificus and V. fluvialis pathotypes. The counts of Vibrio spp. varied with months in all the study sites and ranged in the order of 101 and 104 CFU/100mL. Vibrio distribution also showed seasonality with high counts being obtained in autumn and spring (p < 0.05). Prevalence of Vibrio spp. among the five WWTPs also differed significantly (p < 0.05). Of the 300 isolates that were confirmed as belonging to the Vibrio genus, 29% (86) were V. fluvialis, 28% (84) were V. vulnificus and 12% (35) were V. parahaemolyticus. The isolation of Vibrio pathogens from the final effluent suggests that this pathogen is in circulation in some pockets of the population and that the WWTPs under study do not efficiently remove bacterial pathogens from the wastewater and consequently are threats to public health.
Collapse
Affiliation(s)
- Vuyokazi Nongogo
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
| |
Collapse
|
11
|
Smith AL, Whitten MMA, Hirschle L, Pope EC, Wootton EC, Vogan CL, Rowley AF. Bacterial septicaemia in prerecruit edible crabs, Cancer pagurus L. JOURNAL OF FISH DISEASES 2014; 37:729-737. [PMID: 23962351 DOI: 10.1111/jfd.12163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
Juvenile edible crabs, Cancer pagurus L., were surveyed from Mumbles Head and Oxwich Bay in South Wales, UK, and the number of heterotrophic bacteria and vibrios in the hemolymph was determined. The percentage of crabs with hemolymph containing bacteria was variable over the survey with higher numbers of animals affected in summer than in winter. Post-moult crabs contained significantly higher numbers of heterotrophic bacteria in the hemolymph than pre- and intermoult animals. Crabs with cuticular damage to the gills also had significantly higher numbers of bacteria in the hemolymph. Crabs were found to have a high prevalence of infection by the dinoflagellate, Hematodinium. Such animals had significantly fewer bacteria in the blood in comparison with Hematodinium-free animals. Of the 463 crabs surveyed, only 3 individuals had hemolymph containing 2000 + CFU mL(-1). Based on 16S rRNA gene sequences, two of these crabs contained a Vibrio pectenicida-like isolate, while the other had a mixed assemblage of vibrios. Although 59% of the crabs surveyed had culturable bacteria in the hemolymph, the majority only had small numbers (<2000 CFU mL(-1) ), suggesting that such infections may be of limited importance to the sustainability of the crab fishery in this region.
Collapse
Affiliation(s)
- A L Smith
- Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Identification of genetic bases of vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis. Appl Environ Microbiol 2014; 80:2029-37. [PMID: 24441165 DOI: 10.1128/aem.03588-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vibrio fluvialis is an important food-borne pathogen that causes diarrheal illness and sometimes extraintestinal infections in humans. In this study, we sequenced the genome of a clinical V. fluvialis strain and determined its phylogenetic relationships with other Vibrio species by comparative genomic analysis. We found that the closest relationship was between V. fluvialis and V. furnissii, followed by those with V. cholerae and V. mimicus. Moreover, based on genome comparisons and gene complementation experiments, we revealed genetic mechanisms of the biochemical tests that differentiate V. fluvialis from closely related species. Importantly, we identified a variety of genes encoding potential virulence factors, including multiple hemolysins, transcriptional regulators, and environmental survival and adaptation apparatuses, and the type VI secretion system, which is indicative of complex regulatory pathways modulating pathogenesis in this organism. The availability of V. fluvialis genome sequences may promote our understanding of pathogenic mechanisms for this emerging pathogen.
Collapse
|
13
|
Liang P, Cui X, Du X, Kan B, Liang W. The virulence phenotypes and molecular epidemiological characteristics of Vibrio fluvialis in China. Gut Pathog 2013; 5:6. [PMID: 23522652 PMCID: PMC3636005 DOI: 10.1186/1757-4749-5-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/27/2013] [Indexed: 01/22/2023] Open
Abstract
Background Vibrio fluvialis is considered to be an emerging foodborne pathogen and has been becoming a high human public health hazard all over the world, especially in coastal areas of developing countries and regions with poor sanitation. The distribution of virulence factors, microbiological and molecular epidemiological features of V. fluvialis isolates in China remains to be examined. Methods and results PCR targeted at the virulence determinants and phenotype tests including metabolism, virulence and antibiotic susceptibility were performed. Pulsed-field gel electrophoresis (PFGE) analysis was used to access the relatedness of isolates. A strain with deletion of the arginine dihydrolase system was first reported and proved in molecular level by PCR. Virulence genes vfh, hupO and vfpA were detected in all strains, the ability to produce hemolysin, cytotxin, protease and biofilm formation varied with strains. High resistance rate to β-lactams, azithromycin and sulfamethoxazole were observed. Twenty-seven percent of test strains showed resistant to two and three antibiotics. PFGE analysis demonstrated great genetic heterogeneity of test V. fluvialis strains. Conclusion This study evaluated firstly the biological characteristics and molecular epidemiological features of V. fluvialis in China. Some uncommon biochemical characteristics were found. Virulence genes were widely distributed in the isolates from patient and seafood sources, and the occurrence of virulence phenotypes varied with strains. Continued and enhanced laboratory based-surveillance is needed in the future together with systematically collection of the epidemiological information of the cases or the outbreaks.
Collapse
Affiliation(s)
- Pu Liang
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | | | | | | | | |
Collapse
|
14
|
Shields JD. The impact of pathogens on exploited populations of decapod crustaceans. J Invertebr Pathol 2012; 110:211-24. [DOI: 10.1016/j.jip.2012.03.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/10/2012] [Indexed: 11/26/2022]
|
15
|
RAISSY MEHDI, MOUMENI MANOUCHEHR, ANSARI MAHSA, RAHIMI EBRAHIM. OCCURRENCE OF VIBRIO SPP. IN LOBSTER AND CRAB FROM THE PERSIAN GULF. J Food Saf 2012. [DOI: 10.1111/j.1745-4565.2012.00368.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Sathyamoorthy V, Datta AR, Lee CJ, Kothary MH, McCardell BA, Tall BD. Cloning and partial characterization of a novel hemolysin gene of Vibrio tubiashii and the development of a PCR-based detection assay. Can J Microbiol 2011; 57:714-21. [PMID: 21854089 DOI: 10.1139/w11-058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vibrio tubiashii expresses virulence factors, such as a vulnificolysin-like hemolysin or cytolysin and a zinc metalloprotease, similar to those of other pathogenic vibrios. In this study, we report the cloning of a novel hemolysin gene of V. tubiashii in Escherichia coli . A V. tubiashii gene library was screened for hemolytic activity on sheep blood agar. Three hemolytic clones pGem:hly1, pGem:hly2, and pGem:hly3 were sequenced, and the sequences showed a strong homology to the ribA gene coding for guanosine triphosphate cyclohydrolase II (GCH II), required for riboflavin biosynthesis and reported to be responsible for hemolytic activity in Helicobacter pylori . The plasmids pGem:hly1 and pGem:hly3 when introduced into E. coli BSV18 (ribA18::Tn5) were able to restore growth of strain BSV18 in a medium without riboflavin and also produced hemolytic activity on blood agar. PCR primers based on the cloned hly-ribA sequence were tested using 23 different Vibrio strains representing 10 different species. Amplification of ribA gene locus only occurred with V. tubiashii strains. In summary, our results indicate that we have cloned a ribA homolog of V. tubiashii that imparts hemolytic activity to E. coli clones, and primers based on this gene locus might be useful as a species-specific identification tool for V. tubiashii.
Collapse
Affiliation(s)
- Venugopal Sathyamoorthy
- MOD-1 Facility, Virulence Mechanisms Branch, (HFS-025), Division of Virulence Assessment, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA.
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Anti-lipopolysaccharide factors in the American lobster Homarus americanus: molecular characterization and transcriptional response to Vibrio fluvialis challenge. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 3:263-9. [PMID: 19956341 DOI: 10.1016/j.cbd.2008.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two partial mRNA sequences predicted to encode anti-lipopolysaccharide factors (ALFs) were identified among expressed sequence tags generated from the American lobster Homarus americanus and complete cDNA sequences were obtained from library clones. Comparison of the translated amino acid sequences to those publicly available confirmed similarity to arthropod anti-lipopolysaccharide factors. Both protein sequences, designated ALFHa-1 and ALFHa-2, contained an N-terminal signal peptide and two half-cysteines participating in a disulfide bridge, features conserved in other ALFs. Predicted secondary structures were similar to that described for the ALF from the horseshoe crab Limulus polyphemus. As part of an exploratory study of immunity in H. americanus, lobsters were injected with the bacterium Vibrio fluvialis and gill, hematopoietic, and hepatopancreas tissues were sampled for analysis of gene expression of ALFHa-1 and ALFHa-2 by quantitative PCR. The relative abundance of ALFHa-2 mRNA was not significantly affected by Vibrio injection in any of the three tissues tested. In contrast, ALFHa-1 mRNA levels in gills were increased by the treatment some 17-fold. Our results support a molecularly specific regulation of antimicrobial proteins in response to bacterial infection in H. americanus.
Collapse
|
19
|
Austin B. Vibrios as causal agents of zoonoses. Vet Microbiol 2010; 140:310-7. [DOI: 10.1016/j.vetmic.2009.03.015] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/09/2009] [Accepted: 03/02/2009] [Indexed: 01/01/2023]
|
20
|
Isnansetyo A, Istiqomah I, Muhtadi, Sinansari S, Hernawan RK, Triyanto, Widada J. A potential bacterial biocontrol agent, strain S2V2 against pathogenic marine Vibrio in aquaculture. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-9992-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Ulcerative enteritis in Homarus americanus: Case report and molecular characterization of intestinal aerobic bacteria of apparently healthy lobsters in live storage. J Invertebr Pathol 2008; 99:129-35. [DOI: 10.1016/j.jip.2008.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 06/14/2008] [Accepted: 06/18/2008] [Indexed: 11/21/2022]
|
22
|
Vogan CL, Powell A, Rowley AF. Shell disease in crustaceans – just chitin recycling gone wrong? Environ Microbiol 2008; 10:826-35. [DOI: 10.1111/j.1462-2920.2007.01514.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Curtis SK, Kothary MH, Blodgett RJ, Raybourne RB, Ziobro GC, Tall BD. Rugosity in Grimontia hollisae. Appl Environ Microbiol 2006; 73:1215-24. [PMID: 17189437 PMCID: PMC1828682 DOI: 10.1128/aem.02553-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Grimontia hollisae, formerly Vibrio hollisae, produces both smooth and rugose colonial variants. The rugose colony phenotype is characterized by wrinkled colonies producing copious amounts of exopolysaccharide. Cells from a rugose colony grown at 30 degrees C form rugose colonies, while the same cells grown at 37 degrees C form smooth colonies, which are characterized by a nonwrinkled, uncrannied appearance. Stress response studies revealed that after exposure to bleach for 30 min, rugose survivors outnumbered smooth survivors. Light scatter information obtained by flow cytometry indicated that rugose cells clumped into clusters of three or more cells (average, five cells) and formed two major clusters, while smooth cells formed only one cluster of single cells or doublets. Fluorescent lectin-binding flow cytometry studies revealed that the percentages of rugose cells that bound either wheat germ agglutinin (WGA) or Galanthus nivalis lectin (GNL) were greater than the percentages of smooth cells that bound the same lectins (WGA, 35% versus 3.5%; GNL, 67% versus 0.21%). These results indicate that the rugose exopolysaccharide consists partially of N-acetylglucosamine and mannose. Rugose colonies produced significantly more biofilm material than did smooth colonies, and rugose colonies grown at 30 degrees C produced more biofilm material than rugose colonies grown at 37 degrees C. Ultrastructurally, rugose colonies show regional cellular differentiation, with apical and lateral colonial regions containing cells embedded in a matrix stained by Alcian Blue. The cells touching the agar surface are packed tightly together in a palisade-like manner. The central region of the colony contains irregularly arranged, fluid-filled spaces and loosely packed chains or arrays of coccoid and vibrioid cells. Smooth colonies, in contrast, are flattened, composed of vibrioid cells, and lack distinct regional cellular differences. Results from suckling mouse studies showed that both orally fed rugose and smooth variants elicited significant, but similar, amounts of fluid accumulated in the stomach and intestines. These observations comprise the first report of expression and characterization of rugosity by G. hollisae and raise the possibility that expression of rugose exopolysaccharide in this organism is regulated at least in part by growth temperature.
Collapse
Affiliation(s)
- S K Curtis
- U.S. Food and Drug Administration, College Park, MD 20740, USA
| | | | | | | | | | | |
Collapse
|