1
|
Ligda P, Mittas N, Kyzas GZ, Claerebout E, Sotiraki S. Machine learning and explainable artificial intelligence for the prevention of waterborne cryptosporidiosis and giardiosis. WATER RESEARCH 2024; 262:122110. [PMID: 39042970 DOI: 10.1016/j.watres.2024.122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Cryptosporidium and Giardia are important parasitic protozoa due to their zoonotic potential and impact on human health, and have often caused waterborne outbreaks of disease. Detection of (oo)cysts in water matrices is challenging and extremely costly, thus only few countries have legislated for regular monitoring of drinking water for their presence. Several attempts have been made trying to investigate the association between the presence of such (oo)cysts in waters with other biotic or abiotic factors, with inconclusive findings. In this regard, the aim of this study was the development of an holistic approach leveraging Machine Learning (ML) and eXplainable Artificial Intelligence (XAI) techniques, in order to provide empirical evidence related to the presence and prediction of Cryptosporidium oocysts and Giardia cysts in water samples. To meet this objective, we initially modelled the complex relationship between Cryptosporidium and Giardia (oo)cysts and a set of parasitological, microbiological, physicochemical and meteorological parameters via a model-agnostic meta-learner algorithm that provides flexibility regarding the selection of the ML model executing the fitting task. Based on this generic approach, a set of four well-known ML candidates were, empirically, evaluated in terms of their predictive capabilities. Then, the best-performed algorithms, were further examined through XAI techniques for gaining meaningful insights related to the explainability and interpretability of the derived solutions. The findings reveal that the Random Forest achieves the highest prediction performance when the objective is the prediction of both contamination and contamination intensity with Cryptosporidium oocysts in a given water sample, with meteorological/physicochemical and microbiological markers being informative, respectively. For the prediction of contamination with Giardia, the eXtreme Gradient Boosting with physicochemical parameters was the most efficient algorithm, while, the Support Vector Regression that takes into consideration both microbiological and meteorological markers was more efficient for evaluating the contamination intensity with cysts. The results of the study designate that the adoption of ML and XAI approaches can be considered as a valuable tool for unveiling the complicated correlation of the presence and contamination intensity with these zoonotic parasites that could constitute, in turn, a basis for the development of monitoring platforms and early warning systems for the prevention of waterborne disease outbreaks.
Collapse
Affiliation(s)
- Panagiota Ligda
- Laboratory of Parasitology, Veterinary Research Institute, Hellenic Agricultural Organization - DIMITRA, Thermi, Thessaloniki 57001, Greece.
| | - Nikolaos Mittas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala GR-65404, Greece
| | - George Z Kyzas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala GR-65404, Greece
| | - Edwin Claerebout
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke B-9820, Belgium
| | - Smaragda Sotiraki
- Laboratory of Parasitology, Veterinary Research Institute, Hellenic Agricultural Organization - DIMITRA, Thermi, Thessaloniki 57001, Greece
| |
Collapse
|
2
|
Ligda P, Claerebout E, Kostopoulou D, Zdragas A, Casaert S, Robertson LJ, Sotiraki S. Cryptosporidium and Giardia in surface water and drinking water: Animal sources and towards the use of a machine-learning approach as a tool for predicting contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114766. [PMID: 32417583 DOI: 10.1016/j.envpol.2020.114766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Cryptosporidium and Giardia are important parasites due to their zoonotic potential and impact on human health, often causing waterborne outbreaks of disease. Detection of (oo)cysts in water matrices is challenging and few countries have legislated water monitoring for their presence. The aim of this study was to investigate the presence and origin of these parasites in different water sources in Northern Greece and identify interactions between biotic/abiotic factors in order to develop risk-assessment models. During a 2-year period, using a longitudinal, repeated sampling approach, 12 locations in 4 rivers, irrigation canals, and a water production company, were monitored for Cryptosporidium and Giardia, using standard methods. Furthermore, 254 faecal samples from animals were collected from 15 cattle and 12 sheep farms located near the water sampling points and screened for both parasites, in order to estimate their potential contribution to water contamination. River water samples were frequently contaminated with Cryptosporidium (47.1%) and Giardia (66.2%), with higher contamination rates during winter and spring. During a 5-month period, (oo)cysts were detected in drinking-water (<1/litre). Animals on all farms were infected by both parasites, with 16.7% of calves and 17.2% of lambs excreting Cryptosporidium oocysts and 41.3% of calves and 43.1% of lambs excreting Giardia cysts. The most prevalent species identified in both water and animal samples were C. parvum and G. duodenalis assemblage AII. The presence of G. duodenalis assemblage AII in drinking water and C. parvum IIaA15G2R1 in surface water highlights the potential risk of waterborne infection. No correlation was found between (oo)cyst counts and faecal-indicator bacteria. Machine-learning models that can predict contamination intensity with Cryptosporidium (75% accuracy) and Giardia (69% accuracy), combining biological, physicochemical and meteorological factors, were developed. Although these prediction accuracies may be insufficient for public health purposes, they could be useful for augmenting and informing risk-based sampling plans.
Collapse
Affiliation(s)
- Panagiota Ligda
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium; Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| | - Edwin Claerebout
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Despoina Kostopoulou
- Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| | - Antonios Zdragas
- Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| | - Stijn Casaert
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Lucy J Robertson
- Parasitology, Department of Paraclinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 369 Sentrum, 0102, Oslo, Norway.
| | - Smaragda Sotiraki
- Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| |
Collapse
|
3
|
Zahedi A, Monis P, Gofton AW, Oskam CL, Ball A, Bath A, Bartkow M, Robertson I, Ryan U. Cryptosporidium species and subtypes in animals inhabiting drinking water catchments in three states across Australia. WATER RESEARCH 2018; 134:327-340. [PMID: 29438893 DOI: 10.1016/j.watres.2018.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/22/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
As part of long-term monitoring of Cryptosporidium in water catchments serving Western Australia, New South Wales (Sydney) and Queensland, Australia, we characterised Cryptosporidium in a total of 5774 faecal samples from 17 known host species and 7 unknown bird samples, in 11 water catchment areas over a period of 30 months (July 2013 to December 2015). All samples were initially screened for Cryptosporidium spp. at the 18S rRNA locus using a quantitative PCR (qPCR). Positives samples were then typed by sequence analysis of an 825 bp fragment of the 18S gene and subtyped at the glycoprotein 60 (gp60) locus (832 bp). The overall prevalence of Cryptosporidium across the various hosts sampled was 18.3% (1054/5774; 95% CI, 17.3-19.3). Of these, 873 samples produced clean Sanger sequencing chromatograms, and the remaining 181 samples, which initially produced chromatograms suggesting the presence of multiple different sequences, were re-analysed by Next- Generation Sequencing (NGS) to resolve the presence of Cryptosporidium and the species composition of potential mixed infections. The overall prevalence of confirmed mixed infection was 1.7% (98/5774), and in the remaining 83 samples, NGS only detected one species of Cryptosporidium. Of the 17 Cryptosporidium species and four genotypes detected (Sanger sequencing combined with NGS), 13 are capable of infecting humans; C. parvum, C. hominis, C. ubiquitum, C. cuniculus, C. meleagridis, C. canis, C. felis, C. muris, C. suis, C. scrofarum, C. bovis, C. erinacei and C. fayeri. Oocyst numbers per gram of faeces (g-1) were also determined using qPCR, with medians varying from 6021-61,064 across the three states. The significant findings were the detection of C. hominis in cattle and kangaroo faeces and the high prevalence of C. parvum in cattle. In addition, two novel C. fayeri subtypes (IVaA11G3T1 and IVgA10G1T1R1) and one novel C. meleagridis subtype (IIIeA18G2R1) were identified. This is also the first report of C. erinacei in Australia. Future work to monitor the prevalence of Cryptosporidium species and subtypes in animals in these catchments is warranted.
Collapse
Affiliation(s)
- Alireza Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, Australia
| | - Alexander W Gofton
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Charlotte L Oskam
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | | | | | | | - Ian Robertson
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia; China-Australia Joint Research and Training Center for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| |
Collapse
|
4
|
Comparison of current methods used to detect Cryptosporidium oocysts in stools. Int J Hyg Environ Health 2018; 221:743-763. [PMID: 29776848 DOI: 10.1016/j.ijheh.2018.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 01/12/2023]
Abstract
In this review all of the methods that are currently in use for the investigation of Cryptosporidium in stool material are highlighted and critically discussed. It appears that more qualifications and background knowledge in this field regarding the diagnosis of the Cryptosporidium parasite is required. Furthermore, there is no standardization for the protocols that are commonly used to either detect oocysts in faeces or to diagnose the Cryptosporidium infection. It is therefore necessary to initiate further education and research that will assist in improving the accuracy of the diagnosis of Cryptosporidium oocysts in the faecal micro-cosmos. Where ambient concentrations of oocysts are low in stool material, detection becomes a formidable task. Procedures for ring tests and the standardization of multi-laboratory testing are recommended. It is also necessary to enhance the routine surveillance capacity of cryptosporidiosis and to improve the safety against it, considering the fact that this disease is under diagnosed and under reported. This review is intended to stimulate research that could lead to future improvements and further developments in monitoring the diagnostic methodologies that will assist in harmonizing Cryptosporidium oocysts in stool diagnosis.
Collapse
|
5
|
Ryan U, Zahedi A, Paparini A. Cryptosporidium in humans and animals-a one health approach to prophylaxis. Parasite Immunol 2017; 38:535-47. [PMID: 27454991 DOI: 10.1111/pim.12350] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/05/2016] [Indexed: 01/13/2023]
Abstract
Cryptosporidium is a major cause of moderate-to-severe diarrhoea in humans worldwide, second only to rotavirus. Due to the wide host range and environmental persistence of this parasite, cryptosporidiosis can be zoonotic and associated with foodborne and waterborne outbreaks. Currently, 31 species are recognized as valid, and of these, Cryptosporidium hominis and Cryptosporidium parvum are responsible for the majority of infections in humans. The immune status of the host, both innate and adaptive immunity, has a major impact on the severity of the disease and its prognosis. Immunocompetent individuals typically experience self-limiting diarrhoea and transient gastroenteritis lasting up to 2 weeks and recover without treatment, suggesting an efficient host antiparasite immune response. Immunocompromised individuals can suffer from intractable diarrhoea, which can be fatal. Effective drug treatments and vaccines are not yet available. As a result of this, the close cooperation and interaction between veterinarians, health physicians, environmental managers and public health operators is essential to properly control this disease. This review focuses on a One Health approach to prophylaxis, including the importance of understanding transmission routes for zoonotic Cryptosporidium species, improved sanitation and better risk management, improved detection, diagnosis and treatment and the prospect of an effective anticryptosporidial vaccine.
Collapse
Affiliation(s)
- U Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia.
| | - A Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - A Paparini
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| |
Collapse
|
6
|
Electrical cream separator coupled with vacuum filtration for the purification of eimerian oocysts and trichostrongylid eggs. Sci Rep 2017; 7:43346. [PMID: 28233853 PMCID: PMC5324129 DOI: 10.1038/srep43346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/30/2017] [Indexed: 11/09/2022] Open
Abstract
Several methods have been proposed for separation of eimerian oocysts and trichostrongylid eggs from extraneous debris; however, these methods have been considered to be still inconvenient in terms of time and wide-ranging applications. We describe herein an alternative way using the combination of electrical cream separator and vacuum filtration for harvesting and purifying eimerian oocysts and haemonchine eggs on large-scale applications with approximately 81% and 92% recovery rates for oocysts and nematode eggs obtained from avian and ovine faeces, correspondingly. The sporulation percentages as a measure of viability in the harvested oocysts and eggs from dry faecal materials are nearly 68% and 74%, respectively, and 12 liters of faecal suspension can be processed in approximately 7.5 min. The mode of separation in terms of costs (i.e. simple laboratory equipments and comparably cheap reagents) and benefits renders the reported procedure an appropriate pursuit to harvest and purify parasite oocysts and eggs on a large scale in the shortest duration from diverse volumes of environmental samples compared to the modified traditional sucrose gradient, which can be employed on a small scale.
Collapse
|
7
|
Zoonotic Cryptosporidium Species in Animals Inhabiting Sydney Water Catchments. PLoS One 2016; 11:e0168169. [PMID: 27973572 PMCID: PMC5156390 DOI: 10.1371/journal.pone.0168169] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/25/2016] [Indexed: 11/19/2022] Open
Abstract
Cryptosporidium is one of the most common zoonotic waterborne parasitic diseases worldwide and represents a major public health concern of water utilities in developed nations. As animals in catchments can shed human-infectious Cryptosporidium oocysts, determining the potential role of animals in dissemination of zoonotic Cryptosporidium to drinking water sources is crucial. In the present study, a total of 952 animal faecal samples from four dominant species (kangaroos, rabbits, cattle and sheep) inhabiting Sydney's drinking water catchments were screened for the presence of Cryptosporidium using a quantitative PCR (qPCR) and positives sequenced at multiple loci. Cryptosporidium species were detected in 3.6% (21/576) of kangaroos, 7.0% (10/142) of cattle, 2.3% (3/128) of sheep and 13.2% (14/106) of rabbit samples screened. Sequence analysis of a region of the 18S rRNA locus identified C. macropodum and C. hominis in 4 and 17 isolates from kangaroos respectively, C. hominis and C. parvum in 6 and 4 isolates respectively each from cattle, C. ubiquitum in 3 isolates from sheep and C. cuniculus in 14 isolates from rabbits. All the Cryptosporidium species identified were zoonotic species with the exception of C. macropodum. Subtyping using the 5' half of gp60 identified C. hominis IbA10G2 (n = 12) and IdA15G1 (n = 2) in kangaroo faecal samples; C. hominis IbA10G2 (n = 4) and C. parvum IIaA18G3R1 (n = 4) in cattle faecal samples, C. ubiquitum subtype XIIa (n = 1) in sheep and C. cuniculus VbA23 (n = 9) in rabbits. Additional analysis of a subset of samples using primers targeting conserved regions of the MIC1 gene and the 3' end of gp60 suggests that the C. hominis detected in these animals represent substantial variants that failed to amplify as expected. The significance of this finding requires further investigation but might be reflective of the ability of this C. hominis variant to infect animals. The finding of zoonotic Cryptosporidium species in these animals may have important implications for the management of drinking water catchments to minimize risk to public health.
Collapse
|
8
|
Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 5:88-109. [PMID: 28560163 PMCID: PMC5439462 DOI: 10.1016/j.ijppaw.2015.12.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022]
Abstract
Cryptosporidium is an enteric parasite that is transmitted via the faecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.
Collapse
|
9
|
Yang R, Paparini A, Monis P, Ryan U. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. Int J Parasitol 2014; 44:1105-13. [PMID: 25229177 DOI: 10.1016/j.ijpara.2014.08.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 02/08/2023]
Abstract
Clinical microbiology laboratories rely on quantitative PCR for its speed, sensitivity, specificity and ease-of-use. However, quantitative PCR quantitation requires the use of a standard curve or normalisation to reference genes. Droplet digital PCR provides absolute quantitation without the need for calibration curves. A comparison between droplet digital PCR and quantitative PCR-based analyses was conducted for the enteric parasite Cryptosporidium, which is an important cause of gastritis in both humans and animals. Two loci were analysed (18S rRNA and actin) using a range of Cryptosporidium DNA templates, including recombinant plasmids, purified haemocytometer-counted oocysts, commercial flow cytometry-counted oocysts and faecal DNA samples from sheep, cattle and humans. Each method was evaluated for linearity, precision, limit of detection and cost. Across the same range of detection, both methods showed a high degree of linearity and positive correlation for standards (R(2)⩾0.999) and faecal samples (R(2)⩾0.9750). The precision of droplet digital PCR, as measured by mean Relative Standard Deviation (RSD;%), was consistently better compared with quantitative PCR, particularly for the 18S rRNA locus, but was poorer as DNA concentration decreased. The quantitative detection of quantitative PCR was unaffected by DNA concentration, but droplet digital PCR quantitative PCR was less affected by the presence of inhibitors, compared with quantitative PCR. For most templates analysed including Cryptosporidium-positive faecal DNA, the template copy numbers, as determined by droplet digital PCR, were consistently lower than by quantitative PCR. However, the quantitations obtained by quantitative PCR are dependent on the accuracy of the standard curve and when the quantitative PCR data were corrected for pipetting and DNA losses (as determined by droplet digital PCR), then the sensitivity of both methods was comparable. A cost analysis based on 96 samples revealed that the overall cost (consumables and labour) of droplet digital PCR was two times higher than quantitative PCR. Using droplet digital PCR to precisely quantify standard dilutions used for high-throughput and cost-effective amplifications by quantitative PCR would be one way to combine the advantages of the two technologies.
Collapse
Affiliation(s)
- Rongchang Yang
- School of Veterinary and Life Sciences, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Andrea Paparini
- School of Veterinary and Life Sciences, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia
| | - Una Ryan
- School of Veterinary and Life Sciences, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| |
Collapse
|
10
|
Vejdani M, Mansour R, Hamzavi Y, Vejdani S, Nazeri N, Michaeli A. Immunofluorescence Assay and PCR Analysis of Cryptosporidium Oocysts and Species From Human Fcal Specimens. Jundishapur J Microbiol 2014; 7:e10284. [PMID: 25371795 PMCID: PMC4217664 DOI: 10.5812/jjm.10284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/05/2013] [Accepted: 05/08/2013] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mehdi Vejdani
- Department of Parasitology and Mycology, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
- Corresponding author: Mehdi Vejdani, Department of Parasitology and Mycology, Kermanshah University of Medical Sciences, Kermanshah, IR Iran. Tel: +98-8314274618-21, Fax: +98-8314276477, E-mail:
| | - Rezaei Mansour
- Department of Statistic and Epidemiology, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Yezdan Hamzavi
- Department of Parasitology and Mycology, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Sina Vejdani
- Department of Bioscience, University of Calgary, Alberta, Canada
| | - Naser Nazeri
- Department of Parasitology and Mycology, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Ali Michaeli
- Department of Parasitology and Mycology, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| |
Collapse
|
11
|
Infections with multiple Cryptosporidium species and new genetic variants in young dairy calves on a farm located within a drinking water catchment area in New Zealand. Vet Parasitol 2014; 202:287-91. [DOI: 10.1016/j.vetpar.2014.03.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/23/2014] [Accepted: 03/31/2014] [Indexed: 11/20/2022]
|
12
|
Longitudinal prevalence, oocyst shedding and molecular characterisation of Cryptosporidium species in sheep across four states in Australia. Vet Parasitol 2014; 200:50-8. [DOI: 10.1016/j.vetpar.2013.11.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 11/21/2022]
|
13
|
Zhang W, Yang F, Liu A, Wang R, Zhang L, Shen Y, Cao J, Ling H. Prevalence and genetic characterizations of Cryptosporidium spp. in pre-weaned and post-weaned piglets in Heilongjiang Province, China. PLoS One 2013; 8:e67564. [PMID: 23844032 PMCID: PMC3701062 DOI: 10.1371/journal.pone.0067564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/20/2013] [Indexed: 11/25/2022] Open
Abstract
Background Cryptosporidium spp. are common intestinal protozoa of humans and animals. There have been few studies conducted on the molecular characterizations of pig-derived Cryptosporidium isolates worldwide, especially in China. Thus, the aim of the present study was to understand the prevalence, distribution and genotypes of Cryptosporidium in pigs in Heilongjiang Province, China. Methodology/Principal Findings A total of 568 fecal samples from pre-weaned and post-weaned piglets were collected from eight pig farms from four areas of Heilongjiang Province. The average infection rate of Cryptosporidium was 1.6% (9/568) by microscopy. 113 samples were subjected to PCR amplification of the small subunit (SSU) rRNA gene of Cryptosporidium, with 55.8% (63/113) being positive for Cryptosporidium. Cryptosporidium suis (n = 31) and C. scrofarumn (n = 32) were identified by DNA sequencing of the SSU rRNA gene. Three types of C. scrofarumn were found at the SSU rRNA locus, with one novel type being detected. Using species/genotype-specific primers for pig-adapted Cryptosporidium spp., 22 and 23 respectively belonged to C. suis and C. scrofarum mono-infections, with 18 co-infections detected. The infection peaks for C. suis (60%, 24/40) and C. scrofarum (51.2%, 21/41) were respectively found in the piglets of 5 to 8 weeks and more than 8 weeks. Conclusion/Significance The detection of C. suis and C. scrofarum in pre-weaned and post-weaned piglets has public health implications, due to the fact that the two species are both zoonotic Cryptosporidium. The novel C. scrofarum type detected may be endemic to China.
Collapse
Affiliation(s)
- Weizhe Zhang
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Fengkun Yang
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Aiqin Liu
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail: (AL); (HL)
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, Henan, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, Henan, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, World Health Organization Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, World Health Organization Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, China
| | - Hong Ling
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail: (AL); (HL)
| |
Collapse
|
14
|
Abstract
Cryptosporidium is an important enteric parasite that is transmitted via the fecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Most species of Cryptosporidium are morphologically indistinguishable and can only be identified using molecular tools. Over 24 species have been identified and of these, 7 Cryptosporidium species/genotypes are responsible for most human cryptosporidiosis cases. In Australia, relatively few genotyping studies have been conducted. Six Cryptosporidium species (C. hominis, C. parvum, C. meleagridis, C. fayeri, C. andersoni and C. bovis) have been identified in humans in Australia. However, little is known about the contribution of animal hosts to human pathogenic strains of Cryptosporidium in drinking water catchments. In this review, we focus on the available genotyping data for native, feral and domestic animals inhabiting drinking water catchments in Australia to provide an improved understanding of the public health implications and to identify key research gaps.
Collapse
|
15
|
Helmi K, Skraber S, Burnet JB, Leblanc L, Hoffmann L, Cauchie HM. Two-year monitoring of Cryptosporidium parvum and Giardia lamblia occurrence in a recreational and drinking water reservoir using standard microscopic and molecular biology techniques. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 179:163-175. [PMID: 20890786 DOI: 10.1007/s10661-010-1726-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 09/20/2010] [Indexed: 05/29/2023]
Abstract
Starting in 2006, a monitoring of Giardia lamblia and Cryptosporidium parvum occurrence was conducted for 2 years in the largest drinking water reservoir of Luxembourg (Esch-sur-Sûre reservoir) using microscopy and qPCR techniques. Parasite analyses were performed on water samples collected from three sites: site A located at the inlet of the reservoir, site B located 18 km downstream site A, at the inlet of the drinking water treatment plant near the dam of the reservoir and site C where the finished drinking water is injected in the distribution network. Results show that both parasites are present in the reservoir throughout the year with a higher occurrence of G. lamblia cysts compared to C. parvum oocysts. According to our results, only 25% of the samples positive by microscopy were confirmed by qPCR. (Oo)cyst concentrations were 10 to 100 times higher at site A compared to site B and they were positively correlated to the water turbidity and negatively correlated to the temperature. Highest (oo)cyst concentrations were observed in winter. In contrast, no relationship between the concentrations of (oo)cysts in the reservoir and rain events could be established. Though a correlation has been observed between both parasites and faecal indicators in the reservoir, some discrepancies highlight that the latter do not represent a reliable tool to predict the presence/absence of these pathogenic protozoa. In summer 2007, the maximal risk of parasite infection per exposure event for swimmers in the reservoir was estimated to be 0.0015% for C. parvum and 0.56% for G. lamblia. Finally, no (oo)cysts could be detected in large volumes of finished drinking water.
Collapse
Affiliation(s)
- Karim Helmi
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41 rue du Brill, 4422 Belvaux, Luxembourg.
| | | | | | | | | | | |
Collapse
|
16
|
Robinson G, Chalmers RM. The European rabbit (Oryctolagus cuniculus), a source of zoonotic cryptosporidiosis. Zoonoses Public Health 2011; 57:e1-13. [PMID: 20042061 DOI: 10.1111/j.1863-2378.2009.01308.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cryptosporidium spp. have been found in the faeces of over 150 mammalian host species, but the risks to public health from wildlife are poorly understood. In summer 2008, the Cryptosporidium sp. rabbit genotype was identified as the aetiological agent in an outbreak of waterborne human cryptosporidiosis. The source was a wild rabbit that had entered a treated water tank. To establish current knowledge about Cryptosporidium spp. infecting lagomorphs, especially the host range and biological characteristics of the rabbit genotype, and the potential risks to public health that rabbits may pose in the transmission of zoonotic cryptosporidiosis, we undertook a literature and data review. The literature returned demonstrates that although the European rabbit (Oryctolagus cuniculus) has been the most widely studied lagomorph, few large scale studies were found. The prevalence of Cryptosporidium spp. in wild rabbit populations in the two large scale studies was 0.9% (95%CI 0.2-5.0) and 0.0% (95%CI 0.0-1.6). Neither study provided age nor sex profiles nor typing of Cryptosporidium isolates. The infecting Cryptosporidium species was confirmed in just four other studies of rabbits, all of which showed the rabbit genotype. Human-infectious Cryptosporidium species including Cryptosporidium parvum have caused experimental infections in rabbits and it is likely that this may also occur naturally. No published studies of the host range and biological features of the Cryptosporidium rabbit genotype were identified, but information was generated on the identification and differentiation of the rabbit genotype at various genetic loci. Both pet and wild rabbits are a potential source of human cryptosporidiosis and as such, good hygiene practices are recommended during and after handling rabbits or exposure to their faeces, or potentially contaminated surfaces. Water supplies should be protected against access by wildlife, including rabbits.
Collapse
Affiliation(s)
- G Robinson
- UK Cryptosporidium Reference Unit, NPHS Microbiology Swansea, Singleton Hospital, Swansea, UK
| | | |
Collapse
|
17
|
Robinson G, Watkins J, Chalmers R. Evaluation of a modified semi-automated immunomagnetic separation technique for the detection of Cryptosporidium oocysts in human faeces. J Microbiol Methods 2008; 75:139-41. [DOI: 10.1016/j.mimet.2008.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 04/28/2008] [Accepted: 04/28/2008] [Indexed: 11/29/2022]
|
18
|
de León L, Siverio F, Rodríguez A. Detection of Clavibacter michiganensis subsp. michiganensis in tomato seeds using immunomagnetic separation. J Microbiol Methods 2006; 67:141-9. [PMID: 16631265 DOI: 10.1016/j.mimet.2006.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 03/06/2006] [Accepted: 03/09/2006] [Indexed: 11/30/2022]
Abstract
The use of pathogen-free plant material is the main strategy for controlling bacterial canker of tomato caused by Clavibacter michiganensis subsp. michiganensis. However, detection and isolation of this pathogen from seeds before field or greenhouse cultivation is difficult when the bacterium is at low concentration and associated microbiota are present. Immunomagnetic separation (IMS), based on the use of immunomagnetic beads (IMBs) coated with specific antibodies, was used to capture C. michiganensis subsp. michiganensis cells, allowing removal of non-target bacteria from samples before plating on non-selective medium. Different concentrations of IMBs and of two antisera were tested, showing that IMS with 10(6)IMBs/ml coated with a polyclonal antiserum at 1/3200 dilution recovered more than 50% of target cells from initial inocula of 10(3) to 10(0)CFU/ml. Threshold detection was lower than 10CFU/ml even in seed extracts containing seed debris and high populations of non-target bacteria. The IMS permitted C. michiganensis subsp. michiganensis isolation from naturally infected seeds with higher sensitivity and faster than direct isolation on the semiselective medium currently used and could become a simple viable system for routinely testing tomato seed lots in phytosanitary diagnostic laboratories.
Collapse
Affiliation(s)
- L de León
- Departamento de Protección Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), Apdo. 60, 38200 La Laguna, Tenerife, Canary Islands, Spain
| | | | | |
Collapse
|
19
|
Cox P, Griffith M, Angles M, Deere D, Ferguson C. Concentrations of pathogens and indicators in animal feces in the Sydney watershed. Appl Environ Microbiol 2005; 71:5929-34. [PMID: 16204506 PMCID: PMC1265995 DOI: 10.1128/aem.71.10.5929-5934.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fecal analysis survey was undertaken to quantify animal inputs of pathogenic and indicator microorganisms in the temperate watersheds of Sydney, Australia. The feces from a range of domestic animals and wildlife were analyzed for the indicator bacteria fecal coliforms and Clostridium perfringens spores, the pathogenic protozoa Cryptosporidium and Giardia, and the enteric viruses adenovirus, enterovirus, and reovirus. Pathogen and fecal indicator concentrations were generally higher in domestic animal feces than in wildlife feces. Future studies to quantify potential pathogen risks in drinking-water watersheds should thus focus on quantifying pathogen loads from domestic animals and livestock rather than wildlife.
Collapse
Affiliation(s)
- Peter Cox
- Ecowise Environmental, P.O. Box 1834, Fyshwick, ACT 2609, Australia
| | | | | | | | | |
Collapse
|
20
|
Davies CM, Altavilla N, Krogh M, Ferguson CM, Deere DA, Ashbolt NJ. Environmental inactivation of Cryptosporidium oocysts in catchment soils. J Appl Microbiol 2005; 98:308-17. [PMID: 15659185 DOI: 10.1111/j.1365-2672.2004.02459.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To generate field-relevant inactivation rates for Cryptosporidium oocysts in soil that may serve as parameter values in models to predict the terrestrial fate and transport of oocysts in catchments. METHODS AND RESULTS The inactivation of Cryptosporidium oocysts in closed soil microcosms over time was monitored using fluorescence in situ hybridization (FISH) as an estimate of oocyst 'viability'. Inactivation rates for Cryptosporidium in two soils were determined under a range of temperature, moisture and biotic status regimes. Temperature and soil type emerged as significantly influential factors (P < 0.05) for Cryptosporidium inactivation. In particular, temperatures as high as 35 degrees C may result in enhanced inactivation. CONCLUSIONS When modelling the fate of Cryptosporidium oocysts in catchment soils, the use of inactivation rates that are appropriate for the specific catchment climate and soil types is essential. FISH was considered cost-effective and appropriate for determining oocyst inactivation rates in soil. SIGNIFICANCE AND IMPACT OF THE STUDY Previous models for predicting the fate of pathogens in catchments have either made nonvalidated assumptions regarding inactivation of Cryptosporidium in the terrestrial environment or have not considered it at all. Field-relevant inactivation data are presented, with significant implications for the management of catchments in warm temperate and tropical environments.
Collapse
Affiliation(s)
- C M Davies
- Centre for Water and Waste Technology, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
21
|
Brookes JD, Antenucci J, Hipsey M, Burch MD, Ashbolt NJ, Ferguson C. Fate and transport of pathogens in lakes and reservoirs. ENVIRONMENT INTERNATIONAL 2004; 30:741-759. [PMID: 15051248 DOI: 10.1016/j.envint.2003.11.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2003] [Accepted: 11/18/2003] [Indexed: 05/24/2023]
Abstract
Outbreaks of water-borne disease via public water supplies continue to be reported in developed countries even though there is increased awareness of, and treatment for, pathogen contamination. Pathogen episodes in lakes and reservoirs are often associated with rain events, and the riverine inflow is considered to be major source of pathogens. Consequently, the behaviour of these inflows is of particular importance in determining pathogen transport and distribution. Inflows are controlled by their density relative to that of the lake, such that warm inflows will flow over the surface of the lake as a buoyant surface flow and cold, dense inflows will sink beneath the lake water where they will flow along the bathymetry towards the deepest point. The fate of pathogens is determined by loss processes including settling and inactivation by temperature, UV and grazing. The general trend is for the insertion timescale to be shortest, followed by sedimentation losses and temperature inactivity. The fate of Cryptosporidium due to UV light inactivation can occur at opposite ends of the scale, depending on the location of the oocysts in the water column and the extinction coefficient for UV light. For this reason, the extinction coefficient for UV light appears to be a vitally important parameter for determining the risk of Cryptosporidium contamination. For risk assessment of pathogens in supply reservoirs, it is important to understand the role of hydrodynamics in determining the timescale of transport to the off-take relative to the timescale of inactivation. The characteristics of the riverine intrusion must also be considered when designing a sampling program for pathogens. A risk management framework is presented that accounts for pathogen fate and transport for reservoirs.
Collapse
Affiliation(s)
- Justin D Brookes
- Cooperative Research Centre for Water Quality and Treatment, PMB 3 Salisbury, South Australia 5108, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Davies CM, Ferguson CM, Kaucner C, Krogh M, Altavilla N, Deere DA, Ashbolt NJ. Dispersion and transport of Cryptosporidium Oocysts from fecal pats under simulated rainfall events. Appl Environ Microbiol 2004; 70:1151-9. [PMID: 14766600 PMCID: PMC348928 DOI: 10.1128/aem.70.2.1151-1159.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dispersion and initial transport of Cryptosporidium oocysts from fecal pats were investigated during artificial rainfall events on intact soil blocks (1,500 by 900 by 300 mm). Rainfall events of 55 mm h(-1) for 30 min and 25 mm h(-1) for 180 min were applied to soil plots with artificial fecal pats seeded with approximately 10(7) oocysts. The soil plots were divided in two, with one side devoid of vegetation and the other left with natural vegetation cover. Each combination of event intensity and duration, vegetation status, and degree of slope (5 degrees and 10 degrees ) was evaluated twice. Generally, a fivefold increase (P < 0.05) in runoff volume was generated on bare soil compared to vegetated soil, and significantly more infiltration, although highly variable, occurred through the vegetated soil blocks (P < 0.05). Runoff volume, event conditions (intensity and duration), vegetation status, degree of slope, and their interactions significantly affected the load of oocysts in the runoff. Surface runoff transported from 10(0.2) oocysts from vegetated loam soil (25-mm h(-1), 180-min event on 10 degrees slope) to up to 10(4.5) oocysts from unvegetated soil (55-mm h(-1), 30-min event on 10 degrees slope) over a 1-m distance. Surface soil samples downhill of the fecal pat contained significantly higher concentrations of oocysts on devegetated blocks than on vegetated blocks. Based on these results, there is a need to account for surface soil vegetation coverage as well as slope and rainfall runoff in future assessments of Cryptosporidium transport and when managing pathogen loads from stock grazing near streams within drinking water watersheds.
Collapse
Affiliation(s)
- Cheryl M Davies
- Centre for Water and Waste Technology, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | | | | | | | | | | | |
Collapse
|