1
|
Rizzo C, Malavenda R, Gerçe B, Papale M, Syldatk C, Hausmann R, Bruni V, Michaud L, Lo Giudice A, Amalfitano S. Effects of a Simulated Acute Oil Spillage on Bacterial Communities from Arctic and Antarctic Marine Sediments. Microorganisms 2019; 7:microorganisms7120632. [PMID: 31801240 PMCID: PMC6956123 DOI: 10.3390/microorganisms7120632] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
Background: The bacterial community responses to oil spill events are key elements to predict the fate of hydrocarbon pollution in receiving aquatic environments. In polar systems, cold temperatures and low irradiance levels can limit the effectiveness of contamination removal processes. In this study, the effects of a simulated acute oil spillage on bacterial communities from polar sediments were investigated, by assessing the role of hydrocarbon mixture, incubation time and source bacterial community in selecting oil-degrading bacterial phylotypes. Methods: The bacterial hydrocarbon degradation was evaluated by gas chromatography. Flow cytometric and fingerprinting profiles were used to assess the bacterial community dynamics over the experimental incubation time. Results: Direct responses to the simulated oil spill event were found from both Arctic and Antarctic settings, with recurrent bacterial community traits and diversity profiles, especially in crude oil enrichment. Along with the dominance of Pseudomonas spp., members of the well-known hydrocarbon degraders Granulosicoccus spp. and Cycloclasticus spp. were retrieved from both sediments. Conclusions: Our findings indicated that polar bacterial populations are able to respond to the detrimental effects of simulated hydrocarbon pollution, by developing into a more specialized active oil degrading community.
Collapse
Affiliation(s)
- Carmen Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (R.M.)
| | - Roberta Malavenda
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (R.M.)
| | - Berna Gerçe
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (B.G.)
| | - Maria Papale
- Institute of Polar Sciences, National Research Council (CNR-ISP), 98122 Messina, Italy;
| | - Christoph Syldatk
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (B.G.)
| | - Rudolf Hausmann
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Vivia Bruni
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (R.M.)
| | - Luigi Michaud
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (R.M.)
| | - Angelina Lo Giudice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (R.M.)
- Institute of Polar Sciences, National Research Council (CNR-ISP), 98122 Messina, Italy;
- Correspondence: ; Tel.: +00-3909-0601-5415
| | - Stefano Amalfitano
- Water Research Institute, National Research Council (CNR-IRSA), 00015 Rome, Italy;
| |
Collapse
|
2
|
Lim JW, Ge T, Tong YW. Monitoring of microbial communities in anaerobic digestion sludge for biogas optimisation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:334-341. [PMID: 29037880 DOI: 10.1016/j.wasman.2017.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
This study characterised and compared the microbial communities of anaerobic digestion (AD) sludge using three different methods - (1) Clone library; (2) Pyrosequencing; and (3) Terminal restriction fragment length polymorphism (T-RFLP). Although high-throughput sequencing techniques are becoming increasingly popular and affordable, the reliance of such techniques for frequent monitoring of microbial communities may be a financial burden for some. Furthermore, the depth of microbial analysis revealed by high-throughput sequencing may not be required for monitoring purposes. This study aims to develop a rapid, reliable and economical approach for the monitoring of microbial communities in AD sludge. A combined approach where genetic information of sequences from clone library was used to assign phylogeny to T-RFs determined experimentally was developed in this study. In order to assess the effectiveness of the combined approach, microbial communities determined by the combined approach was compared to that characterised by pyrosequencing. Results showed that both pyrosequencing and clone library methods determined the dominant bacteria phyla to be Proteobacteria, Firmicutes, Bacteroidetes, and Thermotogae. Both methods also found that sludge A and B were predominantly dominated by acetogenic methanogens followed by hydrogenotrophic methanogens. The number of OTUs detected by T-RFLP was significantly lesser than that detected by the clone library. In this study, T-RFLP analysis identified majority of the dominant species of the archaeal consortia. However, many of the more highly diverse bacteria consortia were missed. Nevertheless, the combined approach developed in this study where clone sequences from the clone library were used to assign phylogeny to T-RFs determined experimentally managed to accurately predict the same dominant microbial groups for both sludge A and sludge B, as compared to the pyrosequencing results. Results showed that the combined approach of clone library and T-RFLP accurately predicted the dominant microbial groups and thus is a reliable and more economical way to monitor the evolution of microbial systems in AD sludge.
Collapse
Affiliation(s)
- Jun Wei Lim
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore.
| | - Tianshu Ge
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai, China.
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
3
|
Handke J, Procopio N, Buckley M, van der Meer D, Williams G, Carr M, Williams A. Successive bacterial colonisation of pork and its implications for forensic investigations. Forensic Sci Int 2017; 281:1-8. [PMID: 29080415 DOI: 10.1016/j.forsciint.2017.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/01/2017] [Accepted: 10/11/2017] [Indexed: 11/26/2022]
Abstract
AIMS Bacteria are considered one of the major driving forces of the mammalian decomposition process and have only recently been recognised as forensic tools. At this point, little is known about their potential use as 'post-mortem clocks'. This study aimed to establish the proof of concept for using bacterial identification as post-mortem interval (PMI) indicators, using a multi-omics approach. METHODS AND RESULTS Pieces of pork were placed in the University's outdoor facility and surface swabs were taken at regular intervals up to 60 days. Terminal restriction fragment length polymorphism (T-RFLP) of the 16S rDNA was used to identify bacterial taxa. It succeeded in detecting two out of three key contributors involved in decomposition and represents the first study to reveal Vibrionaceae as abundant on decomposing pork. However, a high fraction of present bacterial taxa could not be identified by T-RFLP. Proteomic analyses were also performed at selected time points, and they partially succeeded in the identification of precise strains, subspecies and species of bacteria that colonized the body after different PMIs. CONCLUSION T-RFLP is incapable of reliably and fully identifying bacterial taxa, whereas proteomics could help in the identification of specific strains of bacteria. Nevertheless, microbial identification by next generation sequencing might be used as PMI clock in future investigations and in conjunction with information provided by forensic entomologists. SIGNIFICANCE AND IMPACT OF THE STUDY To the best of our knowledge, this work represents the first attempt to find a cheaper and easily accessible, culture-independent alternative to high-throughput techniques to establish a 'microbial clock', in combination with proteomic strategies to address this issue.
Collapse
Affiliation(s)
- Jessica Handke
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; Institute for Interdisciplinary Studies, University of Amsterdam, P.O. Box 19268, 1000 GG Amsterdam, Netherlands.
| | - Noemi Procopio
- Manchester Institute of Biotechnology, 131 Princess Street, University of Manchester, Manchester M1 7DN, UK.
| | - Michael Buckley
- Manchester Institute of Biotechnology, 131 Princess Street, University of Manchester, Manchester M1 7DN, UK.
| | - Dieudonne van der Meer
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - Graham Williams
- School of Law, Forensics and Policing, Staffordshire University, Stoke-on-Trent, Staffordshire ST4 2DE, UK.
| | - Martin Carr
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - Anna Williams
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| |
Collapse
|
4
|
Samanta AK, Jayaram C, Jayapal N, Sondhi N, Kolte AP, Senani S, Sridhar M, Dhali A. Assessment of Fecal Microflora Changes in Pigs Supplemented with Herbal Residue and Prebiotic. PLoS One 2015; 10:e0132961. [PMID: 26176779 PMCID: PMC4503616 DOI: 10.1371/journal.pone.0132961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/20/2015] [Indexed: 11/24/2022] Open
Abstract
Antibiotic usage in animals as a growth promoter is considered as public health issue due to its negative impact on consumer health and environment. The present study aimed to evaluate effectiveness of herbal residue (ginger, Zingiber officinale, dried rhizome powder) and prebiotic (inulin) as an alternative to antibiotics by comparing fecal microflora composition using terminal restriction fragment length polymorphism. The grower pigs were offered feed containing antibiotic (tetracycline), ginger and inulin separately and un-supplemented group served as control. The study revealed significant changes in the microbial abundance based on operational taxonomic units (OTUs) among the groups. Presumptive identification of organisms was established based on the fragment length of OTUs generated with three restriction enzymes (MspI, Sau3AI and BsuRI). The abundance of OTUs representing Bacteroides intestinalis, Eubacterium oxidoreducens, Selonomonas sp., Methylobacterium sp. and Denitrobacter sp. was found significantly greater in inulin supplemented pigs. Similarly, the abundance of OTUs representing Bacteroides intestinalis, Selonomonas sp., and Phascolarcobacterium faecium was found significantly greater in ginger supplemented pigs. In contrast, the abundance of OTUs representing pathogenic microorganisms Atopostipes suicloacalis and Bartonella quintana str. Toulouse was significantly reduced in ginger and inulin supplemented pigs. The OTUs were found to be clustered under two major phylotypes; ginger-inulin and control-tetracycline. Additionally, the abundance of OTUs was similar in ginger and inulin supplemented pigs. The results suggest the potential of ginger and prebioticsto replace antibiotics in the diet of grower pig.
Collapse
Affiliation(s)
- Ashis Kumar Samanta
- Feed Additives and Nutraceuticals Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| | - C. Jayaram
- Feed Additives and Nutraceuticals Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| | - N. Jayapal
- Feed Additives and Nutraceuticals Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| | - N. Sondhi
- Feed Additives and Nutraceuticals Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| | - A. P. Kolte
- Omics Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| | - S. Senani
- Feed Additives and Nutraceuticals Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| | - M. Sridhar
- Fermentation Technology Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| | - A. Dhali
- Omics Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| |
Collapse
|
5
|
D'Anteo S, Mannucci A, Meliani M, Verni F, Petroni G, Munz G, Lubello C, Mori G, Vannini C. Nitrifying biomass characterization and monitoring during bioaugmentation in a membrane bioreactor. ENVIRONMENTAL TECHNOLOGY 2015; 36:3159-3166. [PMID: 26017932 DOI: 10.1080/09593330.2015.1055818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/24/2015] [Indexed: 06/04/2023]
Abstract
A membrane bioreactor (MBR), fed with domestic wastewater, was bioaugmented with nitrifying biomass selected in a side-stream MBR fed with a synthetic high nitrogen-loaded influent. Microbial communities evolution was monitored and comparatively analysed through an extensive bio-molecular investigation (16S rRNA gene library construction and terminal-restriction fragment length polymorphism techniques) followed by statistical analyses. As expected, a highly specialized nitrifying biomass was selected in the side-stream reactor fed with high-strength ammonia synthetic wastewater. The bioaugmentation process caused an increase of nitrifying bacteria of the genera Nitrosomonas (up to more than 30%) and Nitrobacter in the inoculated MBR reactor. The overall structure of the microbial community changed in the mainstream MBR as a result of bioaugmentation. The effect of bioaugmentation in the shift of the microbial community was also verified through statistical analysis.
Collapse
Affiliation(s)
- Sibilla D'Anteo
- a Protistology-Zoology Unit, Biology Department , University of Pisa , Via A. Volta 4, 56126 , Pisa , Italy
| | - Alberto Mannucci
- b Department of Civil and Environmental Engineering , University of Florence , Via S. Marta n.3, 50139 , Florence , Italy
| | - Matteo Meliani
- a Protistology-Zoology Unit, Biology Department , University of Pisa , Via A. Volta 4, 56126 , Pisa , Italy
| | - Franco Verni
- a Protistology-Zoology Unit, Biology Department , University of Pisa , Via A. Volta 4, 56126 , Pisa , Italy
| | - Giulio Petroni
- a Protistology-Zoology Unit, Biology Department , University of Pisa , Via A. Volta 4, 56126 , Pisa , Italy
| | - Giulio Munz
- b Department of Civil and Environmental Engineering , University of Florence , Via S. Marta n.3, 50139 , Florence , Italy
| | - Claudio Lubello
- b Department of Civil and Environmental Engineering , University of Florence , Via S. Marta n.3, 50139 , Florence , Italy
| | - Gualtiero Mori
- c CER2CO (CEntro Ricerca Reflui Conciari) , Via Arginale Ovest 8, 56020 , San Romano,S. Miniato, Pisa , Italy
| | - Claudia Vannini
- a Protistology-Zoology Unit, Biology Department , University of Pisa , Via A. Volta 4, 56126 , Pisa , Italy
| |
Collapse
|
6
|
Taniguchi T, Imada S, Acharya K, Iwanaga F, Yamanaka N. Effect of soil salinity and nutrient levels on the community structure of the root-associated bacteria of the facultative halophyte, Tamarix ramosissima, in southwestern United States. J GEN APPL MICROBIOL 2015; 61:193-202. [DOI: 10.2323/jgam.61.193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Shogo Imada
- Arid Land Research Center, Tottori University
| | - Kumud Acharya
- Division of Hydrologic Sciences, Desert Research Institute
| | | | | |
Collapse
|
7
|
Aida AA, Hatamoto M, Yamamoto M, Ono S, Nakamura A, Takahashi M, Yamaguchi T. Molecular characterization of anaerobic sulfur-oxidizing microbial communities in up-flow anaerobic sludge blanket reactor treating municipal sewage. J Biosci Bioeng 2014; 118:540-5. [DOI: 10.1016/j.jbiosc.2014.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/01/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
|
8
|
Nishi E, Tashiro Y, Sakai K. Discrimination among individuals using terminal restriction fragment length polymorphism profiling of bacteria derived from forensic evidence. Int J Legal Med 2014; 129:425-33. [DOI: 10.1007/s00414-014-1092-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
|
9
|
Chiellini C, Gori R, Tiezzi A, Brusetti L, Pucciarelli S, D'Amato E, Chiavola A, Sirini P, Lubello C, Petroni G. Ozonation effects for excess sludge reduction on bacterial communities composition in a full-scale activated sludge plant for domestic wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2014; 35:1462-1469. [PMID: 24701944 DOI: 10.1080/09593330.2013.870588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Activated sludge process is the most widely diffused system to treat wastewater to control the discharge of pollutants into the environment. Microorganisms are responsible for the removal of organic matter, nitrogen, phosphorous and other emerging contaminants. The environmental conditions of biological reactors significantly affects the ecology of the microbial community and, therefore, the performance of the treatment process. In the last years, ozone has been used to reduce excess sludge production by wastewater treatment plants (WWTPs), whose disposal represents one of the most relevant operational costs. The ozonation process has demonstrated to be a viable method to allow a consistent reduction in excess sludge. This study was carried out in a full-scale plant treating municipal wastewater in two parallel lines, one ozonated in the digestion tank and another used as a control. Bacterial communities of samples collected from both lines of digestion thanks were then compared to assess differences related to the ozonation treatment. Data were then analysed with terminal restriction fragment length polymorphism (T-RFLP) analysis on 16S rRNA gene. Differences between bacterial communities of both treated and untreated line appeared 2 weeks after the beginning of the treatment. Results demonstrated that ozonation treatment significantly affected the activated sludge in WWTP.
Collapse
|
10
|
Siu N, Apple JK, Moyer CL. The Effects of Ocean Acidity and Elevated Temperature on Bacterioplankton Community Structure and Metabolism. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/oje.2014.48038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Cao Y, Van De Werfhorst LC, Scott EA, Raith MR, Holden PA, Griffith JF. Bacteroidales terminal restriction fragment length polymorphism (TRFLP) for fecal source differentiation in comparison to and in combination with universal bacteria TRFLP. WATER RESEARCH 2013; 47:6944-6955. [PMID: 23880219 DOI: 10.1016/j.watres.2013.03.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/04/2013] [Accepted: 03/17/2013] [Indexed: 06/02/2023]
Abstract
Terminal restriction fragment length polymorphism (TRFLP) is an attractive community analysis method for microbial source tracking (MST) because it is accessible, relatively inexpensive, and can discern multiple fecal sources simultaneously. A new Bacteroidales TRFLP (Bac-TRFLP) method was developed and its source identification performance was evaluated by itself, in comparison to, and in combination with an existing universal bacterial TRFLP method in two laboratories. Sixty-four blind samples from 12 fecal sources (sewage, septage, human, dog, horse, cow, deer, pig, chicken, goose, pigeon, and gull) were used for evaluation. Bac- and Univ-TRFLP exhibited similarly high overall correct identification (>88% and >89%, respectively), excellent specificity regardless of fecal sources, variable sensitivity depending on the source, and stable performance across two laboratories. Compared to Univ-TRFLP, Bac-TRFLP had better sensitivity and specificity with horse, cow, and pig fecal sources but was not suited for certain avian sources such as goose, gull, and pigeon. Combining the general and more targeted TRFLP methods (Univ&Bac-TRFLP) achieved higher overall correct identification (>92%), higher sensitivity and specificity metrics, and higher reproducibility between laboratories. Our results suggest that the Bac-TRFLP and Univ&Bac-TRFLP methods are promising additions to the MST toolbox and warrant further evaluation and utilization in field MST applications.
Collapse
MESH Headings
- Animals
- Bacteroidetes/classification
- Bacteroidetes/genetics
- Bacteroidetes/isolation & purification
- Bacteroidetes/metabolism
- Birds/microbiology
- DNA, Bacterial/classification
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Environmental Monitoring/methods
- Feces/microbiology
- Humans
- Mammals/microbiology
- Polymerase Chain Reaction/methods
- Polymorphism, Restriction Fragment Length
- RNA, Ribosomal, 16S/classification
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Sensitivity and Specificity
- Wastewater/microbiology
Collapse
Affiliation(s)
- Yiping Cao
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA 92626, USA
| | | | | | | | | | | |
Collapse
|
12
|
Chiellini C, Iannelli R, Petroni G. Temporal characterization of bacterial communities in a phytoremediation pilot plant aimed at decontaminating polluted sediments dredged from Leghorn harbor, Italy. N Biotechnol 2013; 30:772-9. [DOI: 10.1016/j.nbt.2012.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/08/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
|
13
|
Sjöberg F, Nowrouzian F, Rangel I, Hannoun C, Moore E, Adlerberth I, Wold AE. Comparison between terminal-restriction fragment length polymorphism (T-RFLP) and quantitative culture for analysis of infants' gut microbiota. J Microbiol Methods 2013; 94:37-46. [PMID: 23583598 DOI: 10.1016/j.mimet.2013.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/30/2013] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
Abstract
The infantile intestinal microbiota is a major stimulus for immune maturation. Both culture and DNA-based methods can be used for microbiota characterization, but few studies have systematically compared their performance for analysis of the gut microbiota. Here, we examined fecal samples obtained on six occasions between one week and 12 months of age from six vaginally delivered infants. After quantitative aerobic and anaerobic culture of the samples on selective and non-selective media, DNA was extracted from the fecal samples and analyzed regarding 16S rRNA gene polymorphism by terminal-restriction fragment length polymorphism (T-RFLP). A database was constructed for direct identification of T-RFLP peaks by analysis of pure-culture bacteria and analysis of a limited number of samples by 16S rRNA cloning and sequencing. Bacterial genera present at >10⁶ CFU/g feces, as determined by quantitative culture, were generally readily detected by T-RFLP, while culture on selective media was more sensitive in detecting facultative anaerobes with lower population counts. In contrast, T-RFLP more readily than culture detected several anaerobic species, also taxa that could not be identified using the database. T-RFLP readily identified bacteria to the genus level and also provided some sub-genus discrimination. Both T-RFLP and culture identified Bifidobacterium, Clostridium and Bacteroides spp. among the most common colonizers of the infantile microbiota throughout the first year of life. T-RFLP analysis showed that microbiota complexity was high in the first weeks of life, declined to a minimum at 1-2 months of age, and thereafter increased again. Principal component analysis revealed that early samples (1 week-6 months) chiefly differed between individual infants, while 12-month samples were similar between children, but different from the early samples. Our results indicate that T-RFLP has high sensitivity and adequate taxonomic discrimination capacity for analysis of gut microbiota composition, but that both culture and molecular based analysis have limitations and both approaches may be needed to obtain a full picture of the complex gut microbiota.
Collapse
Affiliation(s)
- Fei Sjöberg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10A, S-413 46 Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ács N, Kovács E, Wirth R, Bagi Z, Strang O, Herbel Z, Rákhely G, Kovács KL. Changes in the Archaea microbial community when the biogas fermenters are fed with protein-rich substrates. BIORESOURCE TECHNOLOGY 2013; 131:121-7. [PMID: 23340109 DOI: 10.1016/j.biortech.2012.12.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 05/07/2023]
Abstract
Terminal restriction fragment length polymorphism (T-RFLP) was applied to study the changes in the composition of the methanogens of biogas-producing microbial communities on adaptation to protein-rich monosubstrates such as casein and blood. Specially developed laboratory scale (5-L) continuously stirred tank reactors have been developed and used in these experiments. Sequencing of the appropriate T-RF fragments selected from a methanogen-specific (mcrA gene-based) library revealed that the methanogens responded to the unconventional substrates by changing the community structure. T-RFLP of the 16S rDNA gene confirmed the findings.
Collapse
Affiliation(s)
- Norbert Ács
- Department of Biotechnology, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R. New insights into the biodiversity and applications of cyanobacteria (blue-green algae)—Prospects and challenges. ALGAL RES 2013. [DOI: 10.1016/j.algal.2013.01.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Ding T, Palmer MW, Melcher U. Community terminal restriction fragment length polymorphisms reveal insights into the diversity and dynamics of leaf endophytic bacteria. BMC Microbiol 2013; 13:1. [PMID: 23286760 PMCID: PMC3546043 DOI: 10.1186/1471-2180-13-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 12/20/2012] [Indexed: 12/02/2022] Open
Abstract
Background Plant endophytic bacteria play an important role benefiting plant growth or being pathogenic to plants or organisms that consume those plants. Multiple species of bacteria have been found co-inhabiting plants, both cultivated and wild, with viruses and fungi. For these reasons, a general understanding of plant endophytic microbial communities and their diversity is necessary. A key issue is how the distributions of these bacteria vary with location, with plant species, with individual plants and with plant growing season. Results Five common plant species were collected monthly for four months in the summer of 2010, with replicates from four different sampling sites in the Tallgrass Prairie Preserve in Osage County, Oklahoma, USA. Metagenomic DNA was extracted from ground, washed plant leaf samples, and fragments of the bacterial 16S rDNA genes were amplified for analysis of terminal restriction fragment length polymorphism (T-RFLP). We performed mono-digestion T-RFLP with restriction endonuclease DdeI, to reveal the structures of leaf endophytic bacterial communities, to identify the differences between plant-associated bacterial communities in different plant species or environments, and to explore factors affecting the bacterial distribution. We tested the impacts of three major factors on the leaf endophytic bacterial communities, including host plant species, sampling dates and sampling locations. Conclusions Results indicated that all of the three factors were significantly related (α = 0.05) to the distribution of leaf endophytic bacteria, with host species being the most important, followed by sampling dates and sampling locations.
Collapse
Affiliation(s)
- Tao Ding
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
17
|
Vajna B, Szili D, Nagy A, Márialigeti K. An improved sequence-aided T-RFLP analysis of bacterial succession during oyster mushroom substrate preparation. MICROBIAL ECOLOGY 2012; 64:702-713. [PMID: 22614940 DOI: 10.1007/s00248-012-0063-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 04/22/2012] [Indexed: 06/01/2023]
Abstract
While oyster mushroom (Pleurotus spp.) is one of the most popular cultivated edible mushrooms, there is scanty information about the microbial community taking part in mushroom substrate production. In this study, an improved sequence-aided terminal restriction fragment length polymorphism (T-RFLP) was used to identify and (semi-)quantify the dominant bacteria of oyster mushroom substrate preparation. The main features of the improved T-RFLP data analysis were the alignment of chromatograms with variable clustering thresholds, the visualization of data matrix with principal component analysis ordination superimposed with cluster analysis, and the search for stage-specific peaks (bacterial taxa) with similarity percentage (analysis of similarity) analysis, followed by identification with clone libraries. By applying this method, the dominance of the following bacterial genera was revealed during oyster mushroom substrate preparation: Pseudomonas and Sphingomonas at startup, Bacillus, Geobacillus, Ureibacillus, Pseudoxanthomonas, and Thermobispora at the end of partial composting, and finally several genera of Actinobacteria, Thermus, Bacillus, Geobacillus, Thermobacillus, and Ureibacillus in the mature substrate. As the proportion of uncultured bacteria increased during the process, it is worth establishing strain collections from partial composting and from mature substrate for searching new species.
Collapse
Affiliation(s)
- Balázs Vajna
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
| | | | | | | |
Collapse
|
18
|
Iannelli R, Bianchi V, Macci C, Peruzzi E, Chiellini C, Petroni G, Masciandaro G. Assessment of pollution impact on biological activity and structure of seabed bacterial communities in the Port of Livorno (Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 426:56-64. [PMID: 22542235 DOI: 10.1016/j.scitotenv.2012.03.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 05/31/2023]
Abstract
The main objective of this study was to assess the impact of pollution on seabed bacterial diversity, structure and activity in the Port of Livorno. Samples of seabed sediments taken from five selected sites within the port were subjected to chemical analyses, enzymatic activity detection, bacterial count and biomolecular analysis. Five different statistics were used to correlate the level of contamination with the detected biological indicators. The results showed that the port is mainly contaminated by variable levels of petroleum hydrocarbons and heavy metals, which affect the structure and activity of the bacterial population. Irrespective of pollution levels, the bacterial diversity did not diverge significantly among the assessed sites and samples, and no dominance was observed. The type of impact of hydrocarbons and heavy metals was controversial, thus enforcing the supposition that the structure of the bacterial community is mainly driven by the levels of nutrients. The combined use of chemical and biological essays resulted in an in-depth observation and analysis of the existing links between pollution macro-indicators and biological response of seabed bacterial communities.
Collapse
Affiliation(s)
- Renato Iannelli
- Department of Civil Engineering, University of Pisa, Via Gabba 22, 56122 Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Sin YW, Buesching CD, Burke T, Macdonald DW. Molecular characterization of the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). FEMS Microbiol Ecol 2012; 81:648-59. [PMID: 22530962 DOI: 10.1111/j.1574-6941.2012.01396.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 11/30/2022] Open
Abstract
Many mammals possess specialized scent glands, which convey information about the marking individual. As the chemical profile of scent marks is likely to be affected by bacteria metabolizing the primary gland products, the variation in bacterial communities between different individuals has been proposed to underpin olfactory communication. However, few studies have investigated the dependency of microbiota residing in the scent organs on the host's individual-specific parameters. Here, we used terminal restriction fragment length polymorphism analysis of the PCR-amplified 16S rRNA gene and clone library construction to investigate the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). As the secretion has been shown to encode individual-specific information, we investigated the correlation of the microbiota with different individual-specific parameters (age, sex, body condition, reproductive status, and season). We discovered a high number of bacterial species (56 operational taxonomic units from four phyla: Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes), dominated by Actinobacteria (76.0%). The bacterial communities of cubs and adults differed significantly. Cubs possessed considerably more diverse communities dominated by Firmicutes, while in adults the communities were less diverse and dominated by Actinobacteria, suggesting that the acquisition of a 'mature bacterial community' is an ontogenetic process related to physiological changes during maturation.
Collapse
Affiliation(s)
- Yung Wa Sin
- Wildlife Conservation Research Unit, Department of Zoology, Recanati-Kaplan Centre, University of Oxford, Tubney, Abingdon, Oxfordshire, UK.
| | | | | | | |
Collapse
|
20
|
Waters JM, Eariss G, Yeadon PJ, Kirkbride KP, Burgoyne LA, Catcheside DEA. Arbitrary single primer amplification of trace DNA substrates yields sequence content profiles that are discriminatory and reproducible. Electrophoresis 2012; 33:492-8. [PMID: 22287177 DOI: 10.1002/elps.201100359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Single primer amplification is shown to yield a DNA profile that is reproducible when based on the sequence content of the amplicons rather than on the pattern of length polymorphism. The sequence-based profile increases in reliability with increasing numbers of cycles of amplification. This process uses an arbitrarily chosen primer and a low initial annealing temperature in order to amplify sequences from the whole metagenome present in a sample that may contain only trace DNA, and a large number of cycles to select subsets of sequences based on variable amplification efficiency. Using arrays, we demonstrate the utility and limitations of this approach for profiling the large metagenomes typical of soils and the trace DNA present in drug seizures. We suggest that this type of profiling will be most effective once next-generation sequencing and advanced sequence analysis becomes routine.
Collapse
Affiliation(s)
- James M Waters
- Flinders University, School of Biological Sciences, Bedford Park, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Balaji K, Thenmozhi R, Sundaravadivel M, Pandian SK. Comparison of bacterial communities in the throat swabs from healthy subjects and pharyngitis patients by terminal restriction fragment length polymorphism. Appl Biochem Biotechnol 2012; 167:1459-73. [PMID: 22322827 DOI: 10.1007/s12010-011-9508-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/14/2011] [Indexed: 11/30/2022]
Abstract
Terminal restriction fragment length polymorphism (T-RFLP) analysis was applied to characterize bacterial flora present in the throats of healthy subjects and pharyngitis patients. The 16S rRNA genes of bacteria present in throat metagenome were amplified by PCR with 6-carboxy-fluorescein (6-FAM)-labeled universal forward primer (27 F) and a universal reverse primer (1513R). The 16S rDNAs were digested with restriction enzymes with 4-bp recognition sites (MspI or RsaI) and analyzed by using an automated DNA sequencer. T-RFLP patterns were numerically analyzed using computer programs. From analysis of the throat bacterial community, patterns derived from MspI and RsaI digested samples of healthy subjects and pharyngitis patients were grouped into different clusters, though RsaI digested samples showed some uncertainty. Pharyngitis throats generated an average species richness of 9 [±2.1 (SD)] and 10 (±2.9) for MspI and RsaI digests, respectively, whereas healthy throats generated 6.3 (±1.2) and 6.1 (±1.5) in MspI and RsaI digests, respectively. These results suggest that samples from pharyngitis patients contain an unexpected diversity of causative bacteria. The pharyngitis throats were colonized with a rich diversity of bacterial species than that of healthy throats. Using T-RFLP, we are able to detect a model bacterium, Streptococcus pyogenes SF370, and T-RF patterns were consistent with the Streptococcal T-RFLP patterns. Our study indicates that T-RFLP analysis is useful for the assessment of diversity of throat bacterial flora and rapid comparison of the community structure between subjects with and without pharyngitis.
Collapse
Affiliation(s)
- Kannan Balaji
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | | | | | | |
Collapse
|
22
|
Sibley CD, Peirano G, Church DL. Molecular methods for pathogen and microbial community detection and characterization: current and potential application in diagnostic microbiology. INFECTION GENETICS AND EVOLUTION 2012; 12:505-21. [PMID: 22342514 PMCID: PMC7106020 DOI: 10.1016/j.meegid.2012.01.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/25/2022]
Abstract
Clinical microbiology laboratories worldwide have historically relied on phenotypic methods (i.e., culture and biochemical tests) for detection, identification and characterization of virulence traits (e.g., antibiotic resistance genes, toxins) of human pathogens. However, limitations to implementation of molecular methods for human infectious diseases testing are being rapidly overcome allowing for the clinical evaluation and implementation of diverse technologies with expanding diagnostic capabilities. The advantages and limitation of molecular techniques including real-time polymerase chain reaction, partial or whole genome sequencing, molecular typing, microarrays, broad-range PCR and multiplexing will be discussed. Finally, terminal restriction fragment length polymorphism (T-RFLP) and deep sequencing are introduced as technologies at the clinical interface with the potential to dramatically enhance our ability to diagnose infectious diseases and better define the epidemiology and microbial ecology of a wide range of complex infections.
Collapse
Affiliation(s)
- Christopher D. Sibley
- Department of Microbiology, Immunology & Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alta, Canada
| | - Gisele Peirano
- Division of Microbiology, Calgary Laboratory Services, Calgary, Alta, Canada
| | - Deirdre L. Church
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of Calgary, Calgary, Alta, Canada
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alta, Canada
- Division of Microbiology, Calgary Laboratory Services, Calgary, Alta, Canada
- Corresponding author. Address: c/o Calgary Laboratory Services, 9-3535 Research Rd. N.W., Calgary, Alta, Canada T2L 2K8. Tel.: +1 403 770 3281; fax: +1 403 770 3347.
| |
Collapse
|
23
|
Soto EC, Yáñez-Ruiz DR, Cantalapiedra-Hijar G, Vivas A, Molina-Alcaide E. Changes in ruminal microbiota due to rumen content processing and incubation in single-flow continuous-culture fermenters. ANIMAL PRODUCTION SCIENCE 2012. [DOI: 10.1071/an11312] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to investigate the impact of rumen content manipulation and its incubation in an in vitro system on the abundance of some microbial groups and the bacterial diversity of goat rumens. Animals and single-flow continuous-culture fermenters were fed diets differing in forage to concentrate ratio (70 : 30; LC and 30 : 70; HC). Rumen contents were sampled after animals’ adaptation to the experimental diets, processed for inoculum preparation and inoculated into fermenters. Fermenter contents were sampled 1 and 7 days after inoculation. Total bacteria, Fibrobacter succinogenes, fungi and methanogen abundances were lower in the fermenter than in goat rumens, but no differences were found for Ruminococcus flavefaciens. The abundances of all these microorganisms were similar at 1 and 7 days of rumen content incubation in fermenters. Bacterial species richness did not change due to rumen content processing or the in vitro incubation. Shannon–Wiener index and Pielou evenness were lower in the fermenter than in rumen only when the enzyme HaeIII was used in terminal-restriction fragment length polymorphism analysis. Non-metric multidimensional scaling analysis, both in denaturing gradient gel electrophoresis and terminal-restriction fragment length polymorphism, showed a segregation of in vivo and in vitro samples, but no trends of grouping for fermenter samples was observed. The HC diet promoted higher abundance of total bacteria than LC in rumen but not in fermenters. Diet only had an effect on bacterial diversity when the enzyme HaeIII was considered. Rumen content processing and incubation in fermenters caused an important decline of the studied ruminal microbial groups although bacterial community structure and diversity did not significantly change.
Collapse
|
24
|
Wells GF, Park HD, Eggleston B, Francis CA, Criddle CS. Fine-scale bacterial community dynamics and the taxa-time relationship within a full-scale activated sludge bioreactor. WATER RESEARCH 2011; 45:5476-5488. [PMID: 21875739 DOI: 10.1016/j.watres.2011.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/18/2011] [Accepted: 08/06/2011] [Indexed: 05/31/2023]
Abstract
In activated sludge bioreactors, aerobic heterotrophic communities efficiently remove organics, nutrients, toxic substances, and pathogens from wastewater, but the dynamics of these communities are as yet poorly understood. A macroecology metric used to quantify community shifts is the taxa-time relationship, a temporal analog of the species-area curve. To determine whether this metric can be applied to full-scale bioreactors, activated sludge samples were collected weekly over a one-year period at a local municipal wastewater treatment plant. Bacterial community dynamics were evaluated by monitoring 16S rRNA genes using Terminal Restriction Fragment Length Polymorphism (T-RFLP), corroborated by clone libraries. Observed taxa richness increased with time according to a power law model, as predicted by macroecological theory, with a power law exponent of w = 0.209. The results reveal strong long-term temporal dynamics during a period of stable performance (BOD removal and nitrification). Community dynamics followed a gradual succession away from initial conditions rather than periodicity around a mean "equilibrium", with greater within-month then among-month community similarities. Changes in community structure were significantly associated via multivariate statistical analyses with dissolved oxygen, temperature, influent silver, biomass (MLSS), flow rate, and influent nitrite, cadmium and chromium concentrations. Overall, our results suggest patterns of bacterial community dynamics likely regulated in part by operational parameters and provide evidence that the taxa-time relationship may be a fundamental ecological pattern in macro- and microbial systems.
Collapse
Affiliation(s)
- George F Wells
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
25
|
Fuchsman CA, Kirkpatrick JB, Brazelton WJ, Murray JW, Staley JT. Metabolic strategies of free-living and aggregate-associated bacterial communities inferred from biologic and chemical profiles in the Black Sea suboxic zone. FEMS Microbiol Ecol 2011; 78:586-603. [PMID: 22066565 DOI: 10.1111/j.1574-6941.2011.01189.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 07/08/2011] [Accepted: 08/14/2011] [Indexed: 11/26/2022] Open
Abstract
The Black Sea is a permanently anoxic basin with a well-defined redox gradient. We combine environmental 16S rRNA gene data from clone libraries, terminal restriction fragment length polymorphisms, and V6 hypervariable region pyrosequences to provide the most detailed bacterial survey to date. Furthermore, this data set is informed by comprehensive geochemical data; using this combination of information, we put forward testable hypotheses regarding possible metabolisms of uncultured bacteria from the Black Sea's suboxic zone (microaerophily, nitrate reduction, manganese cycling, and oxidation of methane, ammonium, and sulfide). Dominant bacteria in the upper suboxic zone included members of the SAR11, SAR324, and Microthrix groups and in the deep suboxic zone included members of BS-GSO-2, Marine Group A, and SUP05. A particulate fraction (30 μm filter) was used to distinguish between free-living and aggregate-attached communities in the suboxic zone. The particulate fraction contained greater diversity of V6 tag sequences than the bulk water samples. Lentisphaera, Epsilonproteobacteria, WS3, Planctomycetes, and Deltaproteobacteria were enriched in the particulate fraction, whereas SAR11 relatives dominated the free-living fraction. On the basis of the bacterial assemblages and simple modeling, we find that in suboxic waters, the interior of sinking aggregates potentially support manganese reduction, sulfate reduction, and sulfur oxidation.
Collapse
Affiliation(s)
- Clara A Fuchsman
- School of Oceanography, University of Washington, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
26
|
Sinkko H, Lukkari K, Jama AS, Sihvonen LM, Sivonen K, Leivuori M, Rantanen M, Paulin L, Lyra C. Phosphorus chemistry and bacterial community composition interact in brackish sediments receiving agricultural discharges. PLoS One 2011; 6:e21555. [PMID: 21747910 PMCID: PMC3126828 DOI: 10.1371/journal.pone.0021555] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 06/03/2011] [Indexed: 11/23/2022] Open
Abstract
Background External nutrient discharges have caused eutrophication in many estuaries and coastal seas such as the Baltic Sea. The sedimented nutrients can affect bacterial communities which, in turn, are widely believed to contribute to release of nutrients such as phosphorus from the sediment. Methods We investigated relationships between bacterial communities and chemical forms of phosphorus as well as elements involved in its cycling in brackish sediments using up-to-date multivariate statistical methods. Bacterial community composition was determined by terminal restriction fragment length polymorphism and cloning of the 16S rRNA gene. Results and Conclusions The bacterial community composition differed along gradients of nutrients, especially of different phosphorus forms, from the estuary receiving agricultural phosphorus loading to the open sea. This suggests that the chemical composition of sediment phosphorus, which has been affected by riverine phosphorus loading, influenced on bacterial communities. Chemical and spatial parameters explained 25% and 11% of the variation in bacterial communities. Deltaproteobacteria, presumptively sulphate and sulphur/iron reducing, were strongly associated to chemical parameters, also when spatial autocorrelation was taken into account. Sulphate reducers correlated positively with labile organic phosphorus and total nitrogen in the open sea sediments. Sulphur/iron reducers and sulphate reducers linked to iron reduction correlated positively with aluminium- and iron-bound phosphorus, and total iron in the estuary. The sulphate and sulphur/iron reducing bacteria can thus have an important role both in the mineralization and mobilization of nutrients from sediment. Significance Novelty in our study is that relationships between bacterial community composition and different phosphorus forms, instead of total phosphorus, were investigated. Total phosphorus does not necessarily bring out interactions between bacteria and phosphorus chemistry since proportions of easily usable mobile (reactive) phosphorus and immobile phosphorus forms in different sediments can vary. Our study suggested possible feedbacks between different forms of phosphorus and bacterial community composition.
Collapse
Affiliation(s)
- Hanna Sinkko
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kaarina Lukkari
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Abdullahi S. Jama
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Leila M. Sihvonen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Kaarina Sivonen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Mirja Leivuori
- Reference Laboratory, Finnish Environment Institute, Helsinki, Finland
| | - Matias Rantanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Christina Lyra
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Fortuna AM, Marsh TL, Honeycutt CW, Halteman WA. Use of primer selection and restriction enzymes to assess bacterial community diversity in an agricultural soil used for potato production via terminal restriction fragment length polymorphism. Appl Microbiol Biotechnol 2011; 91:1193-202. [PMID: 21667276 DOI: 10.1007/s00253-011-3363-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 03/29/2011] [Accepted: 05/02/2011] [Indexed: 11/29/2022]
Abstract
Terminal restriction fragment length polymorphism (T-RFLP) can be used to assess how land use management changes the dominant members of bacterial communities. We compared T-RFLP profiles obtained via amplification with forward primers (27, 63F) each coupled with the fluorescently labeled reverse primer (1392R) and multiple restriction enzymes to determine the best combination for interrogating soil bacterial populations in an agricultural soil used for potato production. Both primer pairs provide nearly universal recognition of a 1,400-bp sequence of the bacterial domain in the V(1)-V(3) region of the 16S ribosomal RNA (rRNA) gene relative to known sequences. Labeling the reverse primer allowed for direct comparison of each forward primer and the terminal restriction fragments' relative migration units obtained with each primer pair and restriction enzyme. Redundancy analysis (RDA) and nested multivariate analysis of variance (MANOVA) were used to assess the effects of primer pair and choice of restriction enzyme on the measured relative migration units. Our research indicates that the 63F-1392R amplimer pair provides a more complete description with respect to the bacterial communities present in this potato (Solanum tuberosum L.)-barley (Hordeum vulgare L.) rotation over seeded to crimson clover (Trifolium praense L.). Domain-specific 16S rRNA gene primers are rigorously tested to determine their ability to amplify across a target region of the gene. Yet, variability within or between T-RFLP profiles can result from factors independent of the primer pair. Therefore, researchers should use RDA and MANOVA analyses to evaluate the effects that additional laboratory and environmental variables have on bacterial diversity.
Collapse
Affiliation(s)
- Ann-Marie Fortuna
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA.
| | | | | | | |
Collapse
|
28
|
Rasolofo EA, LaPointe G, Roy D. Assessment of the bacterial diversity of treated and untreated milk during cold storage by T-RFLP and PCR-DGGE methods. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s13594-011-0027-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Wang T, Zhang X, Zhang M, Wang L, Zhao L. Development of a fluorophore-ribosomal DNA restriction typing method for monitoring structural shifts of microbial communities. Arch Microbiol 2011; 193:341-50. [PMID: 21274516 DOI: 10.1007/s00203-011-0679-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/30/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
DNA restriction fragment polymorphism technologies such as amplified ribosomal DNA restriction analysis (ARDRA) and terminal restriction fragment length polymorphism (T-RFLP) have been widely used in investigating microbial community structures. However, these methods are limited due to either the low resolution or sensitivity. In this study, a fluorophore-ribosomal DNA restriction typing (f-DRT) approach is developed for structural profiling of microbial communities. 16S rRNA genes are amplified from the community DNA and digested by a single restriction enzyme Msp I. All restriction fragments are end-labeled with a fluorescent nucleotide Cy5-dCTP via a one-step extension reaction and detected with an automated DNA sequencer. All 50 predicted restriction fragments between 100 and 600 bp were detected when twelve single 16S rRNA gene sequences were analyzed using f-DRT approach; 92% of these fragments were determined with accuracy of ±2 bp. In the defined model communities containing five components with different ratios, relative abundance of each component was correctly revealed by this method. The f-DRT analysis also showed structural shifts of intestinal microbiota in carcinogen-treated rats during the formation of precancerous lesions in the colon, as sensitive as multiple digestion-based T-RFLP analysis. This study provides a labor and cost-saving new method for monitoring structural shifts of microbial communities.
Collapse
Affiliation(s)
- Tingting Wang
- Key Laboratory of Ministry of Education for Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, China
| | | | | | | | | |
Collapse
|
30
|
Belila A, Ghrabi A, Hassen A. Molecular analysis of the spatial distribution of sulfate-reducing bacteria in three eutrophicated wastewater stabilization ponds. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0174-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
31
|
Pushing the limits for amplifying BrdU-labeled DNA encoding 16S rRNA: DNA polymerase as the determining factor. J Microbiol Methods 2010; 83:312-6. [PMID: 20883730 DOI: 10.1016/j.mimet.2010.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 09/14/2010] [Accepted: 09/19/2010] [Indexed: 11/24/2022]
Abstract
Identifying microorganisms that are active under specific conditions in ecosystems is a challenge in microbial ecology. Recently, the bromodeoxyuridine (BrdU) technique was developed to label actively growing cells. BrdU, a thymidine analog, is incorporated into newly synthesized DNA, and the BrdU-labeled DNA is then isolated from total extractable DNA by immunocapture using a BrdU-specific antibody. Analyzing the BrdU-labeled DNA allows for assessing the actively growing community, which can then be compared to the unlabeled DNA that represents the total community. However, applying the BrdU approach to study soils has been problematic due to low DNA amounts and soil contaminants. To address these challenges, we developed a protocol, optimizing specificity and reproducibility, to amplify BrdU-labeled gene fragments encoding 16S rRNA. We found that the determining factor was the DNA polymerase: among the 13 different polymerases we tested, only 3 provided adequate yields with minimal contamination, and only two of those three produced similar amplification patterns of community DNA.
Collapse
|
32
|
Budding AE, Grasman ME, Lin F, Bogaards JA, Soeltan-Kaersenhout DJ, Vandenbroucke-Grauls CMJE, van Bodegraven AA, Savelkoul PHM. IS-pro: high-throughput molecular fingerprinting of the intestinal microbiota. FASEB J 2010; 24:4556-64. [PMID: 20643909 DOI: 10.1096/fj.10-156190] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human intestinal microbiota is known to play an important role in human health and disease, and with the advent of novel molecular techniques, disease-specific variations in its composition have been found. However, analysis of the intestinal microbiota has not yet been applicable in large-scale clinical research or routine diagnostics because of the complex and expensive nature of the techniques needed. Here, we describe a new PCR-based profiling technique for high-throughput analysis of the human intestinal microbiota, which we have termed IS-pro. This technique combines bacterial species differentiation by the length of the 16S-23S rDNA interspace region with instant taxonomic classification by phylum-specific fluorescent labeling of PCR primers. We validated IS-pro in silico, in vitro, and in vivo, on human colonic biopsies and feces, and introduced a standardized protocol for data analysis. IS-pro is easy to implement in general clinical microbiological laboratories with access to capillary gel electrophoresis, and the high-throughput nature of the test makes analysis of large numbers of samples feasible. This combination renders IS-pro ideally suited for use in clinical research and routine diagnostics.
Collapse
Affiliation(s)
- A E Budding
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kapur M, Bhatia R, Pandey G, Pandey J, Paul D, Jain RK. A case study for assessment of microbial community dynamics in genetically modified Bt cotton crop fields. Curr Microbiol 2010; 61:118-24. [PMID: 20098990 DOI: 10.1007/s00284-010-9585-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 01/07/2010] [Indexed: 11/25/2022]
Abstract
Bt cotton was the first genetically modified crop approved for use in India. However, only a few studies have been conducted to assess the feasibility of its commercial application. Bt cotton is genetically modified to express a proteinaceous endotoxin (Cry) encoded by cry gene of Bacillus thuringiensis that has specific insecticidal activity against bollworms. Therefore, the amount of pesticides used for growing Bt cotton is postulated to be considerably low as compared to their non-Bt counterparts. Alternatively, it is also speculated that application of a genetically modified crop may alter the bio-geochemical balance of the agriculture field(s). Microbial community composition and dynamics is an important descriptor for assessment of such alterations. In the present study, we have assessed the culturable and non-culturable microbial diversities in Bt cotton and non-Bt cotton soils to determine the ecological consequences of application of Bt cotton. The analyses of microbial community structures indicated that cropping of Bt cotton did not adversely affect the diversity of the microbial communities.
Collapse
Affiliation(s)
- Manisha Kapur
- Institute of Microbial Technology, Chandigarh, India
| | | | | | | | | | | |
Collapse
|
34
|
Michaud L, Lo Giudice A, Troussellier M, Smedile F, Bruni V, Blancheton J. Phylogenetic characterization of the heterotrophic bacterial communities inhabiting a marine recirculating aquaculture system. J Appl Microbiol 2009; 107:1935-46. [DOI: 10.1111/j.1365-2672.2009.04378.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Hjort K, Bergström M, Adesina MF, Jansson JK, Smalla K, Sjöling S. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiol Ecol 2009; 71:197-207. [PMID: 19922433 DOI: 10.1111/j.1574-6941.2009.00801.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study, we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF(103) of the isolate Streptomyces mutomycini and/or Streptomyces clavifer. There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used.
Collapse
Affiliation(s)
- Karin Hjort
- Södertörn University, School of Life Sciences, Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Statistical assessment of variability of terminal restriction fragment length polymorphism analysis applied to complex microbial communities. Appl Environ Microbiol 2009; 75:7268-70. [PMID: 19749066 DOI: 10.1128/aem.00135-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The variability of terminal restriction fragment polymorphism analysis applied to complex microbial communities was assessed statistically. Recent technological improvements were implemented in the successive steps of the procedure, resulting in a standardized procedure which provided a high level of reproducibility.
Collapse
|
37
|
Belila A, Gtari M, Ghrabi A, Hassen A. Purple anoxygenic phototrophic bacteria distribution in Tunisian wastewater stabilisation plant exhibiting red water phenomenon. ANN MICROBIOL 2009. [DOI: 10.1007/bf03175122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
38
|
Lin W, Li J, Schüler D, Jogler C, Pan Y. Diversity analysis of magnetotactic bacteria in Lake Miyun, northern China, by restriction fragment length polymorphism. Syst Appl Microbiol 2009; 32:342-50. [DOI: 10.1016/j.syapm.2008.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 10/05/2008] [Indexed: 10/21/2022]
|
39
|
Alvarado P, Manjón JL. Selection of enzymes for terminal restriction fragment length polymorphism analysis of fungal internally transcribed spacer sequences. Appl Environ Microbiol 2009; 75:4747-52. [PMID: 19465521 PMCID: PMC2708443 DOI: 10.1128/aem.00568-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/18/2009] [Indexed: 11/20/2022] Open
Abstract
Terminal restriction fragment length polymorphism (TRFLP) profiling of the internally transcribed spacer (ITS) ribosomal DNA of unknown fungal communities is currently unsupported by a broad-range enzyme-choosing rationale. An in silico study of terminal fragment size distribution was therefore performed following virtual digestion (by use of a set of commercially available 135 type IIP restriction endonucleases) of all published fungal ITS sequences putatively annealing to primers ITS1 and ITS4. Different diversity measurements were used to rank primer-enzyme pairs according to the richness and evenness that they showed. Top-performing pairs were hierarchically clustered to test for data dependency. The enzyme set composed of MaeII, BfaI, and BstNI returned much better results than randomly chosen enzyme sets in computer simulations and is therefore recommended for in vitro TRFLP profiling of fungal ITSs.
Collapse
Affiliation(s)
- Pablo Alvarado
- Departamento de Biología Vegetal, Universidad de Alcalá, Ctra. Madrid-Barcelona km 33.6, Alcalá de Henares, 28871 Madrid, Spain
| | | |
Collapse
|
40
|
Verstraelen H, Verhelst R, Claeys G, De Backer E, Temmerman M, Vaneechoutte M. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC Microbiol 2009; 9:116. [PMID: 19490622 PMCID: PMC2698831 DOI: 10.1186/1471-2180-9-116] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 06/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite their antimicrobial potential, vaginal lactobacilli often fail to retain dominance, resulting in overgrowth of the vagina by other bacteria, as observed with bacterial vaginosis. It remains elusive however to what extent interindividual differences in vaginal Lactobacillus community composition determine the stability of this microflora. In a prospective cohort of pregnant women we studied the stability of the normal vaginal microflora (assessed on Gram stain) as a function of the presence of the vaginal Lactobacillus index species (determined through culture and molecular analysis with tRFLP). RESULTS From 100 consecutive Caucasian women vaginal swabs were obtained at mean gestational ages of 8.6 (SD 1.4), 21.2 (SD 1.3), and 32.4 (SD 1.7) weeks, respectively. Based on Gram stain, 77 women had normal or Lactobacillus-dominated vaginal microflora (VMF) during the first trimester, of which 18 had grade Ia (L. crispatus cell morphotypes) VMF (23.4%), 16 grade Iab (L. crispatus and other Lactobacillus cell morphotypes) VMF (20.8%), and 43 grade Ib (non-L. crispatus cell morphotypes) VMF (55.8%). Thirteen women with normal VMF at baseline, converted in the second or third trimester (16.9%) to abnormal VMF defined as VMF dominated by non-Lactobacillus bacteria. Compared to grade Ia and grade Iab VMF, grade Ib VMF were 10 times (RR = 9.49, 95% CI 1.30 - 69.40) more likely to convert from normal to abnormal VMF (p = 0.009). This was explained by the observation that normal VMF comprising L. gasseri/iners incurred a ten-fold increased risk of conversion to abnormal VMF relative to non-L. gasseri/iners VMF (RR 10.41, 95% CI 1.39-78.12, p = 0.008), whereas normal VMF comprising L. crispatus had a five-fold decreased risk of conversion to abnormal VMF relative to non-L. crispatus VMF (RR 0.20, 95% CI 0.05-0.89, p = 0.04). CONCLUSION The presence of different Lactobacillus species with the normal vaginal microflora is a major determinant to the stability of this microflora in pregnancy: L. crispatus promotes the stability of the normal vaginal microflora while L. gasseri and/or L. iners predispose to some extent to the occurrence of abnormal vaginal microflora.
Collapse
Affiliation(s)
- Hans Verstraelen
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
41
|
Rogers GB, Daniels TWV, Tuck A, Carroll MP, Connett GJ, David GJP, Bruce KD. Studying bacteria in respiratory specimens by using conventional and molecular microbiological approaches. BMC Pulm Med 2009; 9:14. [PMID: 19368727 PMCID: PMC2678980 DOI: 10.1186/1471-2466-9-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Accepted: 04/15/2009] [Indexed: 12/23/2022] Open
Abstract
Background Drawing from previous studies, the traditional routine diagnostic microbiology evaluation of samples from chronic respiratory conditions may provide an incomplete picture of the bacteria present in airways disease. Here, the aim was to determine the extent to which routine diagnostic microbiology gave a different assessment of the species present in sputa when analysed by using culture-independent assessment. Methods Six different media used in routine diagnostic microbiology were inoculated with sputum from twelve patients. Bacterial growth on these plates was harvested and both RNA and DNA extracted. DNA and RNA were also extracted directly from the same sample of sputum. All nucleic acids served as templates for PCR and reverse transcriptase-PCR amplification of "broad range" bacterial 16S rRNA gene regions. The regions amplified were separated by Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiling and compared to assess the degree of overlap between approaches. Results A mean of 16.3 (SD 10.0) separate T-RF band lengths in the profiles from each sputum sample by Direct Molecular Analysis, with a mean of 8.8 (SD 5.8) resolved by DNA profiling and 13.3 (SD 8.0) resolved by RNA profiling. In comparison, 8.8 (SD 4.4) T-RF bands were resolved in profiles generated by Culture-derived Molecular Analysis. There were a total of 184 instances of T-RF bands detected in the direct sputum profiles but not in the corresponding culture-derived profiles, representing 83 different T-RF band lengths. Amongst these were fifteen instances where the T-RF band represented more than 10% of the total band volume (with a mean value of 23.6%). Eight different T-RF band lengths were resolved as the dominant band in profiles generated directly from sputum. Of these, only three were detected in profiles generated from the corresponding set of cultures. Conclusion Due to their focus on isolation of a small group of recognised pathogens, the use of culture-dependent methods to analyse samples from chronic respiratory infections can provide a restricted understanding of the bacterial species present. The use of a culture-independent molecular approach here identifies that there are many bacterial species in samples from CF and COPD patients that may be clinically relevant.
Collapse
Affiliation(s)
- Geraint B Rogers
- King's College London, Molecular Microbiology Research Laboratory, Pharmaceutical Science Division, 150 Stamford Street, Franklin-Wilkins Building, King's College London, London, SE1 9NH, UK.
| | | | | | | | | | | | | |
Collapse
|
42
|
Stres B, Tiedje JM, Murovec B. BEsTRF: a tool for optimal resolution of terminal-restriction fragment length polymorphism analysis based on user-defined primer-enzyme-sequence databases. Bioinformatics 2009; 25:1556-8. [PMID: 19369501 DOI: 10.1093/bioinformatics/btp254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SUMMARY BEsTRF (Best Estimated T-RF) provides a standalone environment for analyzing primers-enzymes-gene section combinations used in terminal-restriction fragment length polymorphism (T-RFLP) for its optimal resolution. User-defined sequence databases of several hundred thousand DNA sequences can be explored and the resolution of user-specified sets of primers and restriction endonucleases can be analyzed on either forward or reverse terminal fragments. Sequence quality, primer mismatches, insertions and deletions can be controlled and each primer pair-specific sequence collections can be exported for downstream analyses. The configuration for a novel T-RFLP population profiling using rpoB gene (DNA-directed RNA polymerase, beta subunit) on forward fluorescently labeled primer are presented. AVAILABILITY BEsTRF is freely available at http://lie.fe.uni-lj.si/bestrf and can be downloaded from the same site. The online protocol, numerous primer and enzyme dictionaries, sequence collections and results generated during this work for various genes are available at our website http://lie.fe.uni-lj.si/bestrf.
Collapse
Affiliation(s)
- Blaz Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, DomZale, Slovenia.
| | | | | |
Collapse
|
43
|
Orcutt B, Bailey B, Staudigel H, Tebo BM, Edwards KJ. An interlaboratory comparison of 16S rRNA gene-based terminal restriction fragment length polymorphism and sequencing methods for assessing microbial diversity of seafloor basalts. Environ Microbiol 2009; 11:1728-35. [PMID: 19508561 PMCID: PMC2784043 DOI: 10.1111/j.1462-2920.2009.01899.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We present an interlaboratory comparison between full-length 16S rRNA gene sequence analysis and terminal restriction fragment length polymorphism (TRFLP) for microbial communities hosted on seafloor basaltic lavas, with the goal of evaluating how similarly these two different DNA-based methods used in two independent labs would estimate the microbial diversity of the same basalt samples. Two samples were selected for these analyses based on differences detected in the overall levels of microbial diversity between them. Richness estimators indicate that TRFLP analysis significantly underestimates the richness of the relatively high-diversity seafloor basalt microbial community: at least 50% of species from the high-diversity site are missed by TRFLP. However, both methods reveal similar dominant species from the samples, and they predict similar levels of relative diversity between the two samples. Importantly, these results suggest that DNA-extraction or PCR-related bias between the two laboratories is minimal. We conclude that TRFLP may be useful for relative comparisons of diversity between basalt samples, for identifying dominant species, and for estimating the richness and evenness of low-diversity, skewed populations of seafloor basalt microbial communities, but that TRFLP may miss a majority of species in relatively highly diverse samples.
Collapse
Affiliation(s)
- Beth Orcutt
- Geomicrobiology Group, Department of Biological Sciences, Marine Environmental Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
44
|
Lehman RM, Lundgren JG, Petzke LM. Bacterial communities associated with the digestive tract of the predatory ground beetle, Poecilus chalcites, and their modification by laboratory rearing and antibiotic treatment. MICROBIAL ECOLOGY 2009; 57:349-358. [PMID: 18587608 DOI: 10.1007/s00248-008-9415-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 05/25/2008] [Indexed: 05/26/2023]
Abstract
Ground beetles such as Poecilus chalcites (Coleoptera: Carabidae) are beneficial insects in agricultural systems where they contribute to the control of insect and weed pests. We assessed the complexity of bacterial communities occurring in the digestive tracts of field-collected P. chalcites using terminal restriction fragment length polymorphism analyses of polymerase chain reaction-amplified 16S rRNA genes. Bacterial identification was performed by the construction of 16S rRNA gene clone libraries and sequence analysis. Intestinal bacteria in field-collected beetles were then compared to those from groups of beetles that were reared in the lab on an artificial diet with and without antibiotics. Direct cell counts estimated 1.5x10(8) bacteria per milliliter of gut. The digestive tract of field-collected P. chalcites produced an average of 4.8 terminal restriction fragments (tRF) for each beetle. The most abundant clones were affiliated with the genus Lactobacillus, followed by the taxa Enterobacteriaceae, Clostridia, and Bacteriodetes. The majority of the sequences recovered were closely related to those reported from other insect gastrointestinal tracts. Lab-reared beetles produced fewer tRF, an average of 3.1 per beetle, and a reduced number of taxa with a higher number of clones from the family Enterobacteriaceae compared to the field-collected beetles. Antibiotic treatment significantly (p<0.05) reduced the number of tRF per beetle and selected for a less diverse set of bacterial taxa. We conclude that the digestive tract of P. chalcites is colonized by a simple community of bacteria that possess autochthonous characteristics. Laboratory-reared beetles harbored the most common bacteria found in field-collected beetles, and these bacterial communities may be manipulated in the laboratory with the addition of antibiotics to the diet to allow study of functional roles.
Collapse
Affiliation(s)
- R Michael Lehman
- USDA-ARS-North Central Agricultural Research Laboratory, 2923 Medary Ave., Brookings, SD 57006, USA.
| | | | | |
Collapse
|
45
|
Ecological characterization of the colonic microbiota of normal and diarrheic dogs. Interdiscip Perspect Infect Dis 2009; 2008:149694. [PMID: 19282974 PMCID: PMC2648299 DOI: 10.1155/2008/149694] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/09/2008] [Accepted: 11/20/2008] [Indexed: 01/01/2023] Open
Abstract
We used terminal restriction fragment polymorphism (T-RFLP) analysis to assess (1) stability of the fecal microbiota in dogs living in environments characterized by varying degrees of exposure to factors that might alter the microbiota and (2) changes in the microbiota associated with acute episodes of diarrhea. Results showed that the healthy canine GI tract harbors potential enteric pathogens. Dogs living in an environment providing minimal exposure to factors that might alter the microbiota had similar microbiotas; the microbiotas of dogs kept in more variable environments were more variable. Substantial changes in the microbiota occurred during diarrheic episodes, including increased levels of Clostridium perfringens, Enterococcus faecalis, and Enterococcus faecium. When diet and medications of a dog having a previously stable microbiota were changed repeatedly, the microbiota also changed repeatedly. Temporal trend analysis showed directional changes in the microbiota after perturbation, a return to the starting condition, and then fluctuating changes over time.
Collapse
|
46
|
LUNA GIANMARCO, DANOVARO ROBERTO. RAPID IDENTIFICATION OFPSEUDOMONASSPP. FROM AQUATIC SAMPLES USING TERMINAL RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1745-4581.2008.00141.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Microbial community composition and denitrifying enzyme activities in salt marsh sediments. Appl Environ Microbiol 2008; 74:7585-95. [PMID: 18978080 DOI: 10.1128/aem.01221-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Denitrifying microbial communities and denitrification in salt marsh sediments may be affected by many factors, including environmental conditions, nutrient availability, and levels of pollutants. The objective of this study was to examine how microbial community composition and denitrification enzyme activities (DEA) at a California salt marsh with high nutrient loading vary with such factors. Sediments were sampled from three elevations, each with different inundation and vegetation patterns, across 12 stations representing various salinity and nutrient conditions. Analyses included determination of cell abundance, total and denitrifier community compositions (by terminal restriction fragment length polymorphism), DEA, nutrients, and eluted metals. Total bacterial (16S rRNA) and denitrifier (nirS) community compositions and DEA were analyzed for their relationships to environmental variables and metal concentrations via multivariate direct gradient and regression analyses, respectively. Community composition and DEA were highly variable within the dynamic salt marsh system, but each was strongly affected by elevation (i.e., degree of inundation) and carbon content as well as by selected metals. Carbon content was highly related to elevation, and the relationships between DEA and carbon content were found to be elevation specific when evaluated across the entire marsh. There were also lateral gradients in the marsh, as evidenced by an even stronger association between community composition and elevation for a marsh subsystem. Lastly, though correlated with similar environmental factors and selected metals, denitrifier community composition and function appeared uncoupled in the marsh.
Collapse
|
48
|
Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 2008; 80:365-80. [PMID: 18648804 DOI: 10.1007/s00253-008-1565-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/29/2008] [Accepted: 06/01/2008] [Indexed: 10/21/2022]
Abstract
Terminal restriction fragment length polymorphism (T-RFLP) analysis is a popular high-throughput fingerprinting technique used to monitor changes in the structure and composition of microbial communities. This approach is widely used because it offers a compromise between the information gained and labor intensity. In this review, we discuss the progress made in T-RFLP analysis of 16S rRNA genes and functional genes over the last 10 years and evaluate the performance of this technique when used in conjunction with different statistical methods. Web-based tools designed to perform virtual polymerase chain reaction and restriction enzyme digests greatly facilitate the choice of primers and restriction enzymes for T-RFLP analysis. Significant improvements have also been made in the statistical analysis of T-RFLP profiles such as the introduction of objective procedures to distinguish between signal and noise, the alignment of T-RFLP peaks between profiles, and the use of multivariate statistical methods to detect changes in the structure and composition of microbial communities due to spatial and temporal variation or treatment effects. The progress made in T-RFLP analysis of 16S rRNA and genes allows researchers to make methodological and statistical choices appropriate for the hypotheses of their studies.
Collapse
|
49
|
Davis RE, Moyer CL. Extreme spatial and temporal variability of hydrothermal microbial mat communities along the Mariana Island Arc and southern Mariana back-arc system. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jb005413] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard E. Davis
- Biology Department; Western Washington University; Bellingham Washington USA
| | - Craig L. Moyer
- Biology Department; Western Washington University; Bellingham Washington USA
| |
Collapse
|
50
|
Euringer K, Lueders T. An optimised PCR/T-RFLP fingerprinting approach for the investigation of protistan communities in groundwater environments. J Microbiol Methods 2008; 75:262-8. [PMID: 18621084 DOI: 10.1016/j.mimet.2008.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 06/16/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
Abstract
Due to the scarcity or complete absence of higher organisms, protists may represent an important higher trophic level (above Prokaryotes) in the food webs of groundwater habitats. Nevertheless, the importance of aquifer protists, especially in contaminated groundwater environments, is poorly understood. Partly, this may be due to a lack of adequate PCR and fingerprinting approaches for protists in aquifers, which can be considered low in protistan or high in non-target rRNA gene copy numbers. Therefore, we have validated the suitability of distinct eukaryote-targeted primer pairs and restriction endonucleases for T-RFLP fingerprinting of protistan communities. By in silico predictions, and by fingerprinting, cloning and sequencing of microeukaryote amplicons from hydrocarbon-contaminated aquifer sediment DNA, we show that the Euk20f/Euk516r primer set in combination with Bsh1236I digestion is best suited for the recovery of diverse protistan 18S rRNA lineages. In contrast to other tested primer sets, a preferred recovery of fungal and archaeal non-target amplicons was not observed. In summary, we present an optimised microeukaryote-targeted PCR/T-RFLP fingerprinting approach which may be of value for the characterisation of protistan communities in groundwater and other habitats.
Collapse
Affiliation(s)
- Kathrin Euringer
- Institute of Groundwater Ecology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | |
Collapse
|