1
|
Ben Younes S, López-Maldonado EA, Mnif S, Ellafi A. New bacterial strains isolated from Tunisian biotopes: A sustainable enzymatic approach for decolorization and detoxification of Congo Red and Malachite Green. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48406-48422. [PMID: 39028461 DOI: 10.1007/s11356-024-34380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Seven bacterial strains, isolated from various Tunisian biotopes, were investigated for Congo Red (CR) and Malachite Green (MG) decolorization. The isolated strains underwent morphological and biochemical tests, including assessments for antibiotic sensitivity as well as biofilm formation. One selected strain, ST11, was partially identified as Paenibacillus sp. strain ST11. The newly isolated crude bacterial filtrates (NICBFs) effectively decolorized CR and MG. Specifically, six and seven NICBFs were found to be effective for degrading CR (150 mg l-1) and MG (50 mg l-1), respectively. Under non-optimized conditions, CR and MG could be decolorized up to 80% within 6-12 h. The degradation products of CR and MG, characterized by UV-visible and FT-IR techniques, demonstrated both decolorization and transformation, highlighting the role of enzymes in dye degradation. Phytotoxicity and cytotoxicity studies evaluated the impact of treated and untreated CR and MG. Some NICBFs showed promise as powerful biological tools, reducing and sometimes detoxifying CR and MG, commonly used as fertilizers. The potential applications of these NICBFs in decolorization and bioremediation of dye-rich textile effluents were explored. The screening also identified environmentally friendly, cost-effective bacterial strains adaptable to various conditions through phytotoxicity and cytotoxicity studies.
Collapse
Affiliation(s)
- Sonia Ben Younes
- Faculty of Sciences of Gafsa, University of Gafsa, University Campus Sidi Ahmed Zarroug, 2112, Gafsa, Tunisia
- Laboratory of Population Health, Environmental Aggressors and Alternative Therapies (LR24ES10), Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | | | - Sami Mnif
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Ali Ellafi
- Faculty of Sciences of Gafsa, University of Gafsa, University Campus Sidi Ahmed Zarroug, 2112, Gafsa, Tunisia
- Laboratory of Analysis, Treatment and Valorization of Environment Pollutants and Product, Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| |
Collapse
|
2
|
Yang F, Li Q, Yin X. Metagenomic analysis of the effects of salinity on microbial community and functional gene diversity in glacial meltwater estuary, Ny-Alesund, Arctic. Braz J Microbiol 2024; 55:1587-1599. [PMID: 38647870 PMCID: PMC11153410 DOI: 10.1007/s42770-024-01298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
Due to the inflow of meltwater from the Midre Lovénbreen glacier upstream of Kongsfjorden, the nutrient concentration of Kongsfjorden change from the estuary to the interior of the fjord. Our objective was to explore the changes in bacterial community structure and metabolism-related genes from the estuary to fjord by metagenomic analysis. Our data indicate that glacial meltwater input has altered the physicochemical properties of the fjords, with a significant effect, in particular, on fjords salinity, thus altering the relative abundance of some specific bacterial groups. In addition, we suggest that the salinity of a fjord is an important factor affecting the abundance of genes associated with the nitrogen and sulfur cycles in the fjord. Changes in salinity may affect the relative abundance of microbial populations that carry metabolic genes, thus affecting the relative abundance of genes associated with the nitrogen and sulfur cycles.
Collapse
Affiliation(s)
- Fan Yang
- Management College, Ocean University of China, Qingdao, China
- Business College, Qingdao University, Qingdao, China
| | - Qinxin Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Xiaofei Yin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.
| |
Collapse
|
3
|
Rathinam AJ, Santhaseelan H, Dahms HU, Dinakaran VT, Murugaiah SG. Bioprospecting of unexplored halophilic actinobacteria against human infectious pathogens. 3 Biotech 2023; 13:398. [PMID: 37974926 PMCID: PMC10645811 DOI: 10.1007/s13205-023-03812-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/08/2023] [Indexed: 11/19/2023] Open
Abstract
Human pathogenic diseases received much attention recently due to their uncontrolled spread of antimicrobial resistance (AMR) which causes several threads every year. Effective alternate antimicrobials are urgently required to combat those disease causing infectious microbes. Halophilic actinobacteria revealed huge potentials and unexplored cultivable/non-cultivable actinobacterial species producing enormous antimicrobials have been proved in several genomics approaches. Potential gene clusters, PKS and NRPKS from Nocardia, Salinospora, Rhodococcus, and Streptomyces have wide range coding genes of secondary metabolites. Biosynthetic pathways identification via various approaches like genome mining, In silico, OSMAC (one strain many compound) analysis provides better identification of knowing the active metabolites using several databases like AMP, APD and CRAMPR, etc. Genome constellations of actinobacteria particularly the prediction of BGCs (Biosynthetic Gene Clusters) to mine the bioactive molecules such as pigments, biosurfactants and few enzymes have been reported for antimicrobial activity. Saltpan, saltlake, lagoon and haloalkali environment exploring potential actinobacterial strains Micromonospora, Kocuria, Pseudonocardia, and Nocardiopsis revealed several acids and ester derivatives with antimicrobial potential. Marine sediments and marine macro organisms have been found as significant population holders of potential actinobacterial strains. Deadly infectious diseases (IDs) including tuberculosis, ventilator-associated pneumonia and Candidiasis, have been targeted by halo-actinobacterial metabolites with promising results. Methicillin resistant Staphylococus aureus and virus like Encephalitic alphaviruses were potentially targeted by halophilic actinobacterial metabolites by the compound Homoseongomycin from sponge associated antinobacterium. In this review, we discuss the potential antimicrobial properties of various biomolecules extracted from the unexplored halophilic actinobacterial strains specifically against human infectious pathogens along with prospective genomic constellations.
Collapse
Affiliation(s)
- Arthur James Rathinam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024 India
| | - Henciya Santhaseelan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024 India
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| | | | | |
Collapse
|
4
|
Mo P, Zhou F, Luo X, Zhang Y, Deng A, Xie P, Wang Y. Streptomyces argyrophyllae sp. nov., isolated from the rhizosphere soil of Cathaya argyrophylla. Arch Microbiol 2023; 205:329. [PMID: 37682340 DOI: 10.1007/s00203-023-03668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Strain Jing01T, a novel actinomycete from rhizosphere soil of Cathaya argyrophylla, was identified using a polyphasic approach. 16S rRNA gene sequence analysis of strain Jing01T revealed that it was a member of the genus Streptomyces and shared 99.03%, 99.03%, 98.96%, 98.89%, 98.83%, 98.82%, 98.76%, 98.74%, 98.73%, 98.69% and 98.68% similarities to Streptomyces rochei NRRL B-2410T, Streptomyces naganishii NBRC 12892T, Streptomyces rubradiris JCM 4955T, Streptomyces anandii NRRL B-3590T, Streptomyces aurantiogriseus NBRC 12842T, Streptomyces mutabilis NBRC 12800T, Streptomyces rameus LMG 20326T, Streptomyces djakartensis NBRC 15409T, Streptomyces bangladeshensis JCM 14924T, Streptomyces andamanensis KCTC 29502T and Streptomyces tuirus NBRC 15617T, respectively. In phylogenetic trees constructed based on 16S rRNA gene sequences, strain Jing01T generated a separate branch at the middle of the clade, suggesting it could be a potential novel species. In phylogenomic tree, strain Jing01T was related to S. rubradiris JCM 4955T. In phylogenetic trees based on the gene sequences of atpD, gyrB, recA, rpoB and trpB, strain Jing01T was related to S. bangladeshensis JCM 14924T and S. rubradiris JCM 4955T. Whereas, the multilocus sequence analysis distance, average nucleotide identity and DNA-DNA hybridization values between them were much less than the species-level thresholds. This conclusion was further supported by phenotypic and chemotaxonomic analysis. Consequently, strain Jing01T represents a new Streptomyces species, for which the proposed name is Streptomyces argyrophyllae sp. nov. The type strain is Jing01T (= MCCC 1K05707T = JCM 35923T).
Collapse
Affiliation(s)
- Ping Mo
- Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Higher Education, Science and Technology Innovation Team for Efficient Agricultural Production and Deep Processing at General University in Hunan Province, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, State Key Laboratory of Developmental Biology of Freshwater Fish, College of life and environmental sciences, Hunan University of Arts and Science, Changde, 415000, Hunan, China
| | - Fumin Zhou
- Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Higher Education, Science and Technology Innovation Team for Efficient Agricultural Production and Deep Processing at General University in Hunan Province, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, State Key Laboratory of Developmental Biology of Freshwater Fish, College of life and environmental sciences, Hunan University of Arts and Science, Changde, 415000, Hunan, China
| | - Xiyu Luo
- Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Higher Education, Science and Technology Innovation Team for Efficient Agricultural Production and Deep Processing at General University in Hunan Province, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, State Key Laboratory of Developmental Biology of Freshwater Fish, College of life and environmental sciences, Hunan University of Arts and Science, Changde, 415000, Hunan, China
| | - Ying Zhang
- Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Higher Education, Science and Technology Innovation Team for Efficient Agricultural Production and Deep Processing at General University in Hunan Province, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, State Key Laboratory of Developmental Biology of Freshwater Fish, College of life and environmental sciences, Hunan University of Arts and Science, Changde, 415000, Hunan, China
| | - Aihua Deng
- Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Higher Education, Science and Technology Innovation Team for Efficient Agricultural Production and Deep Processing at General University in Hunan Province, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, State Key Laboratory of Developmental Biology of Freshwater Fish, College of life and environmental sciences, Hunan University of Arts and Science, Changde, 415000, Hunan, China
| | - Peng Xie
- Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Higher Education, Science and Technology Innovation Team for Efficient Agricultural Production and Deep Processing at General University in Hunan Province, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, State Key Laboratory of Developmental Biology of Freshwater Fish, College of life and environmental sciences, Hunan University of Arts and Science, Changde, 415000, Hunan, China.
| | - Yun Wang
- Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Higher Education, Science and Technology Innovation Team for Efficient Agricultural Production and Deep Processing at General University in Hunan Province, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, State Key Laboratory of Developmental Biology of Freshwater Fish, College of life and environmental sciences, Hunan University of Arts and Science, Changde, 415000, Hunan, China
| |
Collapse
|
5
|
Salwan R, Rana A, Saini R, Sharma A, Sharma M, Sharma V. Diversity analysis of endophytes with antimicrobial and antioxidant potential from Viola odorata: an endemic plant species of the Himalayas. Braz J Microbiol 2023; 54:2361-2374. [PMID: 37227628 PMCID: PMC10484869 DOI: 10.1007/s42770-023-01010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
Viola odorata, also known as "Banafshah" in high altitudes of Himalayas, is well known for its pharmaceutical importance in Ayurvedic and Unani medicinal system. The plant is a source of various drugs for its anti-inflammatory, diaphoretic, diuretic, emollient, expectorant, antipyretic, and laxative properties. The endophytes of plants have been reported for their role in modulating various physiological and biological processes of the host plants. In the present study, a total of 244 endophytes were isolated in pure cultures from the roots of Viola odorata, and genetic diversity was evaluated using amplified ribosomal DNA restriction analysis (ARDRA) and enterobacterial repetitive intergenic consensus (ERIC). The molecular fingerprinting revealed variation among various rRNA types among morphologically different endophytes based on ARDRA and ERIC-PCR. The screening of endophytes showed antimicrobial activity of 11 bacterial isolates and one actinomycete SGA9 against various pathogens Bacillus cereus, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. The antioxidant activity revealed the majority of the bacterial isolates able to scavenge the free radical in the range of 10-50% and 8 bacterial isolates in the range of 50-85%. Principal component analysis separated eight isolates away from the central eclipse and form a separate group based on antimicrobial and antioxidant potential. The identification of these eight isolates showed affiliation with different species of the genus Enterobacter, Microbacterium, Pseudomonas, Rhizobium, and Streptomyces. This is the first report on the characterization of endophytic bacteria and actinomycetes from endemic Viola odorata. Results suggested that these endophytes could be explored for the production of antimicrobial and antioxidant products.
Collapse
Affiliation(s)
- Richa Salwan
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur (HP), 177 001, India.
| | - Aditi Rana
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur (HP), 177 001, India
| | - Raj Saini
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur (HP), 177 001, India
| | - Amit Sharma
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur (HP), 177 001, India
| | - Monica Sharma
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur (HP), 177 001, India
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali (PB.), 140 413, India
| |
Collapse
|
6
|
Zhuang Y, Yang F, Menon A, Song JM, Espinoza RV, Schultz PJ, Garner AL, Tripathi A. An ECD and NMR/DP4+ Computational Pipeline for Structure Revision and Elucidation of Diphenazine-Based Natural Products. JOURNAL OF NATURAL PRODUCTS 2023; 86:1801-1814. [PMID: 37463274 PMCID: PMC11472273 DOI: 10.1021/acs.jnatprod.3c00306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Discovery and structure elucidation of natural products available in infinitesimally small quantities are recognized challenge. This challenge is epitomized by the diphenazine class of molecules that contain three bridged stereocenters, several conformations, ring fusions, and multiple spatially isolated phenols. Because empirical NMR and spatial analyses using ROESY/NOESY were unsuccessful in tackling these challenges, we developed a computational pipeline to determine the relative and absolute configurations and phenol positions of diphenazines as inhibitors of eukaryotic translation initiation factor 4E (eIF4E) protein-protein interactions. In this pipeline, we incorporated ECD and GIAO NMR calculations coupled with a DP4+ probability measure, enabling the structure revision of phenazinolin D (4), izumiphenazine A (5), and baraphenazine G (7) and the structure characterization of two new diphenazines, baraphenazine H (3) and izumiphenazine E (6). Importantly, through these efforts, we demonstrate the feasibility of NMR/DP4+ analysis for the determination of phenol positions in phenazine-based molecules, further expanding the limits of computational methods for the structure elucidation of complex natural products.
Collapse
Affiliation(s)
- Yihao Zhuang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI 48109, USA
- Natural Product Discovery Core, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Fei Yang
- Natural Product Discovery Core, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI 48109, USA
| | - James M. Song
- Program of Chemical Biology, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Rosa V. Espinoza
- Natural Product Discovery Core, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Program of Chemical Biology, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Pamela J. Schultz
- Natural Product Discovery Core, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Amanda L. Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI 48109, USA
| | - Ashootosh Tripathi
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI 48109, USA
- Natural Product Discovery Core, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Lahiri D, Nag M, Dey A, Sarkar T, Pati S, Nirmal NP, Ray RR, Upadhye VJ, Pandit S, Moovendhan M, Kavisri M. Marine bioactive compounds as antibiofilm agent: a metabolomic approach. Arch Microbiol 2023; 205:54. [PMID: 36602609 DOI: 10.1007/s00203-022-03391-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
The ocean is a treasure trove of both living and nonliving creatures, harboring incredibly diverse group of organisms. A plethora of marine sourced bioactive compounds are discovered over the past few decades, many of which are found to show antibiofilm activity. These are of immense clinical significance since the formation of microbial biofilm is associated with the development of high antibiotic resistance. Biofilms are also responsible to bring about problems associated with industries. In fact, the toilets and wash-basins also show degradation due to development of biofilm on their surfaces. Antimicrobial resistance exhibited by the biofilm can be a potent threat not only for the health care unit along with industries and daily utilities. Various recent studies have shown that the marine members of various kingdom are capable of producing antibiofilm compounds. Many such compounds are with unique structural features and metabolomics approaches are essential to study such large sets of metabolites. Associating holobiome metabolomics with analysis of their chemical attribute may bring new insights on their antibiofilm effect and their applicability as a substitute for conventional antibiotics. The application of computer-aided drug design/discovery (CADD) techniques including neural network approaches and structured-based virtual screening, ligand-based virtual screening in combination with experimental validation techniques may help in the identification of these molecules and evaluation of their drug like properties.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, West Bengal, India
| | - Siddhartha Pati
- Nat Nov Bioscience Private Limited, Balasore, 756001, Odisha, India
| | - Nilesh P Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, 73170, Nakhon Pathom, Thailand.
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India.
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, Gujarat, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - M Moovendhan
- Centre for Ocean Research (DST-FIST Sponsored Centre) MoES-Earth Science & Technology Cell, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - M Kavisri
- Department of Civil Engineering, School of Building and Environment, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| |
Collapse
|
8
|
Manjunatha L, Rajashekara H, Uppala LS, Ambika DS, Patil B, Shankarappa KS, Nath VS, Kavitha TR, Mishra AK. Mechanisms of Microbial Plant Protection and Control of Plant Viruses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3449. [PMID: 36559558 PMCID: PMC9785281 DOI: 10.3390/plants11243449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Plant viral diseases are major constraints causing significant yield losses worldwide in agricultural and horticultural crops. The commonly used methods cannot eliminate viral load in infected plants. Many unconventional methods are presently being employed to prevent viral infection; however, every time, these methods are not found promising. As a result, it is critical to identify the most promising and sustainable management strategies for economically important plant viral diseases. The genetic makeup of 90 percent of viral diseases constitutes a single-stranded RNA; the most promising way for management of any RNA viruses is through use ribonucleases. The scope of involving beneficial microbial organisms in the integrated management of viral diseases is of the utmost importance and is highly imperative. This review highlights the importance of prokaryotic plant growth-promoting rhizobacteria/endophytic bacteria, actinomycetes, and fungal organisms, as well as their possible mechanisms for suppressing viral infection in plants via cross-protection, ISR, and the accumulation of defensive enzymes, phenolic compounds, lipopeptides, protease, and RNase activity against plant virus infection.
Collapse
Affiliation(s)
- Lakshmaiah Manjunatha
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research (IIHR), Bengaluru 560089, Karnataka, India
| | - Hosahatti Rajashekara
- Division of Crop Protection, ICAR-Directorate of Cashew Research (DCR), Dakshina Kannada 574202, Karnataka, India
| | - Leela Saisree Uppala
- Cranberry Station, East Wareham, University of Massachusetts, Amherst, MA 02538, USA
| | - Dasannanamalige Siddesh Ambika
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences (Bagalkot), Bengaluru 560065, Karnataka, India
| | - Balanagouda Patil
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga 577255, Karnataka, India
| | - Kodegandlu Subbanna Shankarappa
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences (Bagalkot), Bengaluru 560065, Karnataka, India
| | | | - Tiptur Rooplanaik Kavitha
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru 560065, Karnataka, India
| | - Ajay Kumar Mishra
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
9
|
Mondal H, Thomas J. Isolation and Characterization of a Novel Actinomycete Isolated from Marine Sediments and Its Antibacterial Activity against Fish Pathogens. Antibiotics (Basel) 2022; 11:1546. [PMID: 36358200 PMCID: PMC9686785 DOI: 10.3390/antibiotics11111546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2023] Open
Abstract
Marine habitats are especially complex, with a varied diversity of living organisms. Marine organisms, while living in such intense conditions, have developed great physiological and metabolic potential to survive. This has led them to produce several potent metabolites, which their terrestrial counterparts are unable to produce. Over the past few years, marine Actinomycetes have been considered one of the most abundant sources of diverse and novel metabolites. In this work, an attempt was made to isolate Actinomycetes from marine sediments in terms of their ability to produce several novel bioactive compounds. A total of 16 different Actinomycete colonies were obtained from marine sediment samples. Among the 16 Actinomycete isolates, 2 isolates demonstrated in vitro antibacterial activity against Aeromonas hydrophila and Vibrio parahemolyticus. However, among them, only one isolate was found to have potent antibacterial activity, and hence, was taken for further analysis. This isolate was designated as Beijerinickia fluminensis VIT01. The bioactive components obtained were extracted and later subjected to Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GC-MS) analyses for identification. Several novel bioactive compounds were reported from the data obtained and were found to have potent antibacterial activity. Hence, they could be used as an alternative to antibiotics for treating several fish pathogens in the aquaculture industry.
Collapse
Affiliation(s)
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore 632014, India
| |
Collapse
|
10
|
Preparative high‐performance liquid chromatography: Isolation of natural chemical compounds for identification and characterization. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Abdelrahman SM, Dosoky NS, Hanora AM, Lopanik NB. Metabolomic Profiling and Molecular Networking of Nudibranch-Associated Streptomyces sp. SCSIO 001680. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144542. [PMID: 35889415 PMCID: PMC9321954 DOI: 10.3390/molecules27144542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
Antibiotic-resistant bacteria are the primary source of one of the growing public health problems that requires global attention, indicating an urgent need for new antibiotics. Marine ecosystems are characterized by high biodiversity and are considered one of the essential sources of bioactive chemical compounds. Bacterial associates of marine invertebrates are commonly a source of active medicinal and natural products and are important sources for drug discovery. Hence, marine invertebrate-associated microbiomes are a fruitful resource for excavating novel genes and bioactive compounds. In a previous study, we isolated Streptomyces sp. SCSIO 001680, coded as strain 63, from the Red Sea nudibranch Chromodoris quadricolor, which exhibited antimicrobial and antitumor activity. In addition, this isolate harbors several natural product biosynthetic gene clusters, suggesting it has the potential to produce bioactive natural products. The present study aimed to investigate the metabolic profile of the isolated Streptomyces sp. SCSIO 001680 (strain 63) and to predict their potential role in the host’s survival. The crude metabolic extracts of strain 63 cultivated in two different media were characterized by ultra-high-performance liquid chromatography and high-resolution mass spectrometry. The metabolomics approach provided us with characteristic chemical fingerprints of the cellular processes and the relative abundance of specific compounds. The Global Products Social Molecular Networking database was used to identify the metabolites. While 434 metabolites were detected in the extracts, only a few compounds were identified based on the standards and the public spectral libraries, including desferrioxamines, marineosin A, and bisucaberin, halichoblelide, alternarin A, pachastrelloside A, streptodepsipeptide P1 1B, didemnaketal F, and alexandrolide. This finding suggests that this strain harbors several novel compounds. In addition, the metabolism of the microbiome of marine invertebrates remains poorly represented. Thus, our data constitute a valuable complement to the study of metabolism in the host microbiome.
Collapse
Affiliation(s)
- Samar M. Abdelrahman
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Department of Botany and Microbiology, Faculty of Science, Suez University, Suez 43518, Egypt
- Correspondence: ; Tel.: +20-103-015-1594
| | | | - Amro M. Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Nicole B. Lopanik
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- American Cancer Society, Atlanta, GA 30303, USA
| |
Collapse
|
12
|
Naligama KN, Weerasinghe KE, Halmillawewa AP. Characterization of Bioactive Actinomycetes Isolated from Kadolkele Mangrove Sediments, Sri Lanka. Pol J Microbiol 2022; 71:191-204. [PMID: 35676828 PMCID: PMC9252147 DOI: 10.33073/pjm-2022-017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
Exploring untapped microbial potentials in previously uncharted environments has become crucial in discovering novel secondary metabolites and enzymes for biotechnological applications. Among prokaryotes, actinomycetes are well recognized for producing a vast range of secondary metabolites and extracellular enzymes. In the present study, we have used surface sediments from ‘Kadolkele’ mangrove ecosystem located in the Negombo lagoon area, Sri Lanka, to isolate actinomycetes with bioactive potentials. A total of six actinomycetes were isolated on modified-starch casein agar and characterized. The isolates were evaluated for their antibacterial activity against four selected bacterial strains and to produce extracellular enzymes: cellulase, amylase, protease, and lipase. Three out of the six isolates exhibited antibacterial activity against Staphylococcus aureus, Escherichia coli, and Bacillus cereus, but not against Listeria monocytogenes. Five strains could produce extracellular cellulase, while all six isolates exhibited amylase activity. Only three of the six isolates were positive for protease and lipase assays separately. Ac-1, Ac-2, and Ac-9, identified as Streptomyces spp. with the 16S rRNA gene sequencing, were used for pigment extraction using four different solvents. Acetone-extracted crude pigments of Ac-1 and Ac-2 were further used in well-diffusion assays, and growth inhibition of test bacteria was observed only with the crude pigment extract of Ac-2. Further, six different commercially available fabrics were dyed with crude pigments of Ac-1. The dyed fabrics retained the yellow color after acid, alkaline, and cold-water treatments suggesting the potential of the Ac-1 pigment to be used in biotechnological applications.
Collapse
Affiliation(s)
- Kishani N Naligama
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya Sri Lanka
| | - Kavindi E Weerasinghe
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya Sri Lanka
| | - Anupama P Halmillawewa
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya Sri Lanka
| |
Collapse
|
13
|
Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens. Microorganisms 2022; 10:microorganisms10020417. [PMID: 35208871 PMCID: PMC8874722 DOI: 10.3390/microorganisms10020417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Microbial pathogens that cause severe infections and are resistant to drugs are simultaneously becoming more active. This urgently calls for novel effective antibiotics. Organisms from extreme environments are known to synthesize novel bioprospecting molecules for biomedical applications due to their peculiar characteristics of growth and physiological conditions. Antimicrobial developments from hypersaline environments, such as lagoons, estuaries, and salterns, accommodate several halophilic microbes. Salinity is a distinctive environmental factor that continuously promotes the metabolic adaptation and flexibility of halophilic microbes for their survival at minimum nutritional requirements. A genetic adaptation to extreme solar radiation, ionic strength, and desiccation makes them promising candidates for drug discovery. More microbiota identified via sequencing and ‘omics’ approaches signify the hypersaline environments where compounds are produced. Microbial genera such as Bacillus, Actinobacteria, Halorubrum and Aspergillus are producing a substantial number of antimicrobial compounds. Several strategies were applied for producing novel antimicrobials from halophiles including a consortia approach. Promising results indicate that halophilic microbes can be utilised as prolific sources of bioactive metabolites with pharmaceutical potentialto expand natural product research towards diverse phylogenetic microbial groups which inhabit salterns. The present study reviews interesting antimicrobial compounds retrieved from microbial sources of various saltern environments, with a discussion of their potency in providing novel drugs against clinically drug-resistant microbes.
Collapse
|
14
|
Alqahtani SS, Moni SS, Sultan MH, Ali Bakkari M, Madkhali OA, Alshahrani S, Makeen HA, Joseph Menachery S, ur Rehman Z, Shamsher Alam M, Mohan S, Eltaib Elmobark M, Banji D, Zakaria Sayed Ahmed M. Potential bioactive secondary metabolites of Actinomycetes sp. isolated from rocky soils of the heritage village Rijal Alma, Saudi Arabia. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Madar I, Sultan G, Chelliah R, Oh DH. Screening for Anticancer Activity: DNA Fragmentation Assay. SPRINGER PROTOCOLS HANDBOOKS 2022:439-442. [DOI: https:/doi.10.1007/978-1-0716-1728-1_58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
16
|
Pinto-Almeida A, Bauermeister A, Luppino L, Grilo IR, Oliveira J, Sousa JR, Petras D, Rodrigues CF, Prieto-Davó A, Tasdemir D, Sobral RG, Gaudêncio SP. The Diversity, Metabolomics Profiling, and the Pharmacological Potential of Actinomycetes Isolated from the Estremadura Spur Pockmarks (Portugal). Mar Drugs 2021; 20:21. [PMID: 35049876 PMCID: PMC8780274 DOI: 10.3390/md20010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 01/24/2023] Open
Abstract
The Estremadura Spur pockmarks are a unique and unexplored ecosystem located in the North Atlantic, off the coast of Portugal. A total of 85 marine-derived actinomycetes were isolated and cultured from sediments collected from this ecosystem at a depth of 200 to 350 m. Nine genera, Streptomyces, Micromonospora, Saccharopolyspora, Actinomadura, Actinopolymorpha, Nocardiopsis, Saccharomonospora, Stackebrandtia, and Verrucosispora were identified by 16S rRNA gene sequencing analyses, from which the first two were the most predominant. Non-targeted LC-MS/MS, in combination with molecular networking, revealed high metabolite diversity, including several known metabolites, such as surugamide, antimycin, etamycin, physostigmine, desferrioxamine, ikarugamycin, piericidine, and rakicidin derivatives, as well as numerous unidentified metabolites. Taxonomy was the strongest parameter influencing the metabolite production, highlighting the different biosynthetic potentials of phylogenetically related actinomycetes; the majority of the chemical classes can be used as chemotaxonomic markers, as the metabolite distribution was mostly genera-specific. The EtOAc extracts of the actinomycete isolates demonstrated antimicrobial and antioxidant activity. Altogether, this study demonstrates that the Estremadura Spur is a source of actinomycetes with potential applications for biotechnology. It highlights the importance of investigating actinomycetes from unique ecosystems, such as pockmarks, as the metabolite production reflects their adaptation to this habitat.
Collapse
Affiliation(s)
- António Pinto-Almeida
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (A.P.-A.); (L.L.); (I.R.G.); (J.O.); (J.R.S.); (R.G.S.)
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Instituto de Engenharias e Ciências do Mar, Universidade Técnica do Atlântico, 163 Ribeira de Julião, 163 Mindelo, Cape Verde
| | - Anelize Bauermeister
- Skaggs School of Pharmacy & Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-075, USA;
| | - Luca Luppino
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (A.P.-A.); (L.L.); (I.R.G.); (J.O.); (J.R.S.); (R.G.S.)
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Dipartimento di Scienze Della Vita, Università Degli Studi di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Inês R. Grilo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (A.P.-A.); (L.L.); (I.R.G.); (J.O.); (J.R.S.); (R.G.S.)
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Juliana Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (A.P.-A.); (L.L.); (I.R.G.); (J.O.); (J.R.S.); (R.G.S.)
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Joana R. Sousa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (A.P.-A.); (L.L.); (I.R.G.); (J.O.); (J.R.S.); (R.G.S.)
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Auf der Morgenstelle 24, 72076 Tuebingen, Germany;
| | - Clara F. Rodrigues
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Alejandra Prieto-Davó
- Unidad de Química-Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Sisal 97356, Mexico;
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24106 Kiel, Germany;
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Rita G. Sobral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (A.P.-A.); (L.L.); (I.R.G.); (J.O.); (J.R.S.); (R.G.S.)
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Susana P. Gaudêncio
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (A.P.-A.); (L.L.); (I.R.G.); (J.O.); (J.R.S.); (R.G.S.)
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
17
|
Production and Partial Characterization of α-Amylase Enzyme from Marine Actinomycetes. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5289848. [PMID: 34917683 PMCID: PMC8670945 DOI: 10.1155/2021/5289848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/20/2021] [Accepted: 10/30/2021] [Indexed: 01/05/2023]
Abstract
Amylase producing actinobacteria were isolated and characterized from terrestrial environment. There are a limited number of reports investigating the marine environment; hence, in the present study, four marine enzymes were tested for their amylase production ability. On starch agar plates, the Streptomyces rochei strain showed a higher hydrolytic zone (24 mm) than the other isolates. Growth under optimized culture conditions using Plackett-Burman's experimental design led to a 1.7, 9.8, 7.7, and 3.12-fold increase for the isolates S. griseorubens, S. rochei, S. parvus, and Streptomyces sp., respectively, in the specific activity measurement. When applying the Box-Behnken design on S. rochei using the most significant parameters (starch, K2HPO4, pH, and temperature), there was a 12.22-fold increase in the specific activity measurement 7.37 U/mg. The α-amylase was partially purified, and its molecular weight was determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. α-Amylase was particularly active at pH 6 and 65°C. The purified enzyme was most active at 65°C and pH 6, thermal stability of 70°C for 40 min, and salt concentration of 1 M with Km and Vmax of 6.58 mg/ml and 21.93 μmol/ml/min, respectively. The α-amylase was improved by adding Cu+2, Zn+2, and Fe+2 (152.21%, 207.24%, and 111.89%). Increased production of α-amylase enzyme by S. rochei KR108310 leads to production of significant industrial products.
Collapse
|
18
|
Safaei N, Mast Y, Steinert M, Huber K, Bunk B, Wink J. Angucycline-like Aromatic Polyketide from a Novel Streptomyces Species Reveals Freshwater Snail Physa acuta as Underexplored Reservoir for Antibiotic-Producing Actinomycetes. Antibiotics (Basel) 2020; 10:antibiotics10010022. [PMID: 33383910 PMCID: PMC7823578 DOI: 10.3390/antibiotics10010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The current study shows that freshwater snails can be considered as new sources for bioactive metabolites, since a novel Streptomyces species 7NS3 produced four active compounds against Gram-positive bacteria. One of the compounds was an angucycline-like aromatic polyketide matched with a known compound, emycin A. Genome mining studies based on the whole-genome sequence of 7NS3 resulted in the identification of a gene cluster potentially coding for emycin A biosynthesis. Abstract Antibiotic producers have mainly been isolated from soil, which often has led to the rediscovery of known compounds. In this study, we identified the freshwater snail Physa acuta as an unexplored source for new antibiotic producers. The bacterial diversity associated with the snail was characterized by a metagenomic approach using cultivation-independent high-throughput sequencing. Although Actinobacteria represented only 2% of the bacterial community, the focus was laid on the isolation of the genus Streptomyces due to its potential to produce antibiotics. Three Streptomyces strains (7NS1, 7NS2 and 7NS3) were isolated from P. acuta, and the antimicrobial activity of the crude extracts were tested against a selection of Gram-positive and Gram-negative bacteria and fungi. 7NS3 showed the strongest activity against Gram-positive bacteria and, thus, was selected for genome sequencing and a phylogenomic analysis. 7NS3 represents a novel Streptomyces species, which was deposited as Streptomyces sp. DSM 110735 at the Leibniz Institute-German Collection of Microorganisms and Cell Cultures (DSMZ). Bioassay-guided high-performance liquid chromatography (HPLC) and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS) analyses of crude extract fractions resulted in the detection of four compounds, one of which matched the compound characteristics of emycin A, an angucycline-like aromatic polyketide. Genome mining studies based on the whole-genome sequence of 7NS3 resulted in the identification of a gene cluster potentially coding for emycin A biosynthesis. Our study demonstrates that freshwater snails like P. acuta can represent promising reservoirs for the isolation of new antibiotic-producing actinobacterial species.
Collapse
Affiliation(s)
- Nasim Safaei
- Helmholtz Centre for Infection Research, Department of microbial Strain Collection, Inhoffenstrasse 7, D-38124 Braunschweig, Germany;
| | - Yvonne Mast
- German Center for Infection Research (DZIF), Leibniz Institute DSMZ, Inhoffenstrasse 7, D-38124 Braunschweig, Germany; (Y.M.); (K.H.); (B.B.)
| | - Michael Steinert
- Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany;
| | - Katharina Huber
- German Center for Infection Research (DZIF), Leibniz Institute DSMZ, Inhoffenstrasse 7, D-38124 Braunschweig, Germany; (Y.M.); (K.H.); (B.B.)
| | - Boyke Bunk
- German Center for Infection Research (DZIF), Leibniz Institute DSMZ, Inhoffenstrasse 7, D-38124 Braunschweig, Germany; (Y.M.); (K.H.); (B.B.)
| | - Joachim Wink
- Helmholtz Centre for Infection Research, Department of microbial Strain Collection, Inhoffenstrasse 7, D-38124 Braunschweig, Germany;
- Correspondence: ; Tel.: +49-531-6181-4223
| |
Collapse
|
19
|
Isolation, phylogenetic analysis and antimicrobial activity of halophilic actinomycetes from different saline environments located near Çorum province. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00612-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Sangkanu S, Rukachaisirikul V, Suriyachadkun C, Phongpaichit S. Antifungal activity of marine-derived actinomycetes against Talaromyces marneffei. J Appl Microbiol 2020; 130:1508-1522. [PMID: 33010096 DOI: 10.1111/jam.14877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 01/27/2023]
Abstract
AIMS This study aimed to isolate actinomycetes from marine environments and examine their antifungal activity against Talaromyces marneffei both in vitro and in vivo. METHODS AND RESULTS Nineteen out of 101 actinomycete extracts were active and further determined for their minimum inhibitory concentrations (MIC). Three extracts of AMA50 that isolated from sediment showed strong antifungal activity against T. marneffei yeast (MICs ≤0·03-0·25 µg ml-1 ) and mould (MICs 0·5-16 µg ml-1 ) forms. The hexane extract from the cells of AMA50 (AMA50CH) exhibited the best activity against both the forms (MIC ≤ 1 µg ml-1 ). Three extracts from AMA50 killed the melanized yeast cells at 0·5 µg ml-1 . The AMA50CH was further tested for protective effects in Caenorhabditis elegans model. At concentrations of 1-8 µg ml-1 , the AMA50CH prolonged survival of T. marneffei-infected C. elegans with a 60-70% survival rate. The composition of AMA50CH was determined by gas chromatography-mass spectrometry. The major components were n-hexadecanoic acid, tetradecanoic acid and pentadecanoic acid. Sequencing analysis revealed that isolate AMA50 belonged to the genus Streptomyces. CONCLUSIONS The AMA50CH from Streptomyces sp. AMA50 was the most effective extract against T. marneffei. SIGNIFICANCE AND IMPACT OF THE STUDY Talaromyces marneffei is one of the most important thermally dimorphic pathogenic fungi. These results indicated the potency of marine-derived actinomycete extracts against T. marneffei both in vitro and in vivo.
Collapse
Affiliation(s)
- S Sangkanu
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - V Rukachaisirikul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - C Suriyachadkun
- BIOTEC Culture Collection, Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - S Phongpaichit
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
21
|
Shintre NA, Tamhane VA, Baig UI, Pund AS, Patwardhan RB, Deshpande NM. Diversity of Culturable Actinobacteria Producing Protease Inhibitors Isolated from the Intertidal Zones of Maharashtra, India. Curr Microbiol 2020; 77:3555-3564. [PMID: 32902705 DOI: 10.1007/s00284-020-02174-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/21/2020] [Indexed: 11/26/2022]
Abstract
Phylogenetic diversity of culturable actinobacteria isolated from the intertidal regions of west coast of Maharashtra, India was studied using 16S rRNA gene sequencing. Total of 140 actinobacterial isolates were obtained, which belonged to 14 genera, 10 families and 65 putative species with Streptomyces being the most dominant (63%) genus followed by Nocardiopsis and Micromonospora. Isolates were screened for production of extracellular protease inhibitors (PI) against three pure proteases viz. chymotrypsin, trypsin, subtilisin and a crude extracellular protease from Pseudomonas aeruginosa. Eighty percent of the isolates showed PI activity against at least one of the four proteases, majority of these belonged to genus Streptomyces. Actinobacterial diversity from two sites Ade (17° 52' N, 73° 04' E) and Harnai (17° 48' N, 73° 05' E) with varying anthropological pressure showed that more putative species diversity was obtained from site with lower human intervention i.e. Ade (Shannon's H 3.45) than from Harnai (Shannon's H 2.83), a site with more human intervention. However, in Ade, percentage of isolates not showing PI activity against any of the proteases was close to 21% and that in Harnai was close to 9%. In other words, percentage of PI producers was lower at a site with lesser human intervention.
Collapse
Affiliation(s)
- Neha A Shintre
- Department of Microbiology, M.E.S. Abasaheb Garware College, Karve Road, Pune, Maharashtra, 411004, India
| | - Vaijayanti A Tamhane
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Ulfat I Baig
- Indian Institute of Science Education and Research, Pune (IISER-P), Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Anagha S Pund
- Indian Institute of Science Education and Research, Pune (IISER-P), Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Rajashree B Patwardhan
- Department of Microbiology, Haribhai V. Desai College of Commerce, Arts and Science, Pune, Maharashtra, 411002, India
| | - Neelima M Deshpande
- Department of Microbiology, M.E.S. Abasaheb Garware College, Karve Road, Pune, Maharashtra, 411004, India.
| |
Collapse
|
22
|
Antimicrobial Chlorinated 3-Phenylpropanoic Acid Derivatives from the Red Sea Marine Actinomycete Streptomyces coelicolor LY001. Mar Drugs 2020; 18:md18090450. [PMID: 32867397 PMCID: PMC7551466 DOI: 10.3390/md18090450] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
The actinomycete strain Streptomyces coelicolor LY001 was purified from the sponge Callyspongia siphonella. Fractionation of the antimicrobial extract of the culture of the actinomycete afforded three new natural chlorinated derivatives of 3-phenylpropanoic acid, 3-(3,5-dichloro-4-hydroxyphenyl)propanoic acid (1), 3-(3,5-dichloro-4-hydroxyphenyl)propanoic acid methyl ester (2), and 3-(3-chloro-4-hydroxyphenyl)propanoic acid (3), together with 3-phenylpropanoic acid (4), E-cinnamic acid (5), and the diketopiperazine alkaloids cyclo(l-Phe-trans-4-OH-l-Pro) (6) and cyclo(l-Phe-cis-4-OH-d-Pro) (7) were isolated. Interpretation of nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HRESIMS) data of 1–7 supported their assignments. Compounds 1–3 are first candidates of the natural chlorinated phenylpropanoic acid derivatives. The production of the chlorinated derivatives of 3-phenylpropionic acid (1–3) by S. coelicolor provides insight into the biosynthetic capabilities of the marine-derived actinomycetes. Compounds 1–3 demonstrated significant and selective activities towards Escherichia. coli and Staphylococcus aureus, while Candida albicans displayed more sensitivity towards compounds 6 and 7, suggesting a selectivity effect of these compounds against C. albicans.
Collapse
|
23
|
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19:169. [PMID: 32847584 PMCID: PMC7449042 DOI: 10.1186/s12934-020-01428-8] [Citation(s) in RCA: 310] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Lipases are very versatile enzymes, and produced the attention of the several industrial processes. Lipase can be achieved from several sources, animal, vegetable, and microbiological. The uses of microbial lipase market is estimated to be USD 425.0 Million in 2018 and it is projected to reach USD 590.2 Million by 2023, growing at a CAGR of 6.8% from 2018. Microbial lipases (EC 3.1.1.3) catalyze the hydrolysis of long chain triglycerides. The microbial origins of lipase enzymes are logically dynamic and proficient also have an extensive range of industrial uses with the manufacturing of altered molecules. The unique lipase (triacylglycerol acyl hydrolase) enzymes catalyzed the hydrolysis, esterification and alcoholysis reactions. Immobilization has made the use of microbial lipases accomplish its best performance and hence suitable for several reactions and need to enhance aroma to the immobilization processes. Immobilized enzymes depend on the immobilization technique and the carrier type. The choice of the carrier concerns usually the biocompatibility, chemical and thermal stability, and insolubility under reaction conditions, capability of easy rejuvenation and reusability, as well as cost proficiency. Bacillus spp., Achromobacter spp., Alcaligenes spp., Arthrobacter spp., Pseudomonos spp., of bacteria and Penicillium spp., Fusarium spp., Aspergillus spp., of fungi are screened large scale for lipase production. Lipases as multipurpose biological catalyst has given a favorable vision in meeting the needs for several industries such as biodiesel, foods and drinks, leather, textile, detergents, pharmaceuticals and medicals. This review represents a discussion on microbial sources of lipases, immobilization methods increased productivity at market profitability and reduce logistical liability on the environment and user.
Collapse
Affiliation(s)
- Prem Chandra
- Food Microbiology & Toxicology, Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh 226025 India
| | - Enespa
- Department of Plant Pathology, School for Agriculture, SMPDC, University of Lucknow, Lucknow, 226007 U.P. India
| | - Ranjan Singh
- Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| | - Pankaj Kumar Arora
- Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| |
Collapse
|
24
|
Ghosh M, Gera M, Singh J, Prasad R, Pulicherla KK. A Comprehensive Investigation of Potential Novel Marine Psychrotolerant Actinomycetes sp. Isolated from the Bay-of-Bengal. Curr Genomics 2020; 21:271-282. [PMID: 33071620 PMCID: PMC7521042 DOI: 10.2174/1389202921666200330150642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND This study was carried out to classify the diversity of the deep marine psychrotolerant actinomycetes sp. nov., in the Bay of Bengal and exploit the production of cold-active industrial and pharmaceutical biomolecules. OBJECTIVE 1) Characterization, optimum the growth conditions and classify the diversity of the novel isolated deep marine psychrotolerant actinomycetes sp from the Bay-of-Bengal. 2) Screening for industrially important biocatalysts and determine the antimicrobial activities against the five dreadful pathogens. 3) The differential expression profiling of the candidate genes to regulate the biosynthesis of selected enzymes. METHODS The cold-adapted actinomycetes were isolated from the deep marine water collections at 1200 mts below the surface in Bay-of-Bengal. The phenotypic and genotypic characterizations have been carried out to understand the persistent diversity of this novel marine psychrotolerant actinomycetes species. The production of cold-active enzymes, such as amylase, cellulase, lipase, pectinase, and L-asparaginase, were screened and the expression profiling genes were determined by using qRT PCR. The antibacterial and antifungal activities have also been investigated. RESULTS A total number of 37 novel actinomycetes were isolated and the phenotypic and genotypic characterizations identified the genus, dominated by Streptomyces (17 distinct sub-groups) as the major group, followed by Micromonospora, Actinopolyspora, Actinosynnema, Streptoverticillium, Saccharopolyspora, Nocardiopsis, and Nocardia. The optimum growth and abundant mycelium formation are observed at 15°C to 20°C and also capability for thriving at 4°C. All the isolates exhibited a significant role in the production of biocatalysts, and the antagonistic activities were also noted against five major selected pathogens. CONCLUSION The Streptomyces from the Bay-of-Bengal have high biosynthetic potential and can serve as a good resource for the exploration of bioactive natural products.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- 1Department of Biotechnology, Division of Research and Development, Lovely Professional University, Punjab-144411, India; 2Department of Animal Biotechnology, School of Life Science, Genetic Engineering and Molecular Biology Lab, Jeju National University, Jeju-Do, Republic of Korea; 3Department of Botany, Mahatma Gandhi Central University, Motihari- 845801, Bihar, India; 4Department of Science and Technology, Ministry of Science and Technology, Technology Bhavan, New Mehrauli Road, New Delhi-110016, India
| | - Meeta Gera
- 1Department of Biotechnology, Division of Research and Development, Lovely Professional University, Punjab-144411, India; 2Department of Animal Biotechnology, School of Life Science, Genetic Engineering and Molecular Biology Lab, Jeju National University, Jeju-Do, Republic of Korea; 3Department of Botany, Mahatma Gandhi Central University, Motihari- 845801, Bihar, India; 4Department of Science and Technology, Ministry of Science and Technology, Technology Bhavan, New Mehrauli Road, New Delhi-110016, India
| | - Joginder Singh
- 1Department of Biotechnology, Division of Research and Development, Lovely Professional University, Punjab-144411, India; 2Department of Animal Biotechnology, School of Life Science, Genetic Engineering and Molecular Biology Lab, Jeju National University, Jeju-Do, Republic of Korea; 3Department of Botany, Mahatma Gandhi Central University, Motihari- 845801, Bihar, India; 4Department of Science and Technology, Ministry of Science and Technology, Technology Bhavan, New Mehrauli Road, New Delhi-110016, India
| | - Ram Prasad
- 1Department of Biotechnology, Division of Research and Development, Lovely Professional University, Punjab-144411, India; 2Department of Animal Biotechnology, School of Life Science, Genetic Engineering and Molecular Biology Lab, Jeju National University, Jeju-Do, Republic of Korea; 3Department of Botany, Mahatma Gandhi Central University, Motihari- 845801, Bihar, India; 4Department of Science and Technology, Ministry of Science and Technology, Technology Bhavan, New Mehrauli Road, New Delhi-110016, India
| | - Krishna Kanth Pulicherla
- 1Department of Biotechnology, Division of Research and Development, Lovely Professional University, Punjab-144411, India; 2Department of Animal Biotechnology, School of Life Science, Genetic Engineering and Molecular Biology Lab, Jeju National University, Jeju-Do, Republic of Korea; 3Department of Botany, Mahatma Gandhi Central University, Motihari- 845801, Bihar, India; 4Department of Science and Technology, Ministry of Science and Technology, Technology Bhavan, New Mehrauli Road, New Delhi-110016, India
| |
Collapse
|
25
|
Elmallah MIY, Cogo S, Constantinescu AA, Elifio-Esposito S, Abdelfattah MS, Micheau O. Marine Actinomycetes-Derived Secondary Metabolites Overcome TRAIL-Resistance via the Intrinsic Pathway through Downregulation of Survivin and XIAP. Cells 2020; 9:cells9081760. [PMID: 32708048 PMCID: PMC7464567 DOI: 10.3390/cells9081760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 01/03/2023] Open
Abstract
Resistance of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis represents the major hurdle to the clinical use of TRAIL or its derivatives. The discovery and development of lead compounds able to sensitize tumor cells to TRAIL-induced cell death is thus likely to overcome this limitation. We recently reported that marine actinomycetes’ crude extracts could restore TRAIL sensitivity of the MDA-MB-231 resistant triple negative breast cancer cell line. We demonstrate in this study, that purified secondary metabolites originating from distinct marine actinomycetes (sharkquinone (1), resistomycin (2), undecylprodigiosin (3), butylcyclopentylprodigiosin (4), elloxizanone A (5) and B (6), carboxyexfoliazone (7), and exfoliazone (8)), alone, and in a concentration-dependent manner, induce killing in both MDA-MB-231 and HCT116 cell lines. Combined with TRAIL, these compounds displayed additive to synergistic apoptotic activity in the Jurkat, HCT116 and MDA-MB-231 cell lines. Mechanistically, these secondary metabolites induced and enhanced procaspase-10, -8, -9 and -3 activation leading to an increase in PARP and lamin A/C cleavage. Apoptosis induced by these compounds was blocked by the pan-caspase inhibitor QvD, but not by a deficiency in caspase-8, FADD or TRAIL agonist receptors. Activation of the intrinsic pathway, on the other hand, is likely to explain both their ability to trigger cell death and to restore sensitivity to TRAIL, as it was evidenced that these compounds could induce the downregulation of XIAP and survivin. Our data further highlight that compounds derived from marine sources may lead to novel anti-cancer drug discovery.
Collapse
Affiliation(s)
- Mohammed I. Y. Elmallah
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
- Chemistry Department, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo 11795, Egypt;
- Correspondence: (M.I.Y.E.); (O.M.)
| | - Sheron Cogo
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
- Graduate Programme in Health Sciences, Pontifícia Universidade Catolica do Parana, Curitiba 80215–901, Parana, Brazil;
| | - Andrei A. Constantinescu
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
| | - Selene Elifio-Esposito
- Graduate Programme in Health Sciences, Pontifícia Universidade Catolica do Parana, Curitiba 80215–901, Parana, Brazil;
| | - Mohammed S. Abdelfattah
- Chemistry Department, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo 11795, Egypt;
- Marine Natural Products Unit (MNPRU), Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo 11795, Egypt
| | - Olivier Micheau
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
- Correspondence: (M.I.Y.E.); (O.M.)
| |
Collapse
|
26
|
Meta-analysis on big data of bioactive compounds from mangrove ecosystem to treat neurodegenerative disease. Scientometrics 2020. [DOI: 10.1007/s11192-020-03355-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Javee A, Karuppan R, Subramani N. Bioactive glycolipid biosurfactant from seaweed Sargassum myriocystum associated bacteria Streptomyces sp. SNJASM6. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Corral P, Amoozegar MA, Ventosa A. Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine. Mar Drugs 2019; 18:md18010033. [PMID: 31906001 PMCID: PMC7024382 DOI: 10.3390/md18010033] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 12/18/2022] Open
Abstract
The organisms thriving under extreme conditions better than any other organism living on Earth, fascinate by their hostile growing parameters, physiological features, and their production of valuable bioactive metabolites. This is the case of microorganisms (bacteria, archaea, and fungi) that grow optimally at high salinities and are able to produce biomolecules of pharmaceutical interest for therapeutic applications. As along as the microbiota is being approached by massive sequencing, novel insights are revealing the environmental conditions on which the compounds are produced in the microbial community without more stress than sharing the same substratum with their peers, the salt. In this review are reported the molecules described and produced by halophilic microorganisms with a spectrum of action in vitro: antimicrobial and anticancer. The action mechanisms of these molecules, the urgent need to introduce alternative lead compounds and the current aspects on the exploitation and its limitations are discussed.
Collapse
Affiliation(s)
- Paulina Corral
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Mohammad A. Amoozegar
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6955, Iran;
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
- Correspondence: ; Tel.: +34-954556765
| |
Collapse
|
29
|
Gómez-Rodríguez L, Schultz PJ, Tamayo-Castillo G, Dotson GD, Sherman DH, Tripathi A. Adipostatins E-J, New Potent Antimicrobials Identified as Inhibitors of Coenzyme-A Biosynthesis. Tetrahedron Lett 2019; 61. [PMID: 32863451 DOI: 10.1016/j.tetlet.2019.151469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phosphopantetheine is a key structural element in biological acyl transfer reactions found embedded within coenzyme A (CoA). Phosphopantothenoylcysteine synthetase (PPCS) is responsible for installing a cysteamine group within phosphopantetheine. Therefore, it holds considerable potential as a drug target for developing new antimicrobials. In this study, we adapted a biochemical assay specific for bacterial PPCS to screen for inhibitors of CoA biosynthesis against a library of marine microbial derived natural product extracts (NPEs). Analysis of the NPE derived from Streptomyces blancoensis led to the isolation of novel antibiotics (10-12, and 14) from the adipostatin class of molecules. The most potent molecule (10) displayed in vitro activity with IC50= 0.93 μM, against S. pneumoniae PPCS. The whole cell antimicrobial assay against isolated molecules demonstrated their ability to penetrate bacterial cells and inhibit clinically relevant pathogenic strains. This establishes the validity of PPCS as a pertinent drug target, and the value of NPEs to provide new antibiotics.
Collapse
Affiliation(s)
- Lyanne Gómez-Rodríguez
- UM Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109.,Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Pamela J Schultz
- UM Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Giselle Tamayo-Castillo
- Escuela de Química & CIPRONA, Universidad de Costa Rica, 2060 San Pedro de Costa Rica & INBio, Santo Domingo de Heredia, Heredia, Costa Rica
| | - Garry D Dotson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - David H Sherman
- UM Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109.,Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109
| | - Ashootosh Tripathi
- UM Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109.,Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
30
|
Novel Fibrinolytic Protease Producing Streptomyces radiopugnans VITSD8 from Marine Sponges. Mar Drugs 2019; 17:md17030164. [PMID: 30871149 PMCID: PMC6471097 DOI: 10.3390/md17030164] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 11/29/2022] Open
Abstract
Fibrinolytic enzymes have received more attention due to their medicinal potential for thrombolytic diseases. The aim of this study is to characterize the in vitro fibrinolytic nature of purified protease producing Streptomyces radiopugnans VITSD8 from marine brown tube sponges Agelas conifera. Three varieties of sponge were collected from the Rameshwaram Sea coast, Tamil Nadu, India. The fibrinolytic activity of Streptomyces sp. was screened and determined by casein plasminogen plate and fibrin plate methods respectively. The crude caseinolytic protease was purified using ammonium sulfate fractionation, affinity and ion-exchange chromatography. Based on the morphological, biochemical, and molecular characterization, the isolate VITSD8 was confirmed as Streptomyces radiopugnans. Maltose and peptone were found to be the best carbon and nitrogen sources for the production of fibrinolytic protease. The carbon and nitrogen source peptone showed (781 U/mL) enzyme activity. The optimum pH and temperature for fibrinolytic protease production was found to be 7.0 and 33 °C respectively. The purified enzyme showed a maximum specific activity of 3891 U. The blood clot lysis activity was compared with the standard, and it was concluded that a minimum of 0.18 U (10 µL) of purified protease was required to dissolve the blood clot. This is the first report which exploits the fibrinolytic protease activity of Streptomyces radiopugnans VITSD8 extracted from a marine sponge. Hence the investigation suggests a potential benefit of purified fibrinolytic protease which will serve as an excellent clot buster alternative.
Collapse
|
31
|
Integrated Genomic and Metabolomic Approach to the Discovery of Potential Anti-Quorum Sensing Natural Products from Microbes Associated with Marine Samples from Singapore. Mar Drugs 2019; 17:md17010072. [PMID: 30669697 PMCID: PMC6356914 DOI: 10.3390/md17010072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/17/2022] Open
Abstract
With 70% of the Earth's surface covered in water, the marine ecosystem offers immense opportunities for drug discovery and development. Due to the decreasing rate of novel natural product discovery from terrestrial sources in recent years, many researchers are beginning to look seaward for breakthroughs in new therapeutic agents. As part of an ongoing marine drug discovery programme in Singapore, an integrated approach of combining metabolomic and genomic techniques were initiated for uncovering novel anti-quorum sensing molecules from bacteria associated with subtidal samples collected in the Singapore Strait. Based on the culture-dependent method, a total of 102 marine bacteria strains were isolated and the identities of selected strains were established based on their 16S rRNA gene sequences. About 5% of the marine bacterial organic extracts showed quorum sensing inhibitory (QSI) activity in a dose-dependent manner based on the Pseudomonas aeruginosa QS reporter system. In addition, the extracts were subjected to mass spectrometry-based molecular networking and the genome of selected strains were analysed for known as well as new biosynthetic gene clusters. This study revealed that using integrated techniques, coupled with biological assays, can provide an effective and rapid prioritization of marine bacterial strains for downstream large-scale culturing for the purpose of isolation and structural elucidation of novel bioactive compounds.
Collapse
|
32
|
Rhizoshpheric bacteria isolated from the agricultural fields of Kolathur, Tamilnadu promotes plant growth in mustard plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Ramirez-Rodriguez L, Stepanian-Martinez B, Morales-Gonzalez M, Diaz L. Optimization of the Cytotoxic Activity of Three Streptomyces Strains Isolated from Guaviare River Sediments (Colombia, South America). BIOMED RESEARCH INTERNATIONAL 2018; 2018:2839356. [PMID: 30112373 PMCID: PMC6077652 DOI: 10.1155/2018/2839356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/24/2018] [Accepted: 06/12/2018] [Indexed: 11/17/2022]
Abstract
Three Streptomyces strains isolated from Guaviare sediments (Colombia, South America) with cytotoxic activity against prostate cancer (PC3), breast cancer (MDA-MB-231), and lung cancer (A549) line cells were studied. The present investigation reveals the enhancement of the cytotoxic activity evaluating different values of pH, carbon sources (sucrose, glucose, xylose, maltose, and starch), and nitrogen sources (malt extract, yeast extract, meat extract, peptone, and potassium nitrate). Based on the response surface methodology, the isolates Streptomyces aburaviensis (73) had the maximum activity for lung cancer (IC50= 25.00 ± 1.86 ppm) with 4% of yeast extract, 3% of starch, and a pH value of 7. Streptomyces gramineus (386) had the maximum activity against prostate cancer (IC50= 6.14 ± 2.07 ppm) with 5% of malt extract, 3% of glucose, and a pH value of 6. Finally, Streptomyces psammoticus (519) had the maximum activity against breast cancer (IC50= 35.53 ± 2.71 ppm) with 1% of yeast extract, 4% of starch, and a pH 8. The results suggest that the ethyl acetate extracts from isolates Streptomyces aburaviensis (73), Streptomyces gramineus (386), and Streptomyces psammoticus (519) have a potential for use in pharmaceuticals as cytotoxic agents.
Collapse
Affiliation(s)
- Laura Ramirez-Rodriguez
- Facultad de Ingenieria, Universidad de La Sabana, Campus del Puente del Comun, Km 7 Autopista Norte de Bogotá, Chia, Colombia
| | - Boghos Stepanian-Martinez
- Facultad de Ingenieria, Universidad de La Sabana, Campus del Puente del Comun, Km 7 Autopista Norte de Bogotá, Chia, Colombia
| | - Maria Morales-Gonzalez
- Facultad de Ingenieria, Universidad de La Sabana, Campus del Puente del Comun, Km 7 Autopista Norte de Bogotá, Chia, Colombia
| | - Luis Diaz
- Facultad de Ingenieria, Universidad de La Sabana, Campus del Puente del Comun, Km 7 Autopista Norte de Bogotá, Chia, Colombia
| |
Collapse
|
34
|
Kikuchi S, Okada K, Cho Y, Yoshida S, Kwon E, Yotsu-Yamashita M, Konoki K. Isolation and structure determination of lysiformine from bacteria associated with marine sponge Halichondria okadai. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Antifungal activity of 3-acetylbenzamide produced by actinomycete WA23-4-4 from the intestinal tract of Periplaneta americana. J Microbiol 2018; 56:516-523. [PMID: 29956124 DOI: 10.1007/s12275-018-7510-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/15/2018] [Accepted: 05/01/2018] [Indexed: 10/28/2022]
Abstract
Actinomycetes are well-known for producing numerous bioactive secondary metabolites. In this study, primary screening by antifungal activity assay found one actinomycete strain WA23-4-4 isolated from the intestinal tract of Periplaneta americana that exhibited broad spectrum antifungal activity. 16S rDNA gene analysis of strain WA23-4-4 revealed close similarity to Streptomyces nogalater (AB045886) with 86.6% sequence similarity. Strain WA23-4-4 was considered as a novel Streptomyces and the 16s rDNA sequence has been submitted to GenBank (accession no. KX291006). The maximum antifungal activity of WA23-4-4 was achieved when culture conditions were optimized to pH 8.0, with 12% inoculum concentration and 210 ml ISP2 medium, which remained stable between the 5th and the 9th day. 3-Acetyl benzoyl amide was isolated by ethyl acetate extraction of WA23-4-4 fermentation broth, and its molecular formula was determined as C9H9NO2 based on MS, IR, 1H, and 13C NMR analyses. The compound showed significant antifungal activity against Candida albicans ATCC 10231 (MIC: 31.25 μg/ml) and Aspergillus niger ATCC 16404 (MIC: 31.25 μg/ml). However, the compound had higher MIC values against Trichophyton rubrum ATCC 60836 (MIC: 500 μg/ml) and Aspergillus fumigatus ATCC 96918 (MIC: 1,000 μg/ml). SEM analysis showed damage to the cell membrane of Candida albicans ATCC 10231 and to the mycelium of Aspergillus niger ATCC 16404 after being treatment with 3-acetyl benzoyl amide. In conclusion, this is the first time that 3-acetyl benzoyl amide has been identified from an actinomycete and this compound exhibited antifungal activity against Candida albicans ATCC 10231 and Aspergillus niger ATCC 16404.
Collapse
|
36
|
Mike LA, Tripathi A, Blankenship CM, Saluk A, Schultz PJ, Tamayo-Castillo G, Sherman DH, Mobley HLT. Discovery of nicoyamycin A, an inhibitor of uropathogenic Escherichia coli growth in low iron environments. Chem Commun (Camb) 2018; 53:12778-12781. [PMID: 29139494 DOI: 10.1039/c7cc07732g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
High-throughput screening and activity-guided purification identified nicoyamycin A, a natural product comprised of an uncommon 3-methyl-1,4-dioxane ring incorporated into a desferrioxamine-like backbone via a spiroaminal linkage. Nicoyamycin A potently inhibits uropathogenic Escherichia coli growth in low iron medium, a promising step toward developing novel antibiotics to treat recalcitrant bacterial infections.
Collapse
Affiliation(s)
- Laura A Mike
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Gabriel KT, Joseph Sexton D, Cornelison CT. Biomimicry of volatile-based microbial control for managing emerging fungal pathogens. J Appl Microbiol 2018; 124:1024-1031. [PMID: 29240978 DOI: 10.1111/jam.13667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022]
Abstract
Volatile organic compounds (VOCs) are known to be produced by a wide range of micro-organisms and for a number of purposes. Volatile-based microbial inhibition in environments such as soil is well-founded, with numerous antimicrobial VOCs having been identified. Inhibitory VOCs are of interest as microbial control agents, as low concentrations of gaseous VOCs can elicit significant antimicrobial effects. Volatile organic compounds are organic chemicals typically characterized as having low molecular weight, low solubility in water, and high vapour pressure. Consequently, VOCs readily evaporate to the gaseous phase at standard temperature and pressure. This contact-independent antagonism presents unique advantages over traditional, contact-dependent microbial control methods, including increased surface exposure and reduced environmental persistence. This approach has been the focus of our recent research, with positive results suggesting it may be particularly promising for the management of emerging fungal pathogens, such as the causative agents of white-nose syndrome of bats and snake fungal disease, which are difficult or impossible to treat using traditional approaches. Here, we review the history of volatile-based microbial control, discuss recent progress in formulations that mimic naturally antagonistic VOCs, outline the development of a novel treatment device, and highlight areas where further work is needed to successfully deploy VOCs against existing and emerging fungal pathogens.
Collapse
Affiliation(s)
- K T Gabriel
- Division of Research and Advanced Studies, Kennesaw State University, Kennesaw, GA, USA
| | - D Joseph Sexton
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - C T Cornelison
- Division of Research and Advanced Studies, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
38
|
Gong B, Chen S, Lan W, Huang Y, Zhu X. Antibacterial and Antitumor Potential of Actinomycetes Isolated from Mangrove Soil in the Maowei Sea of the Southern Coast of China. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:1339-1346. [PMID: 30568692 PMCID: PMC6269563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
Mangroves are the tidal forest existing in the intertidal zone and usually considered as the special marine ecosystem. In the present study, 452 actinomycetes were recovered from nine diferent sites at Maowei Sea Mangrove Reserve in Qinzhou (Guangxi province, China). Among them, Seventy-four strains were purified for 16s RNA gene sequencing and further characterization. The results indicated that the majority of isolates belonged to the genera Streptomyces, including 17 species. Streptomyces sanyensis was the dominant species (31.1%), followed by Streptomyces griseorubens (17.5%), Streptomyces viridobrunneus (10.8%) and other Streptomyces species. Only one rare actinomycete, Stenotrophomonas was discovered. The isolation of actinomycetes was obviously related to the type of soil and edaphic conditions. Rhizosphere-associated soils gave almost 62.2% actinomycete isolates, nearly twice as many as the non-rhizosphere-associated soils. In addition, 20 actinomycete strains (27%) presented varied antibacterial activities towards four tested organisms, including two drug-resistant clinical strains (MRSA and VRE), while some species of Streptomyces like S.sanyensis, S.viridobrunneus, S.tanashiensis, S.parvus, S.flavotricini, and S.parvulus exhibited remarkable cytotoxic activities. Further bioinformatical analysis of these 29 bioactive strains for secondary metabolites biosynthetic machineries revealed that nonribosomal peptide synthetase (NRPS) was detected in 20 isolates (68.9%), whereas type-I polyketide synthase (PKS-I) and type-II polyketide synthase (PKS-II) were detected in 16 and all of the 29 strains, respectively. Hence, our work demonstrated that actinomycetes from mangroves in Maowei Sea Mangrove Reservewere fascinating reservoirs for antibacterial and antitumor natural products discovery.
Collapse
Affiliation(s)
- Bin Gong
- Guangxi KeyLaboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean Science department, Qinzhou University, Qinzhou, China. ,Corresponding author: E-mail:
| | - Shuang Chen
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning, China.
| | - Wenwen Lan
- Guangxi KeyLaboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean Science department, Qinzhou University, Qinzhou, China.
| | - Yanmin Huang
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning, China.
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China.
| |
Collapse
|
39
|
Streptomyces puniceus strain AS13., Production, characterization and evaluation of bioactive metabolites: A new face of dinactin as an antitumor antibiotic. Microbiol Res 2017; 207:196-202. [PMID: 29458855 DOI: 10.1016/j.micres.2017.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/16/2017] [Accepted: 12/04/2017] [Indexed: 11/22/2022]
Abstract
A highly active actinobacterial strain isolated from untapped areas of Northwestern Himalayas and characterised as Streptomyces puniceus strain AS13 by 16S rRNA gene sequencing was selected for production of bioactive metabolites. The bioassay-guided fractionation of microbial cultured ethyl acetate extract of the strain, led to isolation of macrotetrolide compound 1 (Dinactin) and compound 2 (1-(2,4-dihydroxy-6-methylphenyl)-ethanone). Structures of the isolated compounds were elucidated by [corrected] interpretation of NMR and other spectroscopic data including HR-ESI-MS, FT-IR. These compounds are reported for first time from Streptomyces Puniceus. Compound 1 exhibited strong anti-microbial activity against all tested bacterial pathogens including Mycobacterium tuberculosis. The MIC values of compound 1 against Gram negative and Gram positive bacterial pathogens ranged between 0.019 - 0.156μgml-1 and 1μgml-1 against Mycobacterium tuberculosis H37Rv. Dinactin exhibited marked anti-tumor potential with IC50 of 1.1- 9.7μM in various human cancerous cell lines and showed least cytotoxicity (IC50∼80μM) in normal cells (HEK-293). Dinactin inhabited cellular proliferation in cancer cells, reduced their clonogenic survival as validated by clonogenic assay and also inhabited cell migration and invasion characteristics in colon cancer (HCT-116) cells. Our results expressed the antimicrobial potential of dinactin and also spotted its prospective as an antitumor antibiotic.
Collapse
|
40
|
Cumsille A, Undabarrena A, González V, Claverías F, Rojas C, Cámara B. Biodiversity of Actinobacteria from the South Pacific and the Assessment of Streptomyces Chemical Diversity with Metabolic Profiling. Mar Drugs 2017; 15:E286. [PMID: 28892017 PMCID: PMC5618425 DOI: 10.3390/md15090286] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 01/21/2023] Open
Abstract
Recently, bioprospecting in underexplored habitats has gained enhanced focus, since new taxa of marine actinobacteria can be found, and thus possible new metabolites. Actinobacteria are in the foreground due to their versatile production of secondary metabolites that present various biological activities, such as antibacterials, antitumorals and antifungals. Chilean marine ecosystems remain largely unexplored and may represent an important source for the discovery of bioactive compounds. Various culture conditions to enrich the growth of this phylum were used and 232 bacterial strains were isolated. Comparative analysis of the 16S rRNA gene sequences led to identifying genetic affiliations of 32 genera, belonging to 20 families. This study shows a remarkable culturable diversity of actinobacteria, associated to marine environments along Chile. Furthermore, 30 streptomycete strains were studied to establish their antibacterial activities against five model strains, Staphylococcus aureus, Listeria monocytogenes, Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa, demonstrating abilities to inhibit bacterial growth of Gram-positive bacteria. To gain insight into their metabolic profiles, crude extracts were submitted to liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis to assess the selection of streptomycete strains with potentials of producing novel bioactive metabolites. The combined approach allowed for the identification of three streptomycete strains to pursue further investigations. Our Chilean marine actinobacterial culture collection represents an important resource for the bioprospection of novel marine actinomycetes and its metabolites, evidencing their potential as producers of natural bioproducts.
Collapse
Affiliation(s)
- Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Valentina González
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Fernanda Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Claudia Rojas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| |
Collapse
|
41
|
Hussain A, Rather M, Shah A, Bhat Z, Shah A, Ahmad Z, Parvaiz Hassan Q. Antituberculotic activity of actinobacteria isolated from the rare habitats. Lett Appl Microbiol 2017; 65:256-264. [DOI: 10.1111/lam.12773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/12/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
Affiliation(s)
- A. Hussain
- Microbial Biotechnology Division; CSIR-Indian Institute of Integrative Medicine; Srinagar India
- Academy of Scientific and Innovative Research; CSIR-Indian Institute of Integrative Medicine; Jammu Tawi India
| | - M.A. Rather
- Clinical Microbiology and PK/PD Division; CSIR-Indian Institute of Integrative Medicine; Srinagar India
| | - A.M. Shah
- Microbial Biotechnology Division; CSIR-Indian Institute of Integrative Medicine; Srinagar India
| | - Z.S. Bhat
- Clinical Microbiology and PK/PD Division; CSIR-Indian Institute of Integrative Medicine; Srinagar India
| | - A. Shah
- Microbial Biotechnology Division; CSIR-Indian Institute of Integrative Medicine; Srinagar India
| | - Z. Ahmad
- Clinical Microbiology and PK/PD Division; CSIR-Indian Institute of Integrative Medicine; Srinagar India
| | - Q. Parvaiz Hassan
- Microbial Biotechnology Division; CSIR-Indian Institute of Integrative Medicine; Srinagar India
- Academy of Scientific and Innovative Research; CSIR-Indian Institute of Integrative Medicine; Jammu Tawi India
| |
Collapse
|
42
|
Ellis GA, Thomas CS, Chanana S, Adnani N, Szachowicz E, Braun DR, Harper MK, Wyche TP, Bugni TS. Brackish habitat dictates cultivable Actinobacterial diversity from marine sponges. PLoS One 2017; 12:e0176968. [PMID: 28692665 PMCID: PMC5503172 DOI: 10.1371/journal.pone.0176968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/20/2017] [Indexed: 11/29/2022] Open
Abstract
Bacterial communities associated with marine invertebrates such as sponges and ascidians have demonstrated potential as sources of bio-medically relevant small molecules. Metagenomic analysis has shown that many of these invertebrates harbor populations of Actinobacteria, many of which are cultivable. While some populations within invertebrates are transmitted vertically, others are obtained from the environment. We hypothesized that cultivable diversity from sponges living in brackish mangrove habitats have associations with Actinobacterial populations that differ from those found in clear tropical waters. In this study, we analyzed the cultivable Actinobacterial populations from sponges found in these two distinct habitats with the aim of understanding the secondary metabolite potential. Importantly, we wanted to broadly evaluate the potential differences among these groups to guide future Actinobacterial collection strategies for the purposes of drug discovery.
Collapse
Affiliation(s)
- Gregory A. Ellis
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris S. Thomas
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shaurya Chanana
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Navid Adnani
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emily Szachowicz
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Doug R. Braun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Thomas P. Wyche
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
43
|
Undabarrena A, Ugalde JA, Seeger M, Cámara B. -Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ 2017; 5:e2912. [PMID: 28229018 PMCID: PMC5312570 DOI: 10.7717/peerj.2912] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022] Open
Abstract
Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance (97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Juan A Ugalde
- Centro de Genética y Genómica, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo , Santiago , Chile
| | - Michael Seeger
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Beatriz Cámara
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| |
Collapse
|
44
|
Acetylation and deacetylation for sucralose preparation by a newly isolated Bacillus amyloliquefaciens WZS01. J Biosci Bioeng 2017; 123:576-580. [PMID: 28131539 DOI: 10.1016/j.jbiosc.2016.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/27/2016] [Accepted: 12/20/2016] [Indexed: 11/23/2022]
Abstract
Sucralose is a non-nutritive artificial sweetener used in a broad range of foods and beverages. In the present study, Bacillus amyloliquefaciens WZS01 was isolated, identified, and used as a catalyst both in regioselective acylation and deacetylation for sucralose preparation. Bacterial cells were immobilized on polyurethane foam and utilized to synthesize sucrose-6-acetate regioselectively. The yield of sucrose-6-acetate was >95% with 60 mM sucrose after 22 h of reaction. Free cells could hydrolyze 75 mM sucralose-6-acetate to produce sucralose with >99% yield after 24 h of reaction. B. amyloliquefaciens WZS01 could be considered a potential biocatalyst for sucralose preparation.
Collapse
|
45
|
Zhao L, Feng C, Wu K, Chen W, Chen Y, Hao X, Wu Y. Advances and prospects in biogenic substances against plant virus: A review. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 135:15-26. [PMID: 28043326 DOI: 10.1016/j.pestbp.2016.07.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 05/26/2023]
Abstract
Plant virus diseases, known as 'plant cancer', are the second largest plant diseases after plant fungal diseases, which have caused great damage to agricultural industry. Since now, the most direct and effective method for controlling viruses is chemotherapeutics, except for screening of anti-disease species. As the occurrence and harm of plant diseases intensify, production and consumption of pesticides have increased year by year, and greatly contributed to the fertility of agriculture, but also brought a series of problems, such as the increase of drug resistance of plant pathogens and the excessive pesticide residues. In recent years, biopesticide, as characterized by environmentally safe due to low residual, safe to non-target organism due to better specificity and not as susceptible to produce drug resistance due to diverse work ways, has gained more attention than ever before and exhibited great development potential. Now much progress has been made about researches on new biogenic anti-plant-virus substances. The types of active components include proteins, polysaccharides and small molecules (alkaloids, flavonoids, phenols, essential oils) from plants, proteins and polysaccharides from microorganisms, polysaccharides from algae and oligochitosan from animals. This study summarized the research advance of biogenic anti-plant-virus substances in recent years and put forward their further development in the future.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chaohong Feng
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Jinshui District, Zhengzhou, Henan Province 450002, China
| | - Kuan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenbao Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yujia Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xingan Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
46
|
Prieto-Davó A, Dias T, Gomes SE, Rodrigues S, Parera-Valadez Y, Borralho PM, Pereira F, Rodrigues CMP, Santos-Sanches I, Gaudêncio SP. The Madeira Archipelago As a Significant Source of Marine-Derived Actinomycete Diversity with Anticancer and Antimicrobial Potential. Front Microbiol 2016; 7:1594. [PMID: 27774089 PMCID: PMC5053986 DOI: 10.3389/fmicb.2016.01594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022] Open
Abstract
Marine-derived actinomycetes have demonstrated an ability to produce novel compounds with medically relevant biological activity. Studying the diversity and biogeographical patterns of marine actinomycetes offers an opportunity to identify genera that are under environmental pressures, which may drive adaptations that yield specific biosynthetic capabilities. The present study describes research efforts to explore regions of the Atlantic Ocean, specifically around the Madeira Archipelago, where knowledge of the indigenous actinomycete diversity is scarce. A total of 400 actinomycetes were isolated, sequenced, and screened for antimicrobial and anticancer activities. The three most abundant genera identified were Streptomyces, Actinomadura, and Micromonospora. Phylogenetic analyses of the marine OTUs isolated indicated that the Madeira Archipelago is a new source of actinomycetes adapted to life in the ocean. Phylogenetic differences between offshore (>100 m from shore) and nearshore (< 100 m from shore) populations illustrates the importance of sampling offshore in order to isolate new and diverse bacterial strains. Novel phylotypes from chemically rich marine actinomycete groups like MAR4 and the genus Salinispora were isolated. Anticancer and antimicrobial assays identified Streptomyces, Micromonospora, and Salinispora as the most biologically active genera. This study illustrates the importance of bioprospecting efforts at unexplored regions of the ocean to recover bacterial strains with the potential to produce novel and interesting chemistry.
Collapse
Affiliation(s)
- Alejandra Prieto-Davó
- Laboratorio de Productos Naturales Marinos, Facultad de Química, Universidad Nacional Autónoma de México, Unidad Sisal Sisal, Mexico
| | - Tiago Dias
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal; UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal
| | - Sofia E Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Lisbon, Portugal
| | - Sara Rodrigues
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal; UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal
| | - Yessica Parera-Valadez
- Laboratorio de Productos Naturales Marinos, Facultad de Química, Universidad Nacional Autónoma de México, Unidad Sisal Sisal, Mexico
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Florbela Pereira
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa Caparica, Portugal
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Ilda Santos-Sanches
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de Lisboa Caparica, Portugal
| | - Susana P Gaudêncio
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal; UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal
| |
Collapse
|
47
|
Srivastava V, Dubey AK. Anti-biofilm activity of the metabolites of Streptomyces chrestomyceticus strain ADP4 against Candida albicans. J Biosci Bioeng 2016; 122:434-40. [DOI: 10.1016/j.jbiosc.2016.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/06/2016] [Accepted: 03/21/2016] [Indexed: 01/09/2023]
|
48
|
Undabarrena A, Beltrametti F, Claverías FP, González M, Moore ERB, Seeger M, Cámara B. Exploring the Diversity and Antimicrobial Potential of Marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile. Front Microbiol 2016; 7:1135. [PMID: 27486455 PMCID: PMC4949237 DOI: 10.3389/fmicb.2016.01135] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/07/2016] [Indexed: 11/13/2022] Open
Abstract
Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although, Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus, and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium, and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%), PKS I (18%), and PKS II (73%). Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| | | | - Fernanda P. Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| | - Myriam González
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| | - Edward R. B. Moore
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| |
Collapse
|
49
|
Sanjivkumar M, Babu DR, Suganya A, Silambarasan T, Balagurunathan R, Immanuel G. Investigation on pharmacological activities of secondary metabolite extracted from a mangrove associated actinobacterium Streptomyces olivaceus (MSU3). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Discovery of cahuitamycins as biofilm inhibitors derived from a convergent biosynthetic pathway. Nat Commun 2016; 7:10710. [PMID: 26880271 PMCID: PMC4757757 DOI: 10.1038/ncomms10710] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/11/2016] [Indexed: 02/03/2023] Open
Abstract
Pathogenic microorganisms often have the ability to attach to a surface, building a complex matrix where they colonize to form a biofilm. This cellular superstructure can display increased resistance to antibiotics and cause serious, persistent health problems in humans. Here we describe a high-throughput in vitro screen to identify inhibitors of Acinetobacter baumannii biofilms using a library of natural product extracts derived from marine microbes. Analysis of extracts derived from Streptomyces gandocaensis results in the discovery of three peptidic metabolites (cahuitamycins A-C), with cahuitamycin C being the most effective inhibitor (IC50=14.5 μM). Biosynthesis of cahuitamycin C proceeds via a convergent biosynthetic pathway, with one of the steps apparently being catalysed by an unlinked gene encoding a 6-methylsalicylate synthase. Efforts to assess starter unit diversification through selective mutasynthesis lead to production of unnatural analogues cahuitamycins D and E of increased potency (IC50=8.4 and 10.5 μM).
Collapse
|