1
|
Hernández-Parada N, González-Ríos O, Suárez-Quiroz ML, Hernández-Estrada ZJ, Figueroa-Hernández CY, Figueroa-Cárdenas JDD, Rayas-Duarte P, Figueroa-Espinoza MC. Exploiting the Native Microorganisms from Different Food Matrices to Formulate Starter Cultures for Sourdough Bread Production. Microorganisms 2022; 11:109. [PMID: 36677402 PMCID: PMC9865925 DOI: 10.3390/microorganisms11010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The use of sourdough for bread production involves fermentation, which is dominated by lactic acid bacteria (LAB) and yeast. Sourdough can be inoculated with a starter culture or through a food matrix containing microorganisms to initiate sourdough fermentation. Sourdough is used as leavening agent for bread making, and metabolites produced by LAB and yeast confer a specific aroma and flavor profile to bread, thus improving its sensory attributes. However, few publications report the effect of microorganisms from different food products and by-products on sourdough fermentation. This review focuses on using different starter cultures from various food sources, from wheat flour to starter cultures. Additionally, included are the types of sourdough, the sourdough fermentation process, and the biochemical transformations that take place during the sourdough fermentation process.
Collapse
Affiliation(s)
- Natali Hernández-Parada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz C.P. 91897, Mexico
| | - Oscar González-Ríos
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz C.P. 91897, Mexico
| | - Mirna Leonor Suárez-Quiroz
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz C.P. 91897, Mexico
| | - Zorba Josué Hernández-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz C.P. 91897, Mexico
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M.A. de Quevedo 2779, Veracruz C.P. 91897, Mexico
| | - Juan de Dios Figueroa-Cárdenas
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV Unidad Querétaro), Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Querétaro C.P. 76230, Mexico
| | - Patricia Rayas-Duarte
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078-6055, USA
| | - María Cruz Figueroa-Espinoza
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, F-34398 Montpellier, France
| |
Collapse
|
2
|
Comparative analysis of genome-based CAZyme cassette in Antarctic Microbacterium sp. PAMC28756 with 31 other Microbacterium species. Genes Genomics 2022; 44:733-746. [PMID: 35486322 DOI: 10.1007/s13258-022-01254-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The genus Microbacterium belongs to the family Microbacteriaceae and phylum Actinobacteria. A detailed study on the complete genome and systematic comparative analysis of carbohydrate-active enzyme (CAZyme) among the Microbacterium species would add knowledge on metabolic and environmental adaptation. Here we present the comparative genomic analysis of CAZyme using the complete genome of Antarctic Microbacterium sp. PAMC28756 with other complete genomes of 31 Microbacterium species available. OBJECTIVE The genomic and CAZyme comparison of Microbacterium species and to rule out the specific features of CAZyme for the environmental and metabolic adaptation. METHODS Bacterial source were collected from NCBI database, CAZyme annotation of Microbacterium species was analyzed using dbCAN2 Meta server. Cluster of orthologous groups (COGs) analysis was performed using the eggNOG4.5 database. Whereas, KEGG database was used to compare and obtained the functional genome annotation information in carbohydrate metabolism and glyoxylate cycle. RESULTS Out of 32 complete genomes of Microbacterium species, strain No. 7 isolated from Activated Sludge showed the largest genomic size at 4.83 Mb. The genomic size of PAMC28756 isolated from Antarctic lichen species Stereocaulons was 3.54 Mb, the G + C content was 70.4% with 3,407 predicted genes, of which 3.36% were predicted CAZyme. In addition, while comparing the Glyoxylate cycle among 32 bacteria, except 10 strains, all other, including our strain have Glyoxylate pathway. PAMC28756 contained the genes that degrade cellulose, hemicellulose, amylase, pectinase, chitins and other exo-and endo glycosidases. Utilizing these polysaccharides can provides source of energy in an extreme environment. In addition, PAMC28756 assigned the (10.15%) genes in the carbohydrate transport and metabolism functional group closely related to the CAZyme for polysaccharides degradation. CONCLUSIONS The genomic content and CAZymes distribution was varied in Microbacterium species. There was the presence of more than 10% genes in the carbohydrate transport and metabolism functional group closely related to the CAZyme for polysaccharides degradation. In addition, occurrence of glyoxylate cycle for alternative utilization of carbon sources suggest the adaptation of PAMC28756 in the harsh microenvironment.
Collapse
|
3
|
Use of Hydrolyzed Chinese Gallnut Tannic Acid in Weaned Piglets as an Alternative to Zinc Oxide: Overview on the Gut Microbiota. Animals (Basel) 2021; 11:ani11072000. [PMID: 34359128 PMCID: PMC8300422 DOI: 10.3390/ani11072000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary The effects of dietary hydrolyzed Chinese gallnut tannic acid (GCT) as a replacement for ZnO were investigated on weaned piglets. A total of 72 piglets (31 ± 1 day) were selected and divided randomly into two groups: a control group, with a basal diet of + 1600 mg/kg ZnO; and a treated group, with a basal diet of + 1899.5 mg/kg GCT. The diarrhea rate of piglets in the treated group declined on days 14–21 than in the control group. Additionally, we found GCT can reduce the crypt depth of the ileum and improve antioxidant capacity. High throughput sequencing showed that the GCT increased the richness of bacteria (Lachnospiraceae, Prevotella, and Lactobacillus amylovorus) associated with the degradation of cellulose and hemicellulose. These data indicate that 1899.5 mg/kg GCT could be an alternative for 1600 mg/kg ZnO in the diet of piglets. Abstract The effects of dietary hydrolyzed Chinese gallnut tannic acid(GCT) as a replacement for ZnO were investigated on weaned piglets. A total of 72 weaned piglets at 31 ± 1 day (six replicate pens per treatment with six piglets per pen) were selected and divided randomly into two groups: a control group, with a basal diet of + 1600 mg/kg ZnO; and a treated group, with a basal diet of + 1899.5 mg/kg GCT. Data analysis showed that the significance of average daily gain and average daily feed intake between the two groups was p = 0.731 and p = 0.799, respectively. Compared with the control group, the diarrhea rate of piglets in the treated group underwent no noticeable change on days 0–7 (p = 0.383) and 7–14 (p = 0.263), but decreased significantly on days 14–21 (p < 0.05). Additionally, we found GCT can reduce the crypt depth of the ileum and improve its antioxidant capacity (p < 0.05). High throughput sequencing showed that GCT increased the richness of the bacteria Lachnospiraceae (p = 0.005), Prevotella_2 (p = 0.046) and Lactobacillus amylovorus (p = 0.081), which are associated with the degradation of cellulose and hemicellulose. The study indicated that 1899.5 mg/kg GCT could be an alternative for 1600 mg/kg ZnO in the diet of piglets.
Collapse
|
4
|
Zhang Q, Zhao C, Wang X, Li X, Zheng Y, Song J, Xia M, Zhang R, Wang M. Bioaugmentation by Pediococcus acidilactici AAF1-5 Improves the Bacterial Activity and Diversity of Cereal Vinegar Under Solid-State Fermentation. Front Microbiol 2021; 11:603721. [PMID: 33584567 PMCID: PMC7876233 DOI: 10.3389/fmicb.2020.603721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022] Open
Abstract
Bioaugmentation technology may be an effective strategy to improve the solid-state fermentation rate and utilization of raw materials for traditional vinegar production. The relationship between bacteria and fermentation process was analyzed to rationally design and perform bioaugmented solid-state fermentation of the Tianjin Duliu mature vinegar (TDMV). Fermentation process was highly correlated with Acetobacter, Lactobacillus, and Pediococcus contents, which were the core functional microorganisms in TDMV fermentation. Pediococcus acidilactici AAF1-5 was selected from 20 strains to fortify the fermentation due to its acidity and thermal tolerance. Bioaugmentation was performed in the upper layer of TDMV fermentation. P. acidilactici AAF1-5 colonized and then spread into the lower layer to improve the fermentation. Result showed that the fermentation period was 5 days less than that of the control. Meanwhile, the non-volatile acid, lactic acid, amino nitrogen, and reducing sugar contents in the bioaugmented TDMV increased by 53%, 14%, 32%, and 36%, respectively, compared with those in the control. Bioaugmentation with P. acidilactici AAF1-5 not only improved the utilization of starch from 79% to 83% but also increased the bacterial community diversity.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Cuimei Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaobin Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaowei Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Jia Song
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Menglei Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Rongzhan Zhang
- Tianjin Tianli Duliu Mature Vinegar Co., Ltd., Tianjin, China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
5
|
Jung DH, Seo DH, Kim YJ, Chung WH, Nam YD, Park CS. The presence of resistant starch-degrading amylases in Bifidobacterium adolescentis of the human gut. Int J Biol Macromol 2020; 161:389-397. [DOI: 10.1016/j.ijbiomac.2020.05.235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/11/2023]
|
6
|
Petrova P, Petrov K. Lactic Acid Fermentation of Cereals and Pseudocereals: Ancient Nutritional Biotechnologies with Modern Applications. Nutrients 2020; 12:E1118. [PMID: 32316499 PMCID: PMC7230154 DOI: 10.3390/nu12041118] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Grains are a substantial source of macronutrients and energy for humans. Lactic acid (LA) fermentation is the oldest and most popular way to improve the functionality, nutritional value, taste, appearance and safety of cereal foods and reduce the energy required for cooking. This literature review discusses lactic acid fermentation of the most commonly used cereals and pseudocereals by examination of the microbiological and biochemical fundamentals of the process. The study provides a critical overview of the indispensable participation of lactic acid bacteria (LAB) in the production of many traditional, ethnic, ancient and modern fermented cereals and beverages, as the analysed literature covers 40 years. The results reveal that the functional aspects of LAB fermented foods are due to significant molecular changes in macronutrients during LA fermentation. Through the action of a vast microbial enzymatic pool, LAB form a broad spectrum of volatile compounds, bioactive peptides and oligosaccharides with prebiotic potential. Modern applications of this ancient bioprocess include the industrial production of probiotic sourdough, fortified pasta, cereal beverages and "boutique" pseudocereal bread. These goods are very promising in broadening the daily menu of consumers with special nutritional needs.
Collapse
Affiliation(s)
- Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str. Bl. 26, 1113 Sofia, Bulgaria
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str. Bl. 103, 1113 Sofia, Bulgaria
| |
Collapse
|
7
|
Carrillo JB, Torresi F, Morales LL, Ricordi M, Gomez-Casati DF, Busi MV, Martín M. Identification and characterization of ChlreSEX4, a novel glucan phosphatase from Chlamydomonas reinhardtii green alga. Arch Biochem Biophys 2020; 680:108235. [PMID: 31877265 DOI: 10.1016/j.abb.2019.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022]
Abstract
Chlamydomonas reinhardtii is the best known unicellular green alga model which has long been used to investigate all kinds of cellular processes, including starch metabolism. Here we identified and characterized a novel enzyme, ChlreSEX4, orthologous to glucan phosphatase SEX4 from Arabidopsis thaliana, that is capable of binding and dephosphorylating amylopectin in vitro. We also reported that cysteine 224 and tryptophan 305 residues are critical for enzyme catalysis and substrate binding. Furthermore, we verified that ChlreSEX4 gene is expressed in vivo and that glucan phosphatase activity is measurable in Chlamydomonas protein extracts. In view of the results presented, we suggest ChlreSEX4 as a functional phosphoglucan phosphatase from C. reinhardtii. Our data obtained so far contribute to understanding the phosphoglucan phosphatases evolutionary process in the green lineage and their role in starch reversible phosphorylation. In addition, this allows to position Chlamydomonas as a potential tool to obtain starches with different degrees of phosphorylation for industrial or biotechnological purposes.
Collapse
Affiliation(s)
- Julieta B Carrillo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Florencia Torresi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Luisina L Morales
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Micaela Ricordi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Maria V Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, 2000, Rosario, Santa Fe, Argentina.
| | - Mariana Martín
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, 2000, Rosario, Santa Fe, Argentina.
| |
Collapse
|
8
|
Complete genome sequence of Bifidobacterium adolescentis P2P3, a human gut bacterium possessing strong resistant starch-degrading activity. 3 Biotech 2020; 10:31. [PMID: 31988825 DOI: 10.1007/s13205-019-2019-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Resistant starch (RS) is an important food source from which gut bacteria produce short chain fatty acids, which have beneficial effects for human health. The Bifidobacterium adolescentis P2P3, a human gut bacterium possessing a strong RS-degrading activity, was isolated from a healthy Korean adult male. In vitro experiments showed that this bacterium could utilize approximately 63% of high amylose corn starch after forming RS granule clusters. Here we provide the first complete set of genomic information on RS-degrading B. adolescentis P2P3. The genome of B. adolescentis P2P3 consists of one chromosome (2,202,982 bp) with high GC content (59.4%). Analysis of the protein-coding genes revealed that at least nineteen of the starch degradation-related enzymes were present in the genome. Among those, five genes evidently possess carbohydrate-binding domains, which are presumed to be involved in efficient RS decomposition. The complete set of genomic information on B. adolescentis P2P3 could provide an understanding of the role of RS-degrading gut bacteria and its RS degradation mechanism.
Collapse
|
9
|
Xing Q, Dekker S, Kyriakopoulou K, Boom RM, Smid EJ, Schutyser MA. Enhanced nutritional value of chickpea protein concentrate by dry separation and solid state fermentation. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102269] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Janeček Š, Mareček F, MacGregor EA, Svensson B. Starch-binding domains as CBM families-history, occurrence, structure, function and evolution. Biotechnol Adv 2019; 37:107451. [PMID: 31536775 DOI: 10.1016/j.biotechadv.2019.107451] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/01/2019] [Accepted: 09/15/2019] [Indexed: 01/05/2023]
Abstract
The term "starch-binding domain" (SBD) has been applied to a domain within an amylolytic enzyme that gave the enzyme the ability to bind onto raw, i.e. thermally untreated, granular starch. An SBD is a special case of a carbohydrate-binding domain, which in general, is a structurally and functionally independent protein module exhibiting no enzymatic activity but possessing potential to target the catalytic domain to the carbohydrate substrate to accommodate it and process it at the active site. As so-called families, SBDs together with other carbohydrate-binding modules (CBMs) have become an integral part of the CAZy database (http://www.cazy.org/). The first two well-described SBDs, i.e. the C-terminal Aspergillus-type and the N-terminal Rhizopus-type have been assigned the families CBM20 and CBM21, respectively. Currently, among the 85 established CBM families in CAZy, fifteen can be considered as families having SBD functional characteristics: CBM20, 21, 25, 26, 34, 41, 45, 48, 53, 58, 68, 69, 74, 82 and 83. All known SBDs, with the exception of the extra long CBM74, were recognized as a module consisting of approximately 100 residues, adopting a β-sandwich fold and possessing at least one carbohydrate-binding site. The present review aims to deliver and describe: (i) the SBD identification in different amylolytic and related enzymes (e.g., CAZy GH families) as well as in other relevant enzymes and proteins (e.g., laforin, the β-subunit of AMPK, and others); (ii) information on the position in the polypeptide chain and the number of SBD copies and their CBM family affiliation (if appropriate); (iii) structure/function studies of SBDs with a special focus on solved tertiary structures, in particular, as complexes with α-glucan ligands; and (iv) the evolutionary relationships of SBDs in a tree common to all SBD CBM families (except for the extra long CBM74). Finally, some special cases and novel potential SBDs are also introduced.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia.
| | - Filip Mareček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - E Ann MacGregor
- 2 Nicklaus Green, Livingston EH54 8RX, West Lothian, United Kingdom
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Kanpiengjai A, Nguyen TH, Haltrich D, Khanongnuch C. Expression and comparative characterization of complete and C-terminally truncated forms of saccharifying α-amylase from Lactobacillus plantarum S21. Int J Biol Macromol 2017; 103:1294-1301. [PMID: 28587961 DOI: 10.1016/j.ijbiomac.2017.05.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Lactobacillus plantarum S21 α-amylase possesses 475 amino acids at the C-terminal region identified as the starch-binding domain (SBD) and has been previously reported to play a role in raw starch degradation. To understand the specific roles of this SBD, cloning and expression of the complete (AmyL9) and C-terminally truncated (AmyL9ΔSBD) forms of α-amylase were conducted for enzyme purification and comparative characterization. AmyL9 and AmyL9ΔSBD were overproduced in Escherichia coli at approximately 10- and 20-times increased values of volumetric productivity when compared to α-amylase produced by the wild type, respectively. AmyL9ΔSBD was unable to hydrolyze raw starch and exhibited substrate specificity in a similar manner to that of AmyL9, but it was weakly active toward amylopectin and glycogen. The hydrolysis products obtained from the amylaceous substrates of both enzymes were the same. In addition, AmyL9ΔSBD showed comparatively higher Km values than AmyL9 when it reacted with starch and amylopectin, and lower values for other kinetic constants namely vmax, kcat, and kcat/Km. The results indicated that the C-terminal SBDs of L. plantarum S21 α-amylase contribute to not only substrate preference but also substrate affinity and the catalytic efficiency of the α-amylase without any changes in the degradation mechanisms of the enzyme.
Collapse
Affiliation(s)
- Apinun Kanpiengjai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Chartchai Khanongnuch
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
12
|
Janeček Š, Majzlová K, Svensson B, MacGregor EA. The starch-binding domain family CBM41-Anin silicoanalysis of evolutionary relationships. Proteins 2017; 85:1480-1492. [DOI: 10.1002/prot.25309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/05/2017] [Accepted: 04/17/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Štefan Janeček
- Institute of Molecular Biology, Slovak Academy of Sciences; Bratislava Slovakia
- Department of Biology; Faculty of Natural Sciences, University of SS. Cyril and Methodius; Trnava Slovakia
| | - Katarína Majzlová
- Institute of Molecular Biology, Slovak Academy of Sciences; Bratislava Slovakia
| | - Birte Svensson
- Department of Biotechnology and Biomedicine; Technical University of Denmark; Kgs. Lyngby Denmark
| | | |
Collapse
|
13
|
Paker I, Matak KE. Effects of starch concentration on calcium-enhanced black bullhead catfish protein gels. Food Sci Nutr 2017; 5:763-769. [PMID: 28572966 PMCID: PMC5448378 DOI: 10.1002/fsn3.456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 11/13/2022] Open
Abstract
Calcium‐enhanced protein recovered from black bullhead catfish was used to develop gels containing increasing amounts of potato starch (0–20 g/kg protein paste) and the effects of starch on functional, textural, and color properties were tested. Energy required to unfold protein groups was greater with the addition of 5 g starch/kg protein paste. Gels containing starch were harder, chewier, and less springy (p < .05) than gels without starch. For most measurements, regression analysis showed that increasing the starch concentration beyond 5 g/kg did not contribute to further significant textural changes. Torsional shear stress and strain along with Kramer shear force increased as the concentration of starch increased (R2 = .79, .79, and .53, respectively). The addition of ≥10 g starch/kg protein paste resulted in darker gels and gels got darker as more starch was added (R2 = .71). Results showed no benefit to increasing starch concentration in gels beyond 5 g starch/kg protein paste.
Collapse
Affiliation(s)
- Ilgin Paker
- Food Engineering Department Yeditepe University Kayisdagi Istanbul Turkey.,West Virginia University Animal and Nutritional Sciences PO Box 6108 Morgantown West Virginia USA
| | - Kristen E Matak
- West Virginia University Animal and Nutritional Sciences PO Box 6108 Morgantown West Virginia USA
| |
Collapse
|
14
|
Grisolia MJ, Peralta DA, Valdez HA, Barchiesi J, Gomez-Casati DF, Busi MV. The targeting of starch binding domains from starch synthase III to the cell wall alters cell wall composition and properties. PLANT MOLECULAR BIOLOGY 2017; 93:121-135. [PMID: 27770231 DOI: 10.1007/s11103-016-0551-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/13/2016] [Indexed: 05/11/2023]
Abstract
Starch binding domains of starch synthase III from Arabidopsis thaliana (SBD123) binds preferentially to cell wall polysaccharides rather than to starch in vitro. Transgenic plants overexpressing SBD123 in the cell wall are larger than wild type. Cell wall components are altered in transgenic plants. Transgenic plants are more susceptible to digestion than wild type and present higher released glucose content. Our results suggest that the transgenic plants have an advantage for the production of bioethanol in terms of saccharification of essential substrates. The plant cell wall, which represents a major source of biomass for biofuel production, is composed of cellulose, hemicelluloses, pectins and lignin. A potential biotechnological target for improving the production of biofuels is the modification of plant cell walls. This modification is achieved via several strategies, including, among others, altering biosynthetic pathways and modifying the associations and structures of various cell wall components. In this study, we modified the cell wall of A. thaliana by targeting the starch-binding domains of A. thaliana starch synthase III to this structure. The resulting transgenic plants (E8-SDB123) showed an increased biomass, higher levels of both fermentable sugars and hydrolyzed cellulose and altered cell wall properties such as higher laxity and degradability, which are valuable characteristics for the second-generation biofuels industry. The increased biomass and degradability phenotype of E8-SBD123 plants could be explained by the putative cell-wall loosening effect of the in tandem starch binding domains. Based on these results, our approach represents a promising biotechnological tool for reducing of biomass recalcitrance and therefore, the need for pretreatments.
Collapse
Affiliation(s)
- Mauricio J Grisolia
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas (CEFOBI - CONICET), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Diego A Peralta
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas (CEFOBI - CONICET), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Hugo A Valdez
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martin, Chascomús, Buenos Aires, Argentina
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), 50 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Julieta Barchiesi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas (CEFOBI - CONICET), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Diego F Gomez-Casati
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas (CEFOBI - CONICET), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martin, Chascomús, Buenos Aires, Argentina
| | - María V Busi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas (CEFOBI - CONICET), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina.
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martin, Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Valk V, Lammerts van Bueren A, Kaaij RM, Dijkhuizen L. Carbohydrate‐binding module 74 is a novel starch‐binding domain associated with large and multidomain α‐amylase enzymes. FEBS J 2016; 283:2354-68. [DOI: 10.1111/febs.13745] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/01/2016] [Accepted: 04/20/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Vincent Valk
- Microbial Physiology Groningen Biomolecular Sciences and Biotechnology Institute (GBB) The Netherlands
| | | | - Rachel M. Kaaij
- Microbial Physiology Groningen Biomolecular Sciences and Biotechnology Institute (GBB) The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology Groningen Biomolecular Sciences and Biotechnology Institute (GBB) The Netherlands
| |
Collapse
|
16
|
Parashar D, Satyanarayana T. A chimeric α-amylase engineered from Bacillus acidicola and Geobacillus thermoleovorans with improved thermostability and catalytic efficiency. ACTA ACUST UNITED AC 2016; 43:473-84. [DOI: 10.1007/s10295-015-1721-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/10/2015] [Indexed: 11/27/2022]
Abstract
Abstract
The α-amylase (Ba-amy) of Bacillus acidicola was fused with DNA fragments encoding partial N- and C-terminal region of thermostable α-amylase gene of Geobacillus thermoleovorans (Gt-amy). The chimeric enzyme (Ba-Gt-amy) expressed in Escherichia coli displays marked increase in catalytic efficiency [K cat: 4 × 104 s−1 and K cat/K m: 5 × 104 mL−1 mg−1 s−1] and higher thermostability than Ba-amy. The melting temperature (T m) of Ba-Gt-amy (73.8 °C) is also higher than Ba-amy (62 °C), and the CD spectrum analysis revealed the stability of the former, despite minor alteration in secondary structure. Langmuir–Hinshelwood kinetic analysis suggests that the adsorption of Ba-Gt-amy onto raw starch is more favourable than Ba-amy. Ba-Gt-amy is thus a suitable biocatalyst for raw starch saccharification at sub-gelatinization temperatures because of its acid stability, thermostability and Ca2+ independence, and better than the other known bacterial acidic α-amylases.
Collapse
Affiliation(s)
- Deepak Parashar
- grid.8195.5 0000000121094999 Department of Microbiology University of Delhi South Campus Benito Juarez Road 110021 New Delhi India
| | - T Satyanarayana
- grid.8195.5 0000000121094999 Department of Microbiology University of Delhi South Campus Benito Juarez Road 110021 New Delhi India
| |
Collapse
|
17
|
Kanpiengjai A, Lumyong S, Nguyen TH, Haltrich D, Khanongnuch C. Characterization of a maltose-forming α-amylase from an amylolytic lactic acid bacterium Lactobacillus plantarum S21. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Meng DD, Ying Y, Zhang KD, Lu M, Li FL. Depiction of carbohydrate-active enzyme diversity in Caldicellulosiruptor sp. F32 at the genome level reveals insights into distinct polysaccharide degradation features. MOLECULAR BIOSYSTEMS 2015; 11:3164-73. [DOI: 10.1039/c5mb00409h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diverse and distinctive encoding sequences of CAZyme in the genome of Caldicellulosiruptor sp. F32 enable the deconstruction of unpretreated lignocellulose.
Collapse
Affiliation(s)
- Dong-Dong Meng
- Key Laboratory of Biofuels
- Shandong Provincial Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Yu Ying
- Key Laboratory of Biofuels
- Shandong Provincial Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Kun-Di Zhang
- Key Laboratory of Biofuels
- Shandong Provincial Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Ming Lu
- Key Laboratory of Biofuels
- Shandong Provincial Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Fu-Li Li
- Key Laboratory of Biofuels
- Shandong Provincial Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| |
Collapse
|
19
|
|
20
|
Kim IJ, Lee HJ, Choi IG, Kim KH. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol 2014; 98:8469-80. [PMID: 25129610 DOI: 10.1007/s00253-014-6001-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023]
Abstract
Reducing the enzyme loadings for enzymatic saccharification of lignocellulose is required for economically feasible production of biofuels and biochemicals. One strategy is addition of small amounts of synergistic proteins to cellulase mixtures. Synergistic proteins increase the activity of cellulase without causing significant hydrolysis of cellulose. Synergistic proteins exert their activity by inducing structural modifications in cellulose. Recently, synergistic proteins from various biological sources, including bacteria, fungi, and plants, were identified based on genomic data, and their synergistic activities were investigated. Currently, an up-to-date overview of several aspects of synergistic proteins, such as their functions, action mechanisms and synergistic activity, are important for future industrial application. In this review, we summarize the current state of research on four synergistic proteins: carbohydrate-binding modules, plant expansins, expansin-like proteins, and Auxiliary Activity family 9 (formerly GH61) proteins. This review provides critical information to aid in promoting research on the development of efficient and industrially feasible synergistic proteins.
Collapse
Affiliation(s)
- In Jung Kim
- Department of Biotechnology, Korea University Graduate School, Seoul, 136-713, Republic of Korea
| | | | | | | |
Collapse
|
21
|
Humblot C, Turpin W, Chevalier F, Picq C, Rochette I, Guyot JP. Determination of expression and activity of genes involved in starch metabolism in Lactobacillus plantarum A6 during fermentation of a cereal-based gruel. Int J Food Microbiol 2014; 185:103-11. [PMID: 24950021 DOI: 10.1016/j.ijfoodmicro.2014.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 05/06/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
Abstract
Traditional fermented gruels prepared from cereals are widely used for complementary feeding of young children in Africa and usually have a low energy density. The amylase activity of some lactic acid bacteria (LAB) helps increase the energy content of gruels through partial hydrolysis of starch, thus enabling the incorporation of more starchy material while conserving the desired semi-liquid consistency for young children. Even if this ability is mainly related to the production of alpha-amylase (E.C. 3.2.1.1), in a recent molecular screening, genes coding for enzymes involved in starch metabolism were detected in the efficient amylolytic LAB Lactobacillus plantarum A6: alpha-glucosidase (E.C. 3.2.1.20), neopullulanase (E.C. 3.2.1.135), amylopectin phosphorylase (E.C. 2.4.1.1) and maltose phosphorylase (E.C. 2.4.1.8). The objective of this study was to investigate the expression of these genes in a model of starchy fermented food made from pearl millet (Pennisetum glaucum). Transcriptional and enzymatic analyses were performed during the 18-h fermentation period. Liquefaction was mainly caused by an extracellular alpha amylase encoded by the amyA gene specific to the A6 strain among L. plantarum species and found in both Lactobacillus amylovorus and Lactobacillus manihotivorans. The second most active enzyme was neopullulanase. Other starch metabolizing enzymes were less often detected. The dynamic detection of transcripts of gene during starch fermentation in pearl millet porridge suggests that the set of genes we investigated was not expressed continuously but transiently.
Collapse
Affiliation(s)
- Christèle Humblot
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France.
| | - Williams Turpin
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France
| | - François Chevalier
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France
| | - Christian Picq
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France
| | - Isabelle Rochette
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France
| | - Jean-Pierre Guyot
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France
| |
Collapse
|
22
|
|
23
|
Janeček Š, Svensson B, MacGregor EA. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci 2014; 71:1149-70. [PMID: 23807207 PMCID: PMC11114072 DOI: 10.1007/s00018-013-1388-z] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
α-Amylase (EC 3.2.1.1) represents the best known amylolytic enzyme. It catalyzes the hydrolysis of α-1,4-glucosidic bonds in starch and related α-glucans. In general, the α-amylase is an enzyme with a broad substrate preference and product specificity. In the sequence-based classification system of all carbohydrate-active enzymes, it is one of the most frequently occurring glycoside hydrolases (GH). α-Amylase is the main representative of family GH13, but it is probably also present in the families GH57 and GH119, and possibly even in GH126. Family GH13, known generally as the main α-amylase family, forms clan GH-H together with families GH70 and GH77 that, however, contain no α-amylase. Within the family GH13, the α-amylase specificity is currently present in several subfamilies, such as GH13_1, 5, 6, 7, 15, 24, 27, 28, 36, 37, and, possibly in a few more that are not yet defined. The α-amylases classified in family GH13 employ a reaction mechanism giving retention of configuration, share 4-7 conserved sequence regions (CSRs) and catalytic machinery, and adopt the (β/α)8-barrel catalytic domain. Although the family GH57 α-amylases also employ the retaining reaction mechanism, they possess their own five CSRs and catalytic machinery, and adopt a (β/α)7-barrel fold. These family GH57 attributes are likely to be characteristic of α-amylases from the family GH119, too. With regard to family GH126, confirmation of the unambiguous presence of the α-amylase specificity may need more biochemical investigation because of an obvious, but unexpected, homology with inverting β-glucan-active hydrolases.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia,
| | | | | |
Collapse
|
24
|
A starch-binding domain identified in α-amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch. FEBS Lett 2014; 588:1161-7. [DOI: 10.1016/j.febslet.2014.02.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/14/2014] [Accepted: 02/26/2014] [Indexed: 11/17/2022]
|
25
|
Abstract
This article surveys methods for the enzymatic conversion of starch, involving hydrolases and nonhydrolyzing enzymes, as well as the role of microorganisms producing such enzymes. The sources of the most common enzymes are listed. These starch conversions are also presented in relation to their applications in the food, pharmaceutical, pulp, textile, and other branches of industry. Some sections are devoted to the fermentation of starch to ethanol and other products, and to the production of cyclodextrins, along with the properties of these products. Light is also shed on the enzymes involved in the digestion of starch in human and animal organisms. Enzymatic processes acting on starch are useful in structural studies of the substrates and in understanding the characteristics of digesting enzymes. One section presents the application of enzymes to these problems. The information that is included covers the period from the early 19th century up to 2009.
Collapse
|
26
|
The starch-binding domain as a tool for recombinant protein purification. Appl Microbiol Biotechnol 2013; 97:4141-8. [DOI: 10.1007/s00253-013-4778-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 11/25/2022]
|
27
|
Nardi C, Escudero C, Villarreal N, Martínez G, Civello PM. The carbohydrate-binding module of Fragaria × ananassa expansin 2 (CBM-FaExp2) binds to cell wall polysaccharides and decreases cell wall enzyme activities "in vitro". JOURNAL OF PLANT RESEARCH 2013; 126:151-159. [PMID: 22752710 DOI: 10.1007/s10265-012-0504-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 05/28/2012] [Indexed: 05/27/2023]
Abstract
A putative carbohydrate binding module (CBM) from strawberry (Fragaria × ananassa Duch.) expansin 2 (CBM-FaExp2) was cloned and the encoding protein was over-expressed in Escherichia coli and purified in order to evaluate its capacity to bind different cell wall polysaccharides "in vitro". The protein CBM-FaExp2 bound to microcrystalline cellulose, xylan and pectin with different affinities (K(ad) = 33.6 ± 0.44 mL g(-1), K(ad) = 11.37 ± 0.87 mL g(-1), K(ad) = 10.4 ± 0.19 mL g(-1), respectively). According to "in vitro" enzyme assays, this CBM is able to decrease the activity of cell wall degrading enzymes such as polygalacturonase, endo-glucanase, pectinase and xylanase, probably because the binding of CBM-FaExp2 to the different substrates interferes with enzyme activity. The results suggest that expansins would bind not only cellulose but also a wide range of cell wall polymers.
Collapse
Affiliation(s)
- Cristina Nardi
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Camino de Circunvalación Laguna, km 6, (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
28
|
Petrova P, Petrov K, Stoyancheva G. Starch-modifying enzymes of lactic acid bacteria - structures, properties, and applications. STARCH-STARKE 2012. [DOI: 10.1002/star.201200192] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Gänzle MG, Follador R. Metabolism of oligosaccharides and starch in lactobacilli: a review. Front Microbiol 2012; 3:340. [PMID: 23055996 PMCID: PMC3458588 DOI: 10.3389/fmicb.2012.00340] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/04/2012] [Indexed: 01/02/2023] Open
Abstract
Oligosaccharides, compounds that are composed of 2-10 monosaccharide residues, are major carbohydrate sources in habitats populated by lactobacilli. Moreover, oligosaccharide metabolism is essential for ecological fitness of lactobacilli. Disaccharide metabolism by lactobacilli is well understood; however, few data on the metabolism of higher oligosaccharides are available. Research on the ecology of intestinal microbiota as well as the commercial application of prebiotics has shifted the interest from (digestible) disaccharides to (indigestible) higher oligosaccharides. This review provides an overview on oligosaccharide metabolism in lactobacilli. Emphasis is placed on maltodextrins, isomalto-oligosaccharides, fructo-oligosaccharides, galacto-oligosaccharides, and raffinose-family oligosaccharides. Starch is also considered. Metabolism is discussed on the basis of metabolic studies related to oligosaccharide metabolism, information on the cellular location and substrate specificity of carbohydrate transport systems, glycosyl hydrolases and phosphorylases, and the presence of metabolic genes in genomes of 38 strains of lactobacilli. Metabolic pathways for disaccharide metabolism often also enable the metabolism of tri- and tetrasaccharides. However, with the exception of amylase and levansucrase, metabolic enzymes for oligosaccharide conversion are intracellular and oligosaccharide metabolism is limited by transport. This general restriction to intracellular glycosyl hydrolases differentiates lactobacilli from other bacteria that adapted to intestinal habitats, particularly Bifidobacterium spp.
Collapse
Affiliation(s)
- Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of AlbertaEdmonton, AB, Canada
| | - Rainer Follador
- Department of Agricultural, Food and Nutritional Science, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
30
|
Janeček Š, Svensson B, MacGregor EA. Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb Technol 2011; 49:429-40. [DOI: 10.1016/j.enzmictec.2011.07.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
|
31
|
Sarian FD, van der Kaaij RM, Kralj S, Wijbenga DJ, Binnema DJ, van der Maarel MJEC, Dijkhuizen L. Enzymatic degradation of granular potato starch by Microbacterium aurum strain B8.A. Appl Microbiol Biotechnol 2011; 93:645-54. [PMID: 21732245 PMCID: PMC3257434 DOI: 10.1007/s00253-011-3436-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 12/05/2022]
Abstract
Microbacterium aurum strain B8.A was isolated from the sludge of a potato starch-processing factory on the basis of its ability to use granular starch as carbon- and energy source. Extracellular enzymes hydrolyzing granular starch were detected in the growth medium of M. aurum B8.A, while the type strain M. aurum DSMZ 8600 produced very little amylase activity, and hence was unable to degrade granular starch. The strain B8.A extracellular enzyme fraction degraded wheat, tapioca and potato starch at 37 °C, well below the gelatinization temperature of these starches. Starch granules of potato were hydrolyzed more slowly than of wheat and tapioca, probably due to structural differences and/or surface area effects. Partial hydrolysis of starch granules by extracellular enzymes of strain B8.A resulted in large holes of irregular sizes in case of wheat and tapioca and many smaller pores of relatively homogeneous size in case of potato. The strain B8.A extracellular amylolytic system produced mainly maltotriose and maltose from both granular and soluble starch substrates; also, larger maltooligosaccharides were formed after growth of strain B8.A in rich medium. Zymogram analysis confirmed that a different set of amylolytic enzymes was present depending on the growth conditions of M. aurum B8.A. Some of these enzymes could be partly purified by binding to starch granules.
Collapse
Affiliation(s)
- Fean D Sarian
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Valdez HA, Peralta DA, Wayllace NZ, Grisolía MJ, Gomez-Casati DF, Busi MV. Preferential binding of SBD from Arabidopsis thaliana SSIII to polysaccharides: Study of amino acid residues involved. STARCH-STARKE 2011. [DOI: 10.1002/star.201000111] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
|
34
|
Wayllace NZ, Valdez HA, Ugalde RA, Busi MV, Gomez-Casati DF. The starch-binding capacity of the noncatalytic SBD2 region and the interaction between the N- and C-terminal domains are involved in the modulation of the activity of starch synthase III from Arabidopsis thaliana. FEBS J 2009; 277:428-40. [PMID: 19968859 DOI: 10.1111/j.1742-4658.2009.07495.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Starch synthase III from Arabidopsis thaliana contains an N-terminal region, including three in-tandem starch-binding domains, followed by a C-terminal catalytic domain. We have reported previously that starch-binding domains may be involved in the regulation of starch synthase III function. In this work, we analyzed the existence of protein interactions between both domains using pull-down assays, far western blotting and co-expression of the full and truncated starch-binding domains with the catalytic domain. Pull-down assays and co-purification analysis showed that the D(316-344) and D(495-535) regions in the D2 and D3 domains, respectively, but not the individual starch-binding domains, are involved in the interaction with the catalytic domain. We also determined that the residues W366 and Y394 in the D2 domain are important in starch binding. Moreover, the co-purified catalytic domain plus site-directed mutants of the D123 protein lacking these aromatic residues showed that W366 was key to the apparent affinity for the polysaccharide substrate of starch synthase III, whereas either of these amino acid residues altered ADP-glucose kinetics. In addition, the analysis of full-length and truncated proteins showed an almost complete restoration of the apparent affinity for the substrates and V(max) of starch synthase III. The results presented here suggest that the interaction of the N-terminal starch-binding domains, particularly the D(316-344) and D(495-535) regions, with the catalytic domains, as well as the full integrity of the starch-binding capacity of the D2 domain, are involved in the modulation of starch synthase III activity.
Collapse
Affiliation(s)
- Nahuel Z Wayllace
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Argentina
| | | | | | | | | |
Collapse
|
35
|
Nielsen MM, Seo ES, Dilokpimol A, Andersen J, Abou Hachem M, Naested H, Willemoës M, Bozonnet S, Kandra L, Gyémánt G, Haser R, Aghajari N, Svensson B. Roles of multiple surface sites, long substrate binding clefts, and carbohydrate binding modules in the action of amylolytic enzymes on polysaccharide substrates. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420701789528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Viksø-Nielsen A, Andersen C, Hoff T, Pedersen S. Development of new α-amylases for raw starch hydrolysis. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500519191] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Valdez HA, Busi MV, Wayllace NZ, Parisi G, Ugalde RA, Gomez-Casati DF. Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana. Biochemistry 2008; 47:3026-32. [PMID: 18260645 DOI: 10.1021/bi702418h] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Starch synthase III (SSIII), one of the SS isoforms involved in plant starch synthesis, has been reported to play a regulatory role in the synthesis of transient starch. SSIII from Arabidopsis thaliana contains 1025 amino acid residues and has an N-terminal transit peptide for chloroplast localization which is followed by three repeated starch-binding domains (SBDs; SSIII residues 22-591) and a C-terminal catalytic domain (residues 592-1025) similar to bacterial glycogen synthase. In this work, we constructed recombinant full-length and truncated isoforms of SSIII, lacking one, two, or three SBDs, and recombinant proteins, containing three, two, or one SBD, to investigate the role of these domains in enzyme activity. Results revealed that SSIII uses preferentially ADPGlc, although UDPGlc can also be used as a sugar donor substrate. When ADPGlc was used, the presence of the SBDs confers particular properties to each isoform, increasing the apparent affinity and the V max for the oligosaccharide acceptor substrate. However, no substantial changes in the kinetic parameters for glycogen were observed when UDPGlc was the donor substrate. Under glycogen saturating conditions, the presence of SBDs increases progressively the apparent affinity and V max for ADPGlc but not for UDPGlc. Adsorption assays showed that the N-terminal region of SSIII, containing three, two, or one SBD module have increased capacity to bind starch depending on the number of SBD modules, with the D23 protein (containing the second and third SBD module) being the one that makes the greatest contribution to binding. The results presented here suggest that the N-terminal SBDs have a regulatory role, showing a starch binding capacity and modulating the catalytic properties of SSIII.
Collapse
Affiliation(s)
- Hugo A Valdez
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), CONICET/UNSAM, Camino Circunvalación Km 6, 7130 Chascomús, Argentina
| | | | | | | | | | | |
Collapse
|
38
|
Guillén D, Santiago M, Linares L, Pérez R, Morlon J, Ruiz B, Sánchez S, Rodríguez-Sanoja R. Alpha-amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains. Appl Environ Microbiol 2007; 73:3833-7. [PMID: 17468268 PMCID: PMC1932744 DOI: 10.1128/aem.02628-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Lactobacillus amylovorus alpha-amylase starch binding domain (SBD) is a functional domain responsible for binding to insoluble starch. Structurally, this domain is dissimilar from other reported SBDs because it is composed of five identical tandem modules of 91 amino acids each. To understand adsorption phenomena specific to this SBD, the importance of their modular arrangement in relationship to binding ability was investigated. Peptides corresponding to one, two, three, four, or five modules were expressed as His-tagged proteins. Protein binding assays showed an increased capacity of adsorption as a function of the number of modules, suggesting that each unit of the SBD may act in an additive or synergic way to optimize binding to raw starch.
Collapse
Affiliation(s)
- D Guillén
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM, A.P. 70228, 04510 México D.F., Mexico
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Matsui Y, Okada S, Uchimura T, Kondo A, Satoh E. Determination and Analysis of the Starch Binding Domain of Streptococcus bovis 148 Raw-Starch-Hydrolyzing .ALPHA.-Amylase. J Appl Glycosci (1999) 2007. [DOI: 10.5458/jag.54.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
40
|
Wang N, Zhang Y, Wang Q, Liu J, Wang H, Xue Y, Ma Y. Gene cloning and characterization of a novel α-amylase from alkaliphilicAlkalimonas amylolytica. Biotechnol J 2006; 1:1258-65. [PMID: 17068753 DOI: 10.1002/biot.200600098] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A gene encoding an extracellular alpha-amylase (AmyA) was cloned from the alkaliphilic bacterium Alkalimonas amylolytica by enzymatic activity screening in Escherichia coli DH5alpha. The gene amyA consists of 1764 base pairs and was predicted to encode a 587-amino acid protein encompassing a 31-amino acid signal peptide. In addition, a 459-amino acid catalytic domain and a 97-amino acid starch-binding domain (SBD) were found. The SBD showed little similarity to other known SBDs; instead, it contains conserved amino acids typically belonging to the carbohydrate-binding module (CBM) family 20. AmyA could act on both granular and gelatinized starch. The catalytic domain of the enzyme showed little similarity to other known alpha-amylases. Rather, AmyA contains four characteristic conserved regions of glycoside hydrolase family 13. The recombinant enzyme was a liquefying enzyme with the highest activity at 50 degrees C and pH 9.5. The enzyme displayed a unique endo-product profile and action pattern on soluble starch to yield a series of malto-oligosaccharides ranging from maltose to maltoheptaose. The activity of the enzyme was enhanced by Co(2+), but not affected by 5 mM EDTA. Taken together, AmyA from A. amylolytica has potential to be used in paper, textile, detergent and other industries where starch needs to be degraded in an alkaline environment.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
41
|
Machovic M, Svensson B, MacGregor EA, Janecek S. A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21. FEBS J 2005; 272:5497-513. [PMID: 16262690 DOI: 10.1111/j.1742-4658.2005.04942.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Approximately 10% of amylolytic enzymes are able to bind and degrade raw starch. Usually a distinct domain, the starch-binding domain (SBD), is responsible for this property. These domains have been classified into families of carbohydrate-binding modules (CBM). At present, there are six SBD families: CBM20, CBM21, CBM25, CBM26, CBM34, and CBM41. This work is concentrated on CBM20 and CBM21. The CBM20 module was believed to be located almost exclusively at the C-terminal end of various amylases. The CBM21 module was known as the N-terminally positioned SBD of Rhizopus glucoamylase. Nowadays many nonamylolytic proteins have been recognized as possessing sequence segments that exhibit similarities with the experimentally observed CBM20 and CBM21. These facts have stimulated interest in carrying out a rigorous bioinformatics analysis of the two CBM families. The present analysis showed that the original idea of the CBM20 module being at the C-terminus and the CBM21 module at the N-terminus of a protein should be modified. Although the CBM20 functionally important tryptophans were found to be substituted in several cases, these aromatics and the regions around them belong to the best conserved parts of the CBM20 module. They were therefore used as templates for revealing the corresponding regions in the CBM21 family. Secondary structure prediction together with fold recognition indicated that the CBM21 module structure should be similar to that of CBM20. The evolutionary tree based on a common alignment of sequences of both modules showed that the CBM21 SBDs from alpha-amylases and glucoamylases are the closest relatives to the CBM20 counterparts, with the CBM20 modules from the glycoside hydrolase family GH13 amylopullulanases being possible candidates for the intermediate between the two CBM families.
Collapse
Affiliation(s)
- Martin Machovic
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | |
Collapse
|
42
|
Rodríguez-Sanoja R, Oviedo N, Sánchez S. Microbial starch-binding domain. Curr Opin Microbiol 2005; 8:260-7. [PMID: 15939348 DOI: 10.1016/j.mib.2005.04.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
Glucosidic bonds from different non-soluble polysaccharides such as starch, cellulose and xylan are hydrolyzed by amylases, cellulases and xylanases, respectively. These enzymes are produced by microorganisms. They have a modular structure that is composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. Starch-binding modules are present in microbial enzymes that are involved in starch metabolism; these are classified into several different families on the basis of their amino acid sequence similarities. Such binding domains promote attachment to the substrate and increase its concentration at the active site of the enzyme, which allows microorganisms to degrade non-soluble starch. Fold similarities are better conserved than sequences; nevertheless, it is possible to notice two evolutionary clusters of microbial starch-binding domains. These domains have enormous potential as tags for protein immobilization, as well as for the tailoring of enzymes that play a part in polysaccharide metabolism.
Collapse
Affiliation(s)
- Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, A. P. 70228. Universidad Nacional Autónoma de México, México DF 04510, Mexico.
| | | | | |
Collapse
|