1
|
Takahashi M, Masuda Y, Chiba Y, Urayama SI, Nagasaki K. DsRNA sequencing revealed a previously missed terminal sequence of a +ssRNA virus that infects dinoflagellate Heterocapsa circularisquama. Virus Genes 2024; 60:97-99. [PMID: 38198069 DOI: 10.1007/s11262-023-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Heterocapsa circularisquama RNA virus (HcRNAV) is the only dinoflagellate-infecting RNA virus cultured. However, only two strains of HcRNAV have been registered with complete genome sequences (strains 34 and 109 for UA and CY types, respectively). To extend the genomic information of HcRNAV, we performed full-genome sequencing of an unsequenced strain of HcRNAV (strain A8) using the fragmented and primer-ligated double-stranded RNA (dsRNA) sequencing (FLDS) method. The complete genome of HcRNAV A8 with 4457 nucleotides (nt) was successfully determined, and sequence alignment of the major capsid protein gene suggested that A8 was a UA-type strain, consistent with its intraspecific host specificity. The complete sequence was found to be 80 nt longer at the 5' terminus than the registered sequences of HcRNAV strains (34 and 109), suggesting that FLDS is more reliable for determining the terminal sequence than conventional methods (5' Rapid Amplification of cDNA End). Our study contributes to a better understanding of dinoflagellate-infecting viruses with limited sequence data.
Collapse
Grants
- JP19J00346 Japan Society for the Promotion of Science
- JPMJAX21BD ACT-X, Japan Science and Technology Agency
- JP16H06429 Ministry of Education, Culture, Sports, Science and Technology of Japan
- JP16K21723 Ministry of Education, Culture, Sports, Science and Technology of Japan
- JP16H06437 Ministry of Education, Culture, Sports, Science and Technology of Japan
Collapse
Affiliation(s)
- Michiko Takahashi
- Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Yuichi Masuda
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Yuto Chiba
- Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Syun-Ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Keizo Nagasaki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
2
|
Guo G, Wang M, Zhou D, He X, Han P, Chen G, Zeng J, Liu Z, Wu Y, Weng S, He J. Virome Analysis Provides an Insight into the Viral Community of Chinese Mitten Crab Eriocheir sinensis. Microbiol Spectr 2023; 11:e0143923. [PMID: 37358426 PMCID: PMC10433957 DOI: 10.1128/spectrum.01439-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023] Open
Abstract
Recent advances in viromics have led to the discovery of a great diversity of RNA viruses and the identification of a large number of viral pathogens. A systematic exploration of viruses in Chinese mitten crab (Eriocheir sinensis), one of the most important aquatic commercial species, is still lacking. Here, we characterized the RNA viromes of asymptomatic, milky disease (MD)-affected, and hepatopancreatic necrosis syndrome (HPNS)-affected Chinese mitten crabs collected from 3 regions in China. In total, we identified 31 RNA viruses belonging to 11 orders, 22 of which were first reported here. By comparing viral composition between samples, we observed high variation in viral communities across regions, with most of the viral species being region-specific. We proposed to establish several novel viral families or genera based on the phylogenetic relationships and genome structures of viruses discovered in this study, expanding our knowledge of viral diversity in brachyuran crustaceans. IMPORTANCE High-throughput sequencing and meta-transcriptomic analysis provide us with an efficient tool to discover unknown viruses and explore the composition of viral communities in specific species. In this study, we investigated viromes in asymptomatic and diseased Chinese mitten crabs collected from three distant locations. We observed high regional variation in the composition of viral species, highlighting the importance of multi-location sampling. In addition, we classified several novel and ICTV-unclassified viruses based on their genome structures and phylogenetic relationships, providing a new perspective on current viral taxa.
Collapse
Affiliation(s)
- Guangyu Guo
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Muhua Wang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dandan Zhou
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xinyi He
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiyun Han
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Gongrui Chen
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiamin Zeng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi Liu
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Yinqing Wu
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Veglia AJ, Bistolas KSI, Voolstra CR, Hume BCC, Ruscheweyh HJ, Planes S, Allemand D, Boissin E, Wincker P, Poulain J, Moulin C, Bourdin G, Iwankow G, Romac S, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Forcioli D, Furla P, Galand PE, Gilson E, Lombard F, Pesant S, Reynaud S, Sunagawa S, Thomas OP, Troublé R, Zoccola D, Correa AMS, Vega Thurber RL. Endogenous viral elements reveal associations between a non-retroviral RNA virus and symbiotic dinoflagellate genomes. Commun Biol 2023; 6:566. [PMID: 37264063 DOI: 10.1038/s42003-023-04917-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes. Putative associations between Symbiodiniaceae and dinoRNAV EVEs were corroborated by the characterization of dinoRNAV-like sequences in 17 of 18 scaffold-scale and one chromosome-scale dinoflagellate genome assembly, flanked by characteristically cellular sequences and in proximity to retroelements, suggesting potential mechanisms of integration. EVEs were not detected in dinoflagellate-free (aposymbiotic) cnidarian genome assemblies, including stony corals, hydrocorals, jellyfish, or seawater. The pervasive nature of dinoRNAV EVEs within dinoflagellate genomes (especially Symbiodinium), as well as their inconsistent within-genome distribution and fragmented nature, suggest ancestral or recurrent integration of this virus with variable conservation. Broadly, these findings illustrate how +ssRNA viruses may obscure their genomes as members of nested symbioses, with implications for host evolution, exaptation, and immunity in the context of reef health and disease.
Collapse
Affiliation(s)
- Alex J Veglia
- BioSciences Department, Rice University, Houston, TX, USA
| | | | | | | | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Clémentine Moulin
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75012, Paris, France
| | | | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, LIA ROPSE, Monaco, France
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, LIA ROPSE, Monaco, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66650, Banyuls sur mer, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Department of Medical Genetics, CHU of Nice, Nice, France
| | - Fabien Lombard
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, F-06230, Villefranche-sur-Mer, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road H91 TK33, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75012, Paris, France
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | | | | |
Collapse
|
4
|
Coy SR, Utama B, Spurlin JW, Kim JG, Deshmukh H, Lwigale P, Nagasaki K, Correa AMS. Visualization of RNA virus infection in a marine protist with a universal biomarker. Sci Rep 2023; 13:5813. [PMID: 37037845 PMCID: PMC10086069 DOI: 10.1038/s41598-023-31507-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 04/12/2023] Open
Abstract
Half of the marine virosphere is hypothesized to be RNA viruses (kingdom Orthornavirae) that infect abundant micro-eukaryotic hosts (e.g. protists). To test this, quantitative approaches that broadly track infections in situ are needed. Here, we describe a technique-dsRNA-Immunofluorescence (dsRIF)-that uses a double-stranded RNA (dsRNA) targeting monoclonal antibody to assess host infection status based on the presence of dsRNA, a replicative intermediate of all Orthornavirae infections. We show that the dinoflagellate Heterocapsa circularisquama produces dsRIF signal ~ 1000 times above background autofluorescence when infected by the + ssRNA virus HcRNAV. dsRNA-positive virocells were detected across > 50% of the 48-h infection cycle and accumulated to represent at least 63% of the population. Photosynthetic and chromosomal integrity remained intact during peak replication, indicating HcRNAV infection does not interrupt these processes. This work validates the use of dsRIF on marine RNA viruses and their hosts, setting the stage for quantitative environmental applications that will accelerate understanding of virus-driven ecosystem impacts.
Collapse
Affiliation(s)
- Samantha R Coy
- Department of Biosciences, Rice University, Houston, TX, USA.
- Department of Oceanography, Texas A&M University, College Station, TX, USA.
| | - Budi Utama
- Shared Equipment Authority, Rice University, Houston, TX, USA
| | - James W Spurlin
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Julia G Kim
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Peter Lwigale
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | | |
Collapse
|
5
|
Howe-Kerr LI, Grupstra CGB, Rabbitt KM, Conetta D, Coy SR, Klinges JG, Maher RL, McConnell KM, Meiling SS, Messyasz A, Schmeltzer ER, Seabrook S, Sims JA, Veglia AJ, Thurber AR, Thurber RLV, Correa AMS. Viruses of a key coral symbiont exhibit temperature-driven productivity across a reefscape. ISME COMMUNICATIONS 2023; 3:27. [PMID: 37009785 PMCID: PMC10068613 DOI: 10.1038/s43705-023-00227-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Viruses can affect coral health by infecting their symbiotic dinoflagellate partners (Symbiodiniaceae). Yet, viral dynamics in coral colonies exposed to environmental stress have not been studied at the reef scale, particularly within individual viral lineages. We sequenced the viral major capsid protein (mcp) gene of positive-sense single-stranded RNA viruses known to infect symbiotic dinoflagellates ('dinoRNAVs') to analyze their dynamics in the reef-building coral, Porites lobata. We repeatedly sampled 54 colonies harboring Cladocopium C15 dinoflagellates, across three environmentally distinct reef zones (fringing reef, back reef, and forereef) around the island of Moorea, French Polynesia over a 3-year period and spanning a reef-wide thermal stress event. By the end of the sampling period, 28% (5/18) of corals in the fringing reef experienced partial mortality versus 78% (14/18) of corals in the forereef. Over 90% (50/54) of colonies had detectable dinoRNAV infections. Reef zone influenced the composition and richness of viral mcp amino acid types ('aminotypes'), with the fringing reef containing the highest aminotype richness. The reef-wide thermal stress event significantly increased aminotype dispersion, and this pattern was strongest in the colonies that experienced partial mortality. These findings demonstrate that dinoRNAV infections respond to environmental fluctuations experienced in situ on reefs. Further, viral productivity will likely increase as ocean temperatures continue to rise, potentially impacting the foundational symbiosis underpinning coral reef ecosystems.
Collapse
Affiliation(s)
| | - Carsten G B Grupstra
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Kristen M Rabbitt
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, USA
| | - Dennis Conetta
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Samantha R Coy
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Oceanography, Texas A & M University, College Station, TX, USA
| | - J Grace Klinges
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, USA
| | - Rebecca L Maher
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | | | - Sonora S Meiling
- University of the Virgin Islands, St. Thomas, US Virgin Islands, USA
| | - Adriana Messyasz
- Rutgers School of Environmental and Biological Sciences, New Brunswick, NJ, USA
| | | | - Sarah Seabrook
- Oregon State University, Corvallis, OR, USA
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Jordan A Sims
- Department of BioSciences, Rice University, Houston, TX, USA
- Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Alex J Veglia
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | | | | |
Collapse
|
6
|
Benites LF, Stephens TG, Bhattacharya D. Multiple waves of viral invasions in Symbiodiniaceae algal genomes. Virus Evol 2022; 8:veac101. [PMID: 36381231 PMCID: PMC9651163 DOI: 10.1093/ve/veac101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 08/13/2023] Open
Abstract
Dinoflagellates from the family Symbiodiniaceae are phototrophic marine protists that engage in symbiosis with diverse hosts. Their large and distinct genomes are characterized by pervasive gene duplication and large-scale retroposition events. However, little is known about the role and scale of horizontal gene transfer (HGT) in the evolution of this algal family. In other dinoflagellates, high levels of HGTs have been observed, linked to major genomic transitions, such as the appearance of a viral-acquired nucleoprotein that originated via HGT from a large DNA algal virus. Previous work showed that Symbiodiniaceae from different hosts are actively infected by viral groups, such as giant DNA viruses and ssRNA viruses, that may play an important role in coral health. Latent viral infections may also occur, whereby viruses could persist in the cytoplasm or integrate into the host genome as a provirus. This hypothesis received experimental support; however, the cellular localization of putative latent viruses and their taxonomic affiliation are still unknown. In addition, despite the finding of viral sequences in some genomes of Symbiodiniaceae, viral origin, taxonomic breadth, and metabolic potential have not been explored. To address these questions, we searched for putative viral-derived proteins in thirteen Symbiodiniaceae genomes. We found fifty-nine candidate viral-derived HGTs that gave rise to twelve phylogenies across ten genomes. We also describe the taxonomic affiliation of these virus-related sequences, their structure, and their genomic context. These results lead us to propose a model to explain the origin and fate of Symbiodiniaceae viral acquisitions.
Collapse
Affiliation(s)
- L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers University, 102 Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers University, 102 Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, 102 Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
| |
Collapse
|
7
|
Takahashi M, Wada K, Urayama SI, Masuda Y, Nagasaki K. Degenerate PCR Targeting the Major Capsid Protein Gene of HcRNAV and Related Viruses. Microbes Environ 2022; 37:ME21075. [PMID: 35400716 PMCID: PMC9763038 DOI: 10.1264/jsme2.me21075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterocapsa circularisquama RNA virus (HcRNAV) is the only dinoflagellate-infecting RNA virus that has been isolated to date. We herein investigated the diversity of the major capsid protein gene of HcRNAV and related viruses using degenerate PCR and in silico ana-lyses. Diverse sequences related to HcRNAV were successfully amplified from marine sediments. Amplicons contained conserved and variable regions; the latter were predicted to be located on the outer surface of the capsid. Our approach provides insights into the diversity of viruses that are difficult to isolate in the environment and will enhance rapidly growing metagenome sequence repositories.
Collapse
Affiliation(s)
- Michiko Takahashi
- Faculty of Science and Technology, Kochi University, 200 Otsu, Monobe-Otsu, Nankoku, Kochi 783–8502, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, Miyazaki 889–1692, Japan,Frontier Science Research Center, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889–1692, Japan
| | - Syun-ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Yuichi Masuda
- Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783–8502, Japan
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, 200 Otsu, Monobe-Otsu, Nankoku, Kochi 783–8502, Japan,Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783–8502, Japan, Corresponding author. E-mail: ; Tel: +81–88–864–6753
| |
Collapse
|
8
|
Takahashi M, Wada K, Takano Y, Matsuno K, Masuda Y, Arai K, Murayama M, Tomaru Y, Tanaka K, Nagasaki K. Chronological distribution of dinoflagellate-infecting RNA virus in marine sediment core. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145220. [PMID: 33517015 DOI: 10.1016/j.scitotenv.2021.145220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
A bivalve-killing marine dinoflagellate, Heterocapsa circularisquama, is susceptible to the infectious single-stranded RNA virus, Heterocapsa circularisquama RNA virus (HcRNAV). The ecological relationship between H. circularisquama and HcRNAV was intensively studied from 2001 through 2005; however, only limited data are available for the ecological dynamics of HcRNAV before 2001. In this study, we applied radiometric dating and reverse transcription PCR (RT-PCR) to determine the chronological distribution of HcRNAV in a marine sediment core sampled from the Uranouchi Inlet, Kochi, Japan, where H. circularisquama was first discovered. Our results show that HcRNAV had existed in the inlet long before its first bloom in 1988. Furthermore, five HcRNAV variants, phylogenetically distinguishable based on the nucleotide sequence of the major capsid protein (MCP) gene, were identified. These variants were found to be distributed throughout the core over time, suggesting that the HcRNAV sequences registered in the NCBI database are only a portion of the variants that have emerged in the history of HcRNAV diversification. Herein, we have verified the applicability of the retrospective approach for speculating the distribution of algal RNA viruses over time in aquatic environments.
Collapse
Affiliation(s)
- Michiko Takahashi
- Faculty of Science and Technology, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yoshihito Takano
- Faculty of Science and Technology, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Kyouhei Matsuno
- Japan Software Management, Yokohama 221-0056, Kanagawa, Japan
| | - Yuichi Masuda
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Kazuno Arai
- Center for Advanced Marine Core Research, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Masafumi Murayama
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan; Center for Advanced Marine Core Research, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hatsukaichi 739-0452, Hiroshima, Japan
| | - Kouki Tanaka
- Usa Marine Biological Institute, Kochi University, Usa 781-1164, Kochi, Japan
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Nankoku 783-8502, Kochi, Japan; Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan; Center for Advanced Marine Core Research, Kochi University, Nankoku 783-8502, Kochi, Japan.
| |
Collapse
|
9
|
Sadeghi M, Tomaru Y, Ahola T. RNA Viruses in Aquatic Unicellular Eukaryotes. Viruses 2021; 13:v13030362. [PMID: 33668994 PMCID: PMC7996518 DOI: 10.3390/v13030362] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Increasing sequence information indicates that RNA viruses constitute a major fraction of marine virus assemblages. However, only 12 RNA virus species have been described, infecting known host species of marine single-celled eukaryotes. Eight of these use diatoms as hosts, while four are resident in dinoflagellate, raphidophyte, thraustochytrid, or prasinophyte species. Most of these belong to the order Picornavirales, while two are divergent and fall into the families Alvernaviridae and Reoviridae. However, a very recent study has suggested that there is extraordinary diversity in aquatic RNA viromes, describing thousands of viruses, many of which likely use protist hosts. Thus, RNA viruses are expected to play a major ecological role for marine unicellular eukaryotic hosts. In this review, we describe in detail what has to date been discovered concerning viruses with RNA genomes that infect aquatic unicellular eukaryotes.
Collapse
Affiliation(s)
- Mohammadreza Sadeghi
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (M.S.); (T.A.)
| | - Yuji Tomaru
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Fisheries Research and Education Agency, Hatsukaichi, Hiroshima 739-0452, Japan;
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (M.S.); (T.A.)
| |
Collapse
|
10
|
Novel Protocol for Estimating Viruses Specifically Infecting the Marine Planktonic Diatoms. DIVERSITY 2020. [DOI: 10.3390/d12060225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since their discovery, at least 15 diatom viruses have been isolated and characterised using a culture method with two cycles of extinction dilution. However, the method is time consuming and laborious, and it isolates only the most dominant virus in a water sample. Recent studies have suggested inter-species host specificity of diatom viruses. Here, we describe a new protocol to estimate previously unrecognised host-virus relationships. Host cell cultures after inoculation of natural sediment pore water samples were obtained before complete lysis. The proliferated viral genomes in the host cells were amplified using degenerate primer pairs targeting protein replication regions of single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA) viruses, and then sequenced. Diverse ssRNA virus types within known diatom virus group were detected from inoculated Chaetoceros tenuissimus and C. setoensis cells. A previously unknown ssDNA virus type was detected in inoculated C. tenuissimus cells, but not in C. setoensis cells. Despite the possible protocol biases, for example non-specific adsorptions of virions onto the host cells, the present method helps to estimate the viruses infectious to a single host species. Further improvements to this protocol targeting the proliferated viral genomes might reveal unexpected diatom–virus ecological relationships.
Collapse
|
11
|
Zimmerman AE, Bachy C, Ma X, Roux S, Jang HB, Sullivan MB, Waldbauer JR, Worden AZ. Closely related viruses of the marine picoeukaryotic alga Ostreococcus lucimarinus exhibit different ecological strategies. Environ Microbiol 2019; 21:2148-2170. [PMID: 30924271 PMCID: PMC6851583 DOI: 10.1111/1462-2920.14608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/16/2019] [Accepted: 03/23/2019] [Indexed: 01/01/2023]
Abstract
In marine ecosystems, viruses are major disrupters of the direct flow of carbon and nutrients to higher trophic levels. Although the genetic diversity of several eukaryotic phytoplankton virus groups has been characterized, their infection dynamics are less understood, such that the physiological and ecological implications of their diversity remain unclear. We compared genomes and infection phenotypes of the two most closely related cultured phycodnaviruses infecting the widespread picoprasinophyte Ostreococcus lucimarinus under standard- (1.3 divisions per day) and limited-light (0.41 divisions per day) nutrient replete conditions. OlV7 infection caused early arrest of the host cell cycle, coinciding with a significantly higher proportion of infected cells than OlV1-amended treatments, regardless of host growth rate. OlV7 treatments showed a near-50-fold increase of progeny virions at the higher host growth rate, contrasting with OlV1's 16-fold increase. However, production of OlV7 virions was more sensitive than OlV1 production to reduced host growth rate, suggesting fitness trade-offs between infection efficiency and resilience to host physiology. Moreover, although organic matter released from OlV1- and OlV7-infected hosts had broadly similar chemical composition, some distinct molecular signatures were observed. Collectively, these results suggest that current views on viral relatedness through marker and core gene analyses underplay operational divergence and consequences for host ecology.
Collapse
Affiliation(s)
| | - Charles Bachy
- Monterey Bay Aquarium Research InstituteMoss LandingCAUSA
| | - Xiufeng Ma
- Department of the Geophysical SciencesUniversity of ChicagoChicagoILUSA
| | - Simon Roux
- Department of MicrobiologyEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
| | - Ho Bin Jang
- Department of MicrobiologyEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
- Department of CivilEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
| | - Matthew B. Sullivan
- Department of MicrobiologyEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
- Department of CivilEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
| | | | - Alexandra Z. Worden
- Monterey Bay Aquarium Research InstituteMoss LandingCAUSA
- Ocean EcoSystems Biology Unit, Marine Ecology DivisionGEOMAR Helmholtz Centre for Ocean Research KielKielDE
| |
Collapse
|
12
|
Abstract
Very little is known about aquatic RNA virus populations and genome evolution. This is the first study that analyzes marine environmental RNA viral assemblages in an evolutionary and broad geographical context. This study contributes the largest marine RNA virus metagenomic data set to date, substantially increasing the sequencing space for RNA viruses and also providing a baseline for comparisons of marine RNA virus diversity. The new viruses discovered in this study are representative of the most abundant family of marine RNA viruses, the Marnaviridae, and expand our view of the diversity of this important group. Overall, our data and analyses provide a foundation for interpreting marine RNA virus diversity and evolution. RNA viruses, particularly genetically diverse members of the Picornavirales, are widespread and abundant in the ocean. Gene surveys suggest that there are spatial and temporal patterns in the composition of RNA virus assemblages, but data on their diversity and genetic variability in different oceanographic settings are limited. Here, we show that specific RNA virus genomes have widespread geographic distributions and that the dominant genotypes are under purifying selection. Genomes from three previously unknown picorna-like viruses (BC-1, -2, and -3) assembled from a coastal site in British Columbia, Canada, as well as marine RNA viruses JP-A, JP-B, and Heterosigma akashiwo RNA virus exhibited different biogeographical patterns. Thus, biotic factors such as host specificity and viral life cycle, and not just abiotic processes such as dispersal, affect marine RNA virus distribution. Sequence differences relative to reference genomes imply that virus quasispecies are under purifying selection, with synonymous single-nucleotide variations dominating in genomes from geographically distinct regions resulting in conservation of amino acid sequences. Conversely, sequences from coastal South Africa that mapped to marine RNA virus JP-A exhibited more nonsynonymous mutations, probably representing amino acid changes that accumulated over a longer separation. This biogeographical analysis of marine RNA viruses demonstrates that purifying selection is occurring across oceanographic provinces. These data add to the spectrum of known marine RNA virus genomes, show the importance of dispersal and purifying selection for these viruses, and indicate that closely related RNA viruses are pathogens of eukaryotic microbes across oceans. IMPORTANCE Very little is known about aquatic RNA virus populations and genome evolution. This is the first study that analyzes marine environmental RNA viral assemblages in an evolutionary and broad geographical context. This study contributes the largest marine RNA virus metagenomic data set to date, substantially increasing the sequencing space for RNA viruses and also providing a baseline for comparisons of marine RNA virus diversity. The new viruses discovered in this study are representative of the most abundant family of marine RNA viruses, the Marnaviridae, and expand our view of the diversity of this important group. Overall, our data and analyses provide a foundation for interpreting marine RNA virus diversity and evolution.
Collapse
|
13
|
Wolf YI, Kazlauskas D, Iranzo J, Lucía-Sanz A, Kuhn JH, Krupovic M, Dolja VV, Koonin EV. Origins and Evolution of the Global RNA Virome. mBio 2018; 9:e02329-18. [PMID: 30482837 PMCID: PMC6282212 DOI: 10.1128/mbio.02329-18] [Citation(s) in RCA: 322] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 01/12/2023] Open
Abstract
Viruses with RNA genomes dominate the eukaryotic virome, reaching enormous diversity in animals and plants. The recent advances of metaviromics prompted us to perform a detailed phylogenomic reconstruction of the evolution of the dramatically expanded global RNA virome. The only universal gene among RNA viruses is the gene encoding the RNA-dependent RNA polymerase (RdRp). We developed an iterative computational procedure that alternates the RdRp phylogenetic tree construction with refinement of the underlying multiple-sequence alignments. The resulting tree encompasses 4,617 RNA virus RdRps and consists of 5 major branches; 2 of the branches include positive-sense RNA viruses, 1 is a mix of positive-sense (+) RNA and double-stranded RNA (dsRNA) viruses, and 2 consist of dsRNA and negative-sense (-) RNA viruses, respectively. This tree topology implies that dsRNA viruses evolved from +RNA viruses on at least two independent occasions, whereas -RNA viruses evolved from dsRNA viruses. Reconstruction of RNA virus evolution using the RdRp tree as the scaffold suggests that the last common ancestors of the major branches of +RNA viruses encoded only the RdRp and a single jelly-roll capsid protein. Subsequent evolution involved independent capture of additional genes, in particular, those encoding distinct RNA helicases, enabling replication of larger RNA genomes and facilitating virus genome expression and virus-host interactions. Phylogenomic analysis reveals extensive gene module exchange among diverse viruses and horizontal virus transfer between distantly related hosts. Although the network of evolutionary relationships within the RNA virome is bound to further expand, the present results call for a thorough reevaluation of the RNA virus taxonomy.IMPORTANCE The majority of the diverse viruses infecting eukaryotes have RNA genomes, including numerous human, animal, and plant pathogens. Recent advances of metagenomics have led to the discovery of many new groups of RNA viruses in a wide range of hosts. These findings enable a far more complete reconstruction of the evolution of RNA viruses than was attainable previously. This reconstruction reveals the relationships between different Baltimore classes of viruses and indicates extensive transfer of viruses between distantly related hosts, such as plants and animals. These results call for a major revision of the existing taxonomy of RNA viruses.
Collapse
Affiliation(s)
- Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Adriana Lucía-Sanz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
- Centro Nacional de Biotecnología, Madrid, Spain
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Mart Krupovic
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Abstract
Viruses are integral to ecological and evolutionary processes, but we have a poor understanding of what drives variation in key traits across diverse viruses. For lytic viruses, burst size, latent period, and genome size are primary characteristics controlling host-virus dynamics. Here we synthesize data on these traits for 75 strains of phytoplankton viruses, which play an important role in global biogeochemistry. We find that primary traits of the host (genome size, growth rate) explain 40%-50% of variation in burst size and latent period. Specifically, burst size and latent period both exhibit saturating relationships versus the host∶virus genome size ratio, with both traits increasing at low genome size ratios while showing no relationship at high size ratios. In addition, latent period declines as host growth rate increases. We analyze a model of latent period evolution to explore mechanisms that could cause these patterns. The model predicts that burst size may often be set by the host genomic resources available for viral construction, while latent period evolves to permit this maximal burst size, modulated by host metabolic rate. These results suggest that general mechanisms may underlie the evolution of diverse viruses. Future extensions of this work could help explain viral regulation of host populations, viral influence on community structure and diversity, and viral roles in biogeochemical cycles.
Collapse
|
15
|
Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res 2017; 244:36-52. [PMID: 29103997 PMCID: PMC5801114 DOI: 10.1016/j.virusres.2017.10.020] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022]
Abstract
Virus metagenomics is a young research filed but it has already transformed our understanding of virus diversity and evolution, and illuminated at a new level the connections between virus evolution and the evolution and ecology of the hosts. In this review article, we examine the new picture of the evolution of RNA viruses, the dominant component of the eukaryotic virome, that is emerging from metagenomic data analysis. The major expansion of many groups of RNA viruses through metagenomics allowed the construction of substantially improved phylogenetic trees for the conserved virus genes, primarily, the RNA-dependent RNA polymerases (RdRp). In particular, a new superfamily of widespread, small positive-strand RNA viruses was delineated that unites tombus-like and noda-like viruses. Comparison of the genome architectures of RNA viruses discovered by metagenomics and by traditional methods reveals an extent of gene module shuffling among diverse virus genomes that far exceeds the previous appreciation of this evolutionary phenomenon. Most dramatically, inclusion of the metagenomic data in phylogenetic analyses of the RdRp resulted in the identification of numerous, strongly supported groups that encompass RNA viruses from diverse hosts including different groups of protists, animals and plants. Notwithstanding potential caveats, in particular, incomplete and uneven sampling of eukaryotic taxa, these highly unexpected findings reveal horizontal virus transfer (HVT) between diverse hosts as the central aspect of RNA virus evolution. The vast and diverse virome of invertebrates, particularly nematodes and arthropods, appears to be the reservoir, from which the viromes of plants and vertebrates evolved via multiple HVT events.
Collapse
|
16
|
Levin RA, Voolstra CR, Weynberg KD, van Oppen MJH. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME JOURNAL 2016; 11:808-812. [PMID: 27911439 DOI: 10.1038/ismej.2016.154] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 09/04/2016] [Accepted: 09/18/2016] [Indexed: 11/10/2022]
Abstract
Symbiodinium, the dinoflagellate photosymbiont of corals, is posited to become more susceptible to viral infections when heat-stressed. To investigate this hypothesis, we mined transcriptome data of a thermosensitive and a thermotolerant type C1 Symbiodinium population at ambient (27 °C) and elevated (32°C) temperatures. We uncovered hundreds of transcripts from nucleocytoplasmic large double-stranded DNA viruses (NCLDVs) and the genome of a novel positive-sense single-stranded RNA virus (+ssRNAV). In the transcriptome of the thermosensitive population only, +ssRNAV transcripts had remarkable expression levels in the top 0.03% of all transcripts at 27 °C, but at 32 °C, expression levels of +ssRNAV transcripts decreased, while expression levels of anti-viral transcripts increased. In both transcriptomes, expression of NCLDV transcripts increased at 32 °C, but thermal induction of NCLDV transcripts involved in DNA manipulation was restricted to the thermosensitive population. Our findings reveal that viruses infecting Symbiodinium are affected by heat stress and may contribute to Symbiodinium thermal sensitivity.
Collapse
Affiliation(s)
- Rachel Ashley Levin
- Centre for Marine Bio-Innovation, The University of New South Wales (UNSW), Sydney, NSW, Australia.,School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia.,Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Christian Robert Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | |
Collapse
|
17
|
Marine Viruses that infect Eukaryotic Microalgae. Uirusu 2016; 65:37-46. [PMID: 26923956 DOI: 10.2222/jsv.65.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Marine microalgae, in general, explain large amount of the primary productions on the planet. Their huge biomass through photosynthetic activities is significant to understand the global geochemical cycles. Many researchers are, therefore, focused on studies of marine microalgae, i.e. phytoplankton. Since the first report of high abundance of viruses in the sea at late 1980's, the marine viruses have recognized as an important decreasing factor of its host populations. They seem to be composed of diverse viruses infectious to different organism groups; most of them are considered to be phages infectious to prokaryotes, and viruses infecting microalgae might be ranked in second level. Over the last quarter of a century, the knowledge on marine microalgal viruses has been accumulated in many aspects. Until today, ca. 40 species of marine microalgal viruses have been discovered, including dsDNA, ssDNA, dsRNA and ssRNA viruses. Their features are unique and comprise new ideas and discoveries, indicating that the marine microalgal virus research is still an intriguing unexplored field. In this review, we summarize their basic biology and ecology, and discuss how and what we should research in this area for further progress.
Collapse
|
18
|
Kang BS, Eom CY, Kim W, Kim PI, Ju SY, Ryu J, Han GH, Oh JI, Cho H, Baek SH, Kim G, Kim M, Hyun J, Jin E, Kim SW. Construction of target-specific virus-like particles for the delivery of algicidal compounds to harmful algae. Environ Microbiol 2014; 17:1463-74. [DOI: 10.1111/1462-2920.12650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Beom Sik Kang
- School of Life Science and Biotechnology; Kyungpook National University; Daegu 702-701 Korea
| | - Chi-Yong Eom
- NanoBio Convergence Research Team; Western Seoul Center; Korea Basic Science Institute; Seoul 120-750 Korea
| | - Wonduck Kim
- Department of Environmental Engineering and Pioneer Research Center for Controlling of Harmful Algal Bloom; Chosun University; Gwangju 501-759 Korea
| | - Pyoung il Kim
- Department of Environmental Engineering and Pioneer Research Center for Controlling of Harmful Algal Bloom; Chosun University; Gwangju 501-759 Korea
| | - Sun Yi Ju
- Department of Environmental Engineering and Pioneer Research Center for Controlling of Harmful Algal Bloom; Chosun University; Gwangju 501-759 Korea
| | - Jaewon Ryu
- Department of Environmental Engineering and Pioneer Research Center for Controlling of Harmful Algal Bloom; Chosun University; Gwangju 501-759 Korea
| | - Gui Hwan Han
- Department of Environmental Engineering and Pioneer Research Center for Controlling of Harmful Algal Bloom; Chosun University; Gwangju 501-759 Korea
| | - Jeong-Il Oh
- Department of Microbiology; Pusan University; Pusan 609-735 Korea
| | - Hoon Cho
- Department of Polymer Science and Engineering; Chosun University; Gwangju 501-759 Korea
| | - Seung Ho Baek
- South Sea Institute; Korea Ocean Research and Development Institute; Geoje 656-830 Korea
| | - Gueeda Kim
- Department of Life Science and Research Institute for Natural Sciences; Hanyang University; Seoul 133-791 Korea
| | - Minju Kim
- Department of Life Science and Research Institute for Natural Sciences; Hanyang University; Seoul 133-791 Korea
| | - Jaekyung Hyun
- Division of Electron Microscopic Research; Korea Basic Science Institute; Daejeon 305-333 Korea
| | - EonSeon Jin
- Department of Life Science and Research Institute for Natural Sciences; Hanyang University; Seoul 133-791 Korea
| | - Si Wouk Kim
- Department of Environmental Engineering and Pioneer Research Center for Controlling of Harmful Algal Bloom; Chosun University; Gwangju 501-759 Korea
| |
Collapse
|
19
|
Gustavsen JA, Winget DM, Tian X, Suttle CA. High temporal and spatial diversity in marine RNA viruses implies that they have an important role in mortality and structuring plankton communities. Front Microbiol 2014; 5:703. [PMID: 25566218 PMCID: PMC4266044 DOI: 10.3389/fmicb.2014.00703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/26/2014] [Indexed: 01/26/2023] Open
Abstract
Viruses in the order Picornavirales infect eukaryotes, and are widely distributed in coastal waters. Amplicon deep-sequencing of the RNA dependent RNA polymerase (RdRp) revealed diverse and highly uneven communities of picorna-like viruses in the coastal waters of British Columbia (BC), Canada. Almost 300 000 pyrosequence reads revealed 145 operational taxonomic units (OTUs) based on 95% sequence similarity at the amino-acid level. Each sample had between 24 and 71 OTUs and there was little overlap among samples. Phylogenetic analysis revealed that some clades of OTUs were only found at one site; whereas, other clades included OTUs from all sites. Since most of these OTUs are likely from viruses that infect eukaryotic phytoplankton, and viral isolates infecting phytoplankton are strain-specific; each OTU probably arose from the lysis of a specific phytoplankton taxon. Moreover, the patchiness in OTU distribution, and the high turnover of viruses in the mixed layer, implies continuous infection and lysis by RNA viruses of a diverse array of eukaryotic phytoplankton taxa. Hence, these viruses are likely important elements structuring the phytoplankton community, and play a significant role in nutrient cycling and energy transfer.
Collapse
Affiliation(s)
- Julia A Gustavsen
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Danielle M Winget
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Xi Tian
- Bioinformatics Graduate Program, Faculty of Science, University of British Columbia Vancouver, BC, Canada
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada ; Departments of Botany, and Microbiology & Immunology, University of British Columbia Vancouver, BC, Canada ; Canadian Institute for Advanced Research Toronto, ON, Canada
| |
Collapse
|
20
|
Nakayama N, Fujimoto A, Kawami H, Tomaru Y, Hata N, Nagasaki K. High interaction variability of the bivalve-killing dinoflagellate Heterocapsa circularisquama strains and their single-stranded RNA virus HcRNAV isolates. Microbes Environ 2012; 28:112-9. [PMID: 23268792 PMCID: PMC4070693 DOI: 10.1264/jsme2.me12106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HcRNAV is a single-stranded RNA (ssRNA) virus that specifically infects the bivalve-killing dinoflagellate, Heterocapsa circularisquama. HcRNAV strains are grouped into 2 types (UA and CY), based on intra-species host specificity and the amino acid sequence of the major capsid protein (MCP). In the present study, we report the isolation of novel HcRNAV clones (n=51) lytic to the H. circularisquama strains, HU9433-P, HCLG-1, 05HC05 and 05HC06. HcRNAV34, HcRNAV109, HcRNAV641, and HcRNAV659, which displayed lytic activity against the strains, HU9433-P, HCLG-1, 05HC05, and 05HC06, respectively, were selected as typical virus clones and were intensively examined. The infection intensity of each host-virus combination was analyzed by examining the algicidal activity, detecting the intracellular replication of the viral RNA as well as the appearance of host cells with a morphologically abnormal nucleus post-infection. Interestingly, the strains, 05HC05 and 05HC06, were markedly sensitive to HcRNAV641 and HcRNAV659, respectively. Tertiary structural modeling predicted 4 unique amino acid (aa) substitutions in HcRNAV659-MCP to be exposed to an ambient water environment, which contributed towards determining its infection specificity. Neighbor-joining analysis of MCP aa sequences from HcRNAV clones revealed 3 clades, namely, the CY type and the UA1 and UA2 subtypes. The HcRNAV clones lytic to HCLG-1 (ex. HcRNAV109), HU9433-P and 05HC05 (ex. HcRNAV34), and 05HC06 (ex. HcRNAV659) were categorized into CY type, UA1 and UA2 subtypes, respectively. The present study highlights the complexity of the H. circularisquama-HcRNAV host-virus system, i.e., clonal variation, microbial control, and ecology in a natural algal population.
Collapse
Affiliation(s)
- Natsuko Nakayama
- National Research Institute of Fisheries and Environment of Inland Sea, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Viruses are abundant in the ocean and a major driving force in plankton ecology and evolution. It has been assumed that most of the viruses in seawater contain DNA and infect bacteria, but RNA-containing viruses in the ocean, which almost exclusively infect eukaryotes, have never been quantified. We compared the total mass of RNA and DNA in the viral fraction harvested from seawater and using data on the mass of nucleic acid per RNA- or DNA-containing virion, estimated the abundances of each. Our data suggest that the abundance of RNA viruses rivaled or exceeded that of DNA viruses in samples of coastal seawater. The dominant RNA viruses in the samples were marine picorna-like viruses, which have small genomes and are at or below the detection limit of common fluorescence-based counting methods. If our results are typical, this means that counts of viruses and the rate measurements that depend on them, such as viral production, are significantly underestimated by current practices. As these RNA viruses infect eukaryotes, our data imply that protists contribute more to marine viral dynamics than one might expect based on their relatively low abundance. This conclusion is a departure from the prevailing view of viruses in the ocean, but is consistent with earlier theoretical predictions.
Collapse
|
22
|
Wada K, Kimura K, Hasegawa A, Fukuyama K, Nagasaki K. Establishment of a bacterial expression system and immunoassay platform for the major capsid protein of HcRNAV, a dinoflagellate-infecting RNA virus. Microbes Environ 2012; 27:483-9. [PMID: 23047150 PMCID: PMC4103558 DOI: 10.1264/jsme2.me12046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HcRNAV is a small icosahedral virus that infects the shellfish-killing marine dinoflagellate Heterocapsa circularisquama, which harbors a dicistronic linear single-stranded RNA (ssRNA) genome ca. 4.4 kb in length. Its major capsid protein (MCP) gene sequence is not expressed by various strains of Escherichia coli, possibly because of a codon usage problem. To solve this problem, a chemically modified (i.e., de novo synthesized) gene was designed and cloned into the pCold-GST expression vector, and transformed into E. coli strain C41 (DE3), in which codon usage was universally optimized to efficiently express the polypeptide having the viral MCP amino acid sequence. The bacterially expressed protein, which was purified after a procedure involving denaturation and refolding, successfully formed virus-like particles that significantly resembled native HcRNAV particles. The purified, denatured protein was used as an antigen to immunize rabbits, and the resulting antiserum was shown to be strongly reactive to not only the bacterially expressed recombinant protein, but also to native HcRNAV MCP by Western blotting and dot immunoassays, respectively. These results indicate that an antiserum recognizing native HcRNAV MCP was successfully obtained using bacterially expressed HcRNAV MCP as the antigen.
Collapse
Affiliation(s)
- Kei Wada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560–0043, Japan
| | | | | | | | | |
Collapse
|
23
|
Unique nucleocytoplasmic dsDNA and +ssRNA viruses are associated with the dinoflagellate endosymbionts of corals. ISME JOURNAL 2012; 7:13-27. [PMID: 22791238 DOI: 10.1038/ismej.2012.75] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The residence of dinoflagellate algae (genus: Symbiodinium) within scleractinian corals is critical to the construction and persistence of tropical reefs. In recent decades, however, acute and chronic environmental stressors have frequently destabilized this symbiosis, ultimately leading to coral mortality and reef decline. Viral infection has been suggested as a trigger of coral-Symbiodinium dissociation; knowledge of the diversity and hosts of coral-associated viruses is critical to evaluating this hypothesis. Here, we present the first genomic evidence of viruses associated with Symbiodinium, based on the presence of transcribed +ss (single-stranded) RNA and ds (double-stranded) DNA virus-like genes in complementary DNA viromes of the coral Montastraea cavernosa and expressed sequence tag (EST) libraries generated from Symbiodinium cultures. The M. cavernosa viromes contained divergent viral sequences similar to the major capsid protein of the dinoflagellate-infecting +ssRNA Heterocapsa circularisquama virus, suggesting a highly novel dinornavirus could infect Symbiodinium. Further, similarities to dsDNA viruses dominated (∼69%) eukaryotic viral similarities in the M. cavernosa viromes. Transcripts highly similar to eukaryotic algae-infecting phycodnaviruses were identified in the viromes, and homologs to these sequences were found in two independently generated Symbiodinium EST libraries. Phylogenetic reconstructions substantiate that these transcripts are undescribed and distinct members of the nucleocytoplasmic large DNA virus (NCLDVs) group. Based on a preponderance of evidence, we infer that the novel NCLDVs and RNA virus described here are associated with the algal endosymbionts of corals. If such viruses disrupt Symbiodinium, they are likely to impact the flexibility and/or stability of coral-algal symbioses, and thus long-term reef health and resilience.
Collapse
|
24
|
Expression and self-assembly of Heterocapsa circularisquama RNA virus-like particles synthesized in Pichia pastoris. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5125-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Prasinoviruses of the marine green alga Ostreococcus tauri are mainly species specific. J Virol 2012; 86:4611-9. [PMID: 22318150 DOI: 10.1128/jvi.07221-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prasinoviruses infecting unicellular green algae in the order Mamiellales (class Mamiellophyceae) are commonly found in coastal marine waters where their host species frequently abound. We tested 40 Ostreococcus tauri viruses on 13 independently isolated wild-type O. tauri strains, 4 wild-type O. lucimarinus strains, 1 Ostreococcus sp. ("Ostreococcus mediterraneus") clade D strain, and 1 representative species of each of two other related species of Mamiellales, Bathycoccus prasinos and Micromonas pusilla. Thirty-four out of 40 viruses infected only O. tauri, 5 could infect one other species of the Ostreococcus genus, and 1 infected two other Ostreococcus spp., but none of them infected the other genera. We observed that the overall susceptibility pattern of Ostreococcus strains to viruses was related to the size of two host chromosomes known to show intraspecific size variations, that genetically related viruses tended to infect the same host strains, and that viruses carrying inteins were strictly strain specific. Comparison of two complete O. tauri virus proteomes revealed at least three predicted proteins to be candidate viral specificity determinants.
Collapse
|
26
|
A chemical arms race at sea mediates algal host–virus interactions. Curr Opin Microbiol 2011; 14:449-57. [PMID: 21816665 DOI: 10.1016/j.mib.2011.07.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/05/2011] [Indexed: 01/28/2023]
|
27
|
Miller JL, Woodward J, Chen S, Jaffer M, Weber B, Nagasaki K, Tomaru Y, Wepf R, Roseman A, Varsani A, Sewell T. Three-dimensional reconstruction of Heterocapsa circularisquama RNA virus by electron cryo-microscopy. J Gen Virol 2011; 92:1960-1970. [PMID: 21562120 DOI: 10.1099/vir.0.031211-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Heterocapsa circularisquama RNA virus is a non-enveloped icosahedral ssRNA virus infectious to the harmful bloom-forming dinoflagellate, H. circularisquama, and which is assumed to be the major natural agent controlling the host population. The viral capsid is constructed from a single gene product. Electron cryo-microscopy revealed that the virus has a diameter of 34 nm and T = 3 symmetry. The 180 quasi-equivalent monomers have an unusual arrangement in that each monomer contributes to a 'bump' on the surface of the protein. Though the capsid protein probably has the classic 'jelly roll' β-sandwich fold, this is a new packing arrangement and is distantly related to the other positive-sense ssRNA virus capsid proteins. The handedness of the structure has been determined by a novel method involving high resolution scanning electron microscopy of the negatively stained viruses and secondary electron detection.
Collapse
Affiliation(s)
- Jennifer L Miller
- Electron Microscope Unit, Division of Medical Biochemistry, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Jeremy Woodward
- Electron Microscope Unit, Division of Medical Biochemistry, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Shaoxia Chen
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | - Mohammed Jaffer
- Electron Microscope Unit, Division of Medical Biochemistry, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Brandon Weber
- Electron Microscope Unit, Division of Medical Biochemistry, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Keizo Nagasaki
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Hiroshima 739-0452, Japan
| | - Yuji Tomaru
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Hiroshima 739-0452, Japan
| | - Roger Wepf
- Electron Microscopy ETH Zurich (EMEZ), 8093 Zurich, Switzerland
| | - Alan Roseman
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.,Electron Microscope Unit, Division of Medical Biochemistry, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Trevor Sewell
- Electron Microscope Unit, Division of Medical Biochemistry, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
28
|
Dittmar T, Zänker KS. Horizontal gene transfers with or without cell fusions in all categories of the living matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:5-89. [PMID: 21506007 PMCID: PMC7120942 DOI: 10.1007/978-94-007-0782-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.
Collapse
Affiliation(s)
- Thomas Dittmar
- Inst. Immunologie, Universität Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| | - Kurt S. Zänker
- Institute of Immunologie, University of Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| |
Collapse
|
29
|
|
30
|
Kristensen DM, Mushegian AR, Dolja VV, Koonin EV. New dimensions of the virus world discovered through metagenomics. Trends Microbiol 2010; 18:11-9. [PMID: 19942437 PMCID: PMC3293453 DOI: 10.1016/j.tim.2009.11.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 10/27/2009] [Accepted: 11/05/2009] [Indexed: 01/21/2023]
Abstract
Metagenomic analysis of viruses suggests novel patterns of evolution, changes the existing ideas of the composition of the virus world and reveals novel groups of viruses and virus-like agents. The gene composition of the marine DNA virome is dramatically different from that of known bacteriophages. The virome is dominated by rare genes, many of which might be contained within virus-like entities such as gene transfer agents. Analysis of marine metagenomes thought to consist mostly of bacterial genes revealed a variety of sequences homologous to conserved genes of eukaryotic nucleocytoplasmic large DNA viruses, resulting in the discovery of diverse members of previously undersampled groups and suggesting the existence of new classes of virus-like agents. Unexpectedly, metagenomics of marine RNA viruses showed that representatives of only one superfamily of eukaryotic viruses, the picorna-like viruses, dominate the RNA virome.
Collapse
|
31
|
Nagasaki K, Tomaru Y. [Recent progress in protist virology--molecular ecology, taxonomy, molecular evolution]. Uirusu 2009; 59:31-36. [PMID: 19927986 DOI: 10.2222/jsv.59.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
At present, more than 40 protist-infecting viruses have been isolated and characterized. From the viewpoints of molecular ecology, taxomony and molecular evolution, several new discoveries were made within the last five years. In this minireview, three topics of interest on protist-infecting viruses are introduced: 1) molecular ecological relationships between a bloom-forming dinoflagellate Heterocapsa circularisquama and its ssRNA virus (HcRNAV); 2) findings of new ssRNA- and ssDNA-virus groups infecting diatoms; 3) establishment of a hypothesis concerning the evolution of picornaviruses. The potential of aquatic virus studies is far-reaching and inestimable.
Collapse
Affiliation(s)
- Keizo Nagasaki
- Natl. Res. Inst. Fish. Environ. Inland Sea, Fisheries Research Agency.
| | | |
Collapse
|
32
|
Abstract
Viruses are ubiquitous in the sea and appear to outnumber all other forms of marine life by at least an order of magnitude. Through selective infection, viruses influence nutrient cycling, community structure, and evolution in the ocean. Over the past 20 years we have learned a great deal about the diversity and ecology of the viruses that constitute the marine virioplankton, but until recently the emphasis has been on DNA viruses. Along with expanding knowledge about RNA viruses that infect important marine animals, recent isolations of RNA viruses that infect single-celled eukaryotes and molecular analyses of the RNA virioplankton have revealed that marine RNA viruses are novel, widespread, and genetically diverse. Discoveries in marine RNA virology are broadening our understanding of the biology, ecology, and evolution of viruses, and the epidemiology of viral diseases, but there is still much that we need to learn about the ecology and diversity of RNA viruses before we can fully appreciate their contributions to the dynamics of marine ecosystems. As a step toward making sense of how RNA viruses contribute to the extraordinary viral diversity in the sea, we summarize in this review what is currently known about RNA viruses that infect marine organisms.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada.
| | | | | | | |
Collapse
|
33
|
Koonin EV, Wolf YI, Nagasaki K, Dolja VV. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nat Rev Microbiol 2008; 6:925-39. [PMID: 18997823 DOI: 10.1038/nrmicro2030] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent discovery of RNA viruses in diverse unicellular eukaryotes and developments in evolutionary genomics have provided the means for addressing the origin of eukaryotic RNA viruses. The phylogenetic analyses of RNA polymerases and helicases presented in this Analysis article reveal close evolutionary relationships between RNA viruses infecting hosts from the Chromalveolate and Excavate supergroups and distinct families of picorna-like viruses of plants and animals. Thus, diversification of picorna-like viruses probably occurred in a 'Big Bang' concomitant with key events of eukaryogenesis. The origins of the conserved genes of picorna-like viruses are traced to likely ancestors including bacterial group II retroelements, the family of HtrA proteases and DNA bacteriophages.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | | | | | |
Collapse
|
34
|
Dinoflagellates, diatoms, and their viruses. J Microbiol 2008; 46:235-43. [PMID: 18604491 DOI: 10.1007/s12275-008-0098-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 03/20/2008] [Indexed: 10/21/2022]
Abstract
Since the first discovery of the very high virus abundance in marine environments, a number of researchers were fascinated with the world of "marine viruses", which had previously been mostly overlooked in studies on marine ecosystems. In the present paper, the possible role of viruses infecting marine eukaryotic microalgae is enlightened, especially summarizing the most up-to-the-minute information of marine viruses infecting bloom-forming dinoflagellates and diatoms. To author's knowledge, approximately 40 viruses infecting marine eukaryotic algae have been isolated and characterized to different extents. Among them, a double-stranded DNA (dsDNA) virus "HcV" and a single-stranded RNA (ssRNA) virus "HcRNAV" are the only dinoflagellate-infecting (lytic) viruses that were made into culture; their hosts are a bivalve-killing dinoflagellate Heterocapsa circularisquama. In this article, ecological relationship between H. circularisquama and its viruses is focused. On the other hand, several diatom-infecting viruses were recently isolated and partially characterized; among them, one is infectious to a pen-shaped bloom-forming diatom species Rhizosolenia setigera; some viruses are infectious to genus Chaetoceros which is one of the most abundant and diverse diatom group. Although the ecological relationships between diatoms and their viruses have not been sufficiently elucidated, viral infection is considered to be one of the significant factors affecting dynamics of diatoms in nature. Besides, both the dinoflagellate-infecting viruses and diatom-infecting viruses are so unique from the viewpoint of virus taxonomy; they are remarkably different from any other viruses ever reported. Studies on these viruses lead to an idea that ocean may be a treasury of novel viruses equipped with fascinating functions and ecological roles.
Collapse
|
35
|
Isolation and characterization of a single-stranded RNA virus infecting the marine planktonic diatom Chaetoceros tenuissimus Meunier. Appl Environ Microbiol 2008; 74:4022-7. [PMID: 18469125 DOI: 10.1128/aem.00509-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diatoms are important components of the biological community and food web in the aquatic environment. Here, we report the characteristics of a single-stranded RNA (ssRNA) virus (CtenRNAV01) that infects the marine diatom Chaetoceros tenuissimus Meunier (Bacillariophyceae). The ca. 31-nm virus particle is icosahedral and lacks a tail. CtenRNAV01 forms crystalline arrays occupying most of the infected host's cytoplasm. By growth experiments, the lytic cycle and the burst size were estimated to be <24 h and approximately 1 x 10(4) infectious units per host cell, respectively. Stationary-phase C. tenuissimus cultures were shown to be more sensitive to CtenRNAV01 than logarithmic-phase cultures. The most noticeable feature of this virus is its exceptionally high yields of approximately 10(10) infectious units ml(-1); this is much higher than those of any other algal viruses previously characterized. CtenRNAV01 has two molecules of ssRNA of approximately 8.9 and 4.3 kb and three major proteins (33.5, 31.5, and 30.0 kDa). Sequencing of the total viral genome has produced only one large contig [9,431 bases excluding the poly(A) tail], suggesting considerable overlapping between the two RNA molecules. The monophyly of CtenRNAV01 compared to another diatom-infecting virus, Rhizosolenia setigera RNA virus, was strongly supported in a maximum likelihood phylogenetic tree constructed based on the concatenated amino acid sequences of the RNA-dependent RNA polymerase domains. Although further analysis is required to determine the detailed classification and nomenclature of this virus, these data strongly suggest the existence of a diatom-infecting ssRNA virus group in natural waters.
Collapse
|
36
|
Diverse responses of the bivalve-killing dinoflagellate Heterocapsa circularisquama to infection by a single-stranded RNA virus. Appl Environ Microbiol 2008; 74:3105-11. [PMID: 18359824 DOI: 10.1128/aem.02190-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses are believed to be significant pathogens for phytoplankton. Usually, they infect a single algal species, and often their infection is highly strain specific. However, the detailed molecular background of the strain specificity and its ecological significance have not been sufficiently understood. Here, we investigated the temporal changes in viral RNA accumulation and virus-induced cell lysis using a bloom-forming dinoflagellate Heterocapsa circularisquama and its single-stranded RNA virus, HcRNAV. We observed at least three host response patterns to virus inoculation: sensitive, resistant, and delayed lysis. In the sensitive response, the host cell culture was permissive for viral RNA replication and apparent cell lysis was observed; in contrast, resistant cell culture was nonpermissive for viral RNA replication and not lysed. In the delayed-lysis response, although viral RNA replication occurred, virus-induced cell lysis was faint and remarkably delayed. In addition, the number of infectious virus particles released to the culture supernatant at 12 days postinoculation was comparable to that of the sensitive strain. By further analysis, a few strains were characterized as variants of the delayed-lysis strain. These observations indicate that the response of H. circularisquama to HcRNAV infection is highly diverse.
Collapse
|
37
|
Tomaru Y, Hata N, Masuda T, Tsuji M, Igata K, Masuda Y, Yamatogi T, Sakaguchi M, Nagasaki K. Ecological dynamics of the bivalve-killing dinoflagellate Heterocapsa circularisquama and its infectious viruses in different locations of western Japan. Environ Microbiol 2007; 9:1376-83. [PMID: 17504475 DOI: 10.1111/j.1462-2920.2007.01252.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the ecological relationships between the bloom-forming dinoflagellate Heterocapsa circularisquama and its infectious viruses in field surveys conducted in western Japan. The occurrence of H. circularisquama blooms in Imari Bay during 2002 and in Ago Bay during 2002 and 2004 was accompanied by specific increase in abundance of viruses lytic to H. circularisquama. Using northern dot-blot analysis, approximately 96% of the clonal virus isolates collected in the field surveys positively reacted with a molecular probe specific for HcRNAV (H. circularisquama RNA virus); hence, viral impacts on H. circularisquama population observed in these field surveys are considered largely due to HcRNAV and/or its closely related viruses. The dynamics of type UA viruses and type CY viruses having complementary host ranges to H. circularisquama clones were different in each survey and considered to reflect fluctuations in abundance of their suitable host cells in situ. The dynamics of H. circularisquama and its viruses in Ago Bay from 2002 to 2004 suggests the concentration of HcRNAV in the sediment prior to the host's blooming season is a significant factor in determining the size and length of the H. circularisquama blooms. These results support the hypothesis that HcRNAV infection is one of the significant factors affecting the population dynamics of H. circularisquama in both quantity (biomass) and quality (clonal composition).
Collapse
Affiliation(s)
- Yuji Tomaru
- National Research Institute of Fisheries and Environment of Inland Sea, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Takashima Y, Yoshida T, Yoshida M, Shirai Y, Tomaru Y, Takao Y, Hiroishi S, Nagasaki K. Development and Application of Quantitative Detection of Cyanophages Phylogenetically Related to Cyanophage Ma-LMM01 Infecting Microcystis aeruginosa in Fresh Water. Microbes Environ 2007. [DOI: 10.1264/jsme2.22.207] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Takashi Yoshida
- Department of Marine Bioscience, Fukui Prefectural University
| | | | - Yoko Shirai
- Harmful Algal Bloom Division, National Research Institute of Fisheries and Environments of Inland Sea, Fisheries Research Agency
| | - Yuji Tomaru
- Harmful Algal Bloom Division, National Research Institute of Fisheries and Environments of Inland Sea, Fisheries Research Agency
| | - Yoshitake Takao
- Harmful Algal Bloom Division, National Research Institute of Fisheries and Environments of Inland Sea, Fisheries Research Agency
| | - Shingo Hiroishi
- Department of Marine Bioscience, Fukui Prefectural University
| | - Keizo Nagasaki
- Harmful Algal Bloom Division, National Research Institute of Fisheries and Environments of Inland Sea, Fisheries Research Agency
| |
Collapse
|
39
|
Martelli GP, Adams MJ, Kreuze JF, Dolja VV. Family Flexiviridae: a case study in virion and genome plasticity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:73-100. [PMID: 17362202 DOI: 10.1146/annurev.phyto.45.062806.094401] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The plant virus family Flexiviridae includes the definitive genera Potexvirus, Mandarivirus, Allexivirus, Carlavirus, Foveavirus, Capillovirus, Vitivirus, Trichovirus, the putative genus Citrivirus, and some unassigned species. Its establishment was based on similarities in virion morphology, common features in genome type and organization, and strong phylogenetic relationships between replicational and structural proteins. In this review, we provide a brief account of the main biological and molecular properties of the members of the family, with special emphasis on the relationships within and among the genera. In phylogenetic analyses the potexvirus-like replicases were more closely related to tymoviruses than to carlaviruses. We postulate a common evolutionary ancestor for the family Tymoviridae and the two distinct evolutionary clusters of the Flexiviridae, i.e., a plant virus with a polyadenylated genome, filamentous virions, and a triple gene block of movement proteins. Subsequent recombination and gene loss would then have generated a very diverse group of plant and fungal viruses.
Collapse
Affiliation(s)
- Giovanni P Martelli
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia vegetale CNR, Sezione di Bari, 70126 Bari, Italy.
| | | | | | | |
Collapse
|
40
|
Mizumoto H, Tomaru Y, Takao Y, Shirai Y, Nagasaki K. Intraspecies host specificity of a single-stranded RNA virus infecting a marine photosynthetic protist is determined at the early steps of infection. J Virol 2006; 81:1372-8. [PMID: 17108022 PMCID: PMC1797505 DOI: 10.1128/jvi.01082-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses are extremely abundant in seawater and are believed to be significant pathogens to photosynthetic protists (microalgae). Recently, several novel RNA viruses were found to infect marine photosynthetic protists; one of them is HcRNAV, which infects Heterocapsa circularisquama (Dinophyceae). There are two distinct ecotypes of HcRNAV with complementary intraspecies host ranges. Nucleotide sequence comparison between them revealed remarkable differences in the coat protein coding gene resulting in a high frequency of amino acid substitutions. However, the detailed mechanism supporting this intraspecies host specificity is still unknown. In this study, virus inoculation experiments were conducted with compatible and incompatible host-virus combinations to investigate the mechanism determining intraspecies host specificity. Cells were infected by adding a virus suspension directly to a host culture or by transfecting viral RNA into host cells by particle bombardment. Virus propagation was monitored by Northern blot analysis with a negative-strand-specific RNA probe, transmission electron microscopy, and a cell lysis assay. With compatible host-virus combinations, propagation of infectious progeny occurred regardless of the inoculation method used. When incompatible combinations were used, direct addition of a virus suspension did not even result in viral RNA replication, while in host cells transfected with viral RNA, infective progeny virus particles with a host range encoded by the imported viral RNA were propagated. This indicates that the intraspecies host specificity of HcRNAV is determined by the upstream events of virus infection. This is the first report describing the reproductive steps of an RNA virus infecting a photosynthetic protist at the molecular level.
Collapse
Affiliation(s)
- Hiroyuki Mizumoto
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | | | | | | | | |
Collapse
|
41
|
Abstract
RNA viruses infect marine organisms from bacteria to whales, but RNA virus communities in the sea remain essentially unknown. Reverse-transcribed whole-genome shotgun sequencing was used to characterize the diversity of uncultivated marine RNA virus assemblages. A diverse assemblage of RNA viruses, including a broad group of marine picorna-like viruses, and distant relatives of viruses infecting arthropods and higher plants were found. Communities were dominated by distinct genotypes with small genome sizes, and we completely assembled the genomes of several hitherto undiscovered viruses. Our results show that the oceans are a reservoir of previously unknown RNA viruses.
Collapse
Affiliation(s)
- Alexander I Culley
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | | | | |
Collapse
|