1
|
Kushkevych I, Hýžová B, Vítězová M, Rittmann SKMR. Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats. Int J Mol Sci 2021; 22:4007. [PMID: 33924516 PMCID: PMC8069399 DOI: 10.3390/ijms22084007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/01/2022] Open
Abstract
This paper is devoted to microscopic methods for the identification of sulfate-reducing bacteria (SRB). In this context, it describes various habitats, morphology and techniques used for the detection and identification of this very heterogeneous group of anaerobic microorganisms. SRB are present in almost every habitat on Earth, including freshwater and marine water, soils, sediments or animals. In the oil, water and gas industries, they can cause considerable economic losses due to their hydrogen sulfide production; in periodontal lesions and the colon of humans, they can cause health complications. Although the role of these bacteria in inflammatory bowel diseases is not entirely known yet, their presence is increased in patients and produced hydrogen sulfide has a cytotoxic effect. For these reasons, methods for the detection of these microorganisms were described. Apart from selected molecular techniques, including metagenomics, fluorescence microscopy was one of the applied methods. Especially fluorescence in situ hybridization (FISH) in various modifications was described. This method enables visual identification of SRB, determining their abundance and spatial distribution in environmental biofilms and gut samples.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (B.H.); (M.V.)
| | - Blanka Hýžová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (B.H.); (M.V.)
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (B.H.); (M.V.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Wien, Austria
| |
Collapse
|
2
|
Gryta A, Frąc M. Methodological Aspects of Multiplex Terminal Restriction Fragment Length Polymorphism-Technique to Describe the Genetic Diversity of Soil Bacteria, Archaea and Fungi. SENSORS 2020; 20:s20113292. [PMID: 32527006 PMCID: PMC7309186 DOI: 10.3390/s20113292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 01/24/2023]
Abstract
The molecular fingerprinting methods used to evaluate soil microbial diversity could also be used as effective biosensors for the purposes of monitoring ecological soil status. The biodiversity of microorganisms is a relevant index of soil activity and there is a necessity to develop tools to generate reliable results for an emerging approach in the field of environmental control using microbial diversity biosensors. This work reports a method under development for determining soil microbial diversity using high efficiency Multiplex PCR-Terminal Restriction Fragment Length Polymorphism (M-T-RFLP) for the simultaneous detection of bacteria, archaea and fungi. Three different primer sets were used in the reaction and the analytical conditions were optimized. Optimal analytical conditions were achieved using 0.5 µM of primer for bacteria and 1 µM for archaea and fungi, 4 ng of soil DNA template, and HaeIII restriction enzyme. Comparative tests using the proposed analytical approach and a single analysis of each microorganism group were carried out to indicate that both genetic profiles were similar. The Jaccard similarity coefficient between single and multiplexing approach ranged from 0.773 to 0.850 for bacteria and fungi, and 0.208 to 0.905 for archaea. In conclusion, the multiplexing and pooling approaches significantly reduced the costs and time required to perform the analyses, while maintaining a proper effectiveness.
Collapse
|
3
|
De Anda V, Zapata-Peñasco I, Poot-Hernandez AC, Eguiarte LE, Contreras-Moreira B, Souza V. MEBS, a software platform to evaluate large (meta)genomic collections according to their metabolic machinery: unraveling the sulfur cycle. Gigascience 2018; 6:1-17. [PMID: 29069412 PMCID: PMC5737871 DOI: 10.1093/gigascience/gix096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/01/2017] [Indexed: 01/30/2023] Open
Abstract
The increasing number of metagenomic and genomic sequences has dramatically improved our understanding of microbial diversity, yet our ability to infer metabolic capabilities in such datasets remains challenging. We describe the Multigenomic Entropy Based Score pipeline (MEBS), a software platform designed to evaluate, compare, and infer complex metabolic pathways in large “omic” datasets, including entire biogeochemical cycles. MEBS is open source and available through https://github.com/eead-csic-compbio/metagenome_Pfam_score. To demonstrate its use, we modeled the sulfur cycle by exhaustively curating the molecular and ecological elements involved (compounds, genes, metabolic pathways, and microbial taxa). This information was reduced to a collection of 112 characteristic Pfam protein domains and a list of complete-sequenced sulfur genomes. Using the mathematical framework of relative entropy (H΄), we quantitatively measured the enrichment of these domains among sulfur genomes. The entropy of each domain was used both to build up a final score that indicates whether a (meta)genomic sample contains the metabolic machinery of interest and to propose marker domains in metagenomic sequences such as DsrC (PF04358). MEBS was benchmarked with a dataset of 2107 non-redundant microbial genomes from RefSeq and 935 metagenomes from MG-RAST. Its performance, reproducibility, and robustness were evaluated using several approaches, including random sampling, linear regression models, receiver operator characteristic plots, and the area under the curve metric (AUC). Our results support the broad applicability of this algorithm to accurately classify (AUC = 0.985) hard-to-culture genomes (e.g., Candidatus Desulforudis audaxviator), previously characterized ones, and metagenomic environments such as hydrothermal vents, or deep-sea sediment. Our benchmark indicates that an entropy-based score can capture the metabolic machinery of interest and can be used to efficiently classify large genomic and metagenomic datasets, including uncultivated/unexplored taxa.
Collapse
Affiliation(s)
- Valerie De Anda
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, 70-275, Coyoacán 04510, D.F., México
| | - Icoquih Zapata-Peñasco
- Dirección de Investigación en Transformación de Hidrocarburos, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas, Norte 152, Col. San Bartolo Atepehuacan, 07730, México
| | - Augusto Cesar Poot-Hernandez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización. Sección de Ingeniería de Sistemas Computacionales. Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas. Circuito Escolar 3000, Cd. Universitaria, 04510 Ciudad de México
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, 70-275, Coyoacán 04510, D.F., México
| | - Bruno Contreras-Moreira
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda. Montañana, 1005, Zaragoza 50059, Spain.,Fundación ARAID, calle María de Luna 11, 50018 Zaragoza, Spain
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, 70-275, Coyoacán 04510, D.F., México
| |
Collapse
|
4
|
St-Pierre B, Wright ADG. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H 2S production during anaerobic digestion of animal slurry. Appl Microbiol Biotechnol 2017; 101:5543-5556. [PMID: 28389712 DOI: 10.1007/s00253-017-8261-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 12/11/2022]
Abstract
Biogas produced from the anaerobic digestion of animal slurry consists mainly of methane (CH4) and carbon dioxide (CO2), but also includes other minor gases, such as hydrogen sulfide (H2S). Since it can act as a potent corrosive agent and presents a health hazard even at low concentrations, H2S is considered an undesirable by-product of anaerobic digestion. Sulfate-reducing bacteria (SRBs) have been identified as the main biological source of H2S in a number of natural, biological, and human-made habitats, and thus represent likely candidate microorganisms responsible for the production of H2S in anaerobic manure digesters. Phylogenetically, SRBs form a divergent group of bacteria that share a common anaerobic respiration pathway that allows them to use sulfate as a terminal electron acceptor. While the composition and activity of SRBs have been well documented in other environments, their metabolic potential remains largely uncharacterized and their populations poorly defined in anaerobic manure digesters. In this context, a combination of in vitro culture-based studies and DNA-based approaches, respectively, were used to gain further insight. Unexpectedly, only low to nondetectable levels of H2S were produced by digestate collected from a manure biogas plant documented to have persistently high concentrations of H2S in its biogas (2000-3000 ppm). In contrast, combining digestate with untreated manure (a substrate with comparatively lower sulfate and SRB cell densities than digestate) was found to produce elevated H2S levels in culture. While a 16S rRNA gene-based community composition approach did not reveal likely candidate SRBs in digestate or untreated manure, the use of the dsrAB gene as a phylogenetic marker provided more insight. In digestate, the predominant SRBs were found to be uncharacterized species likely belonging to the genus Desulfosporosinus (Peptococcaceae, Clostridiales, Firmicutes), while Desulfovibrio-related SRBs (Desulfovibrionaceae, Desulfovibrionales, Proteobacteria) were the most highly represented in untreated manure. Intriguingly, the same species-level OTUs with a similar pattern of opposite relative abundance were also found in two other digesters with lower H2S levels in their biogas. Together, our results suggest that elevated H2S production in anaerobic digesters requires the combination of biological and nutritional factors from both untreated manure and digestate.
Collapse
Affiliation(s)
- Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD, 57007, USA.
| | - André-Denis G Wright
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ, 85721, USA
| |
Collapse
|
5
|
Zhang P, He Z, Van Nostrand JD, Qin Y, Deng Y, Wu L, Tu Q, Wang J, Schadt CW, W Fields M, Hazen TC, Arkin AP, Stahl DA, Zhou J. Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3609-3620. [PMID: 28300407 DOI: 10.1021/acs.est.6b02980] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To further understand the diversity and dynamics of SRB in response to substrate amendment, we sequenced genes coding for the dissimilatory sulfite reductase (dsrA) in groundwater samples collected after an emulsified vegetable oil (EVO) amendment, which sustained U(VI)-reducing conditions for one year in a fast-flowing aquifer. EVO amendment significantly altered the composition of groundwater SRB communities. Sequences having no closely related-described species dominated (80%) the indigenous SRB communities in nonamended wells. After EVO amendment, Desulfococcus, Desulfobacterium, and Desulfovibrio, known for long-chain-fatty-acid, short-chain-fatty-acid and H2 oxidation and U(VI) reduction, became dominant accounting for 7 ± 2%, 21 ± 8%, and 55 ± 8% of the SRB communities, respectively. Succession of these SRB at different bioactivity stages based on redox substrates/products (acetate, SO4-2, U(VI), NO3-, Fe(II), and Mn(II)) was observed. Desulfovibrio and Desulfococcus dominated SRB communities at 4-31 days, whereas Desulfobacterium became dominant at 80-140 days. By the end of the experiment (day 269), the abundance of these SRB decreased but the overall diversity of groundwater SRB was still higher than non-EVO controls. Up to 62% of the SRB community changes could be explained by groundwater geochemical variables, including those redox substrates/products. A significant (P < 0.001) correlation was observed between groundwater U(VI) concentrations and Desulfovibrio abundance. Our results showed that the members of SRB and their dynamics were correlated significantly with slow EVO biodegradation, electron donor production and maintenance of U(VI)-reducing conditions in the aquifer.
Collapse
Affiliation(s)
- Ping Zhang
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Zhili He
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Yujia Qin
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Ye Deng
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China
| | - Liyou Wu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Qichao Tu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- Department of Marine Sciences, Ocean College, Zhejiang University , Zhejiang, China
| | - Jianjun Wang
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , Nanjing 210008, China
| | - Christopher W Schadt
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University , Bozeman, Montana 59717, United States
| | - Terry C Hazen
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Adam P Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington , Seattle, Washington 98105, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing 100084, China
| |
Collapse
|
6
|
Zhao F, Qin YH, Zheng X, Zhao HW, Chai DY, Li W, Pu MX, Zuo XS, Qian W, Ni P, Zhang Y, Mei H, He ST. Biogeography and Adaptive evolution of Streptomyces Strains from saline environments. Sci Rep 2016; 6:32718. [PMID: 27596681 PMCID: PMC5011734 DOI: 10.1038/srep32718] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/15/2016] [Indexed: 12/23/2022] Open
Abstract
The genus Streptomyces is a widespread genus within the phylum Actinobacteria and has been isolated from various environments worldwide. However, little is known about whether biogeography affects distributional pattern of Streptomyces in salty environments. Such information is essential for understanding the ecology of Streptomyces. Here we analyzed four house-keeping genes (16S rRNA, rpoB, recA and atpD) and salty-tolerance related genes (ectA-ectD) of 38 Streptomyces strains isolated from saline environments in Yunnan and Xinjiang Provinces of western China. The obtained Streptomyces strains were classified into three operational taxonomic units, each comprising habitat-specific geno- and ecotype STs. In combination with expressional variations of salty-tolerance related genes, the statistical analyses showed that spatial distance and environmental factors substantially influenced Streptomyces distribution in saline environments: the former had stronger influence at large spatial scales (>700 km), whereas the latter was influential at large (>700 km) and small spatial scales (<700 km). Plus, the quantitative analyses of salty-tolerence related genes (ectA-D) indicated that Streptomyces strains from salt lakes have higher expression of ectA-D genes and could accumulate larger quantities of ectoine and hydroxyectoine than strains from salt mines, which could help them resist to salinity in the hypersaline environments.
Collapse
Affiliation(s)
- Fei Zhao
- Pharmaceutical deparment, Henan Province People's Hospital, No.7, Wei Wu Road, Zhengzhou, Henan, 450003, China
| | - Yu-Hua Qin
- Pharmaceutical deparment, Henan Province People's Hospital, No.7, Wei Wu Road, Zhengzhou, Henan, 450003, China
| | - Xin Zheng
- Yunnan WALVAX Biotechnology Co., Ltd, Kunming, 650106, China
| | - Hong-Wei Zhao
- Pharmaceutical deparment, Henan Province People's Hospital, No.7, Wei Wu Road, Zhengzhou, Henan, 450003, China
| | - Dong-Yan Chai
- Pharmaceutical deparment, Henan Province People's Hospital, No.7, Wei Wu Road, Zhengzhou, Henan, 450003, China
| | - Wei Li
- Yuxi WALVAX Biotechnology Co., Ltd, Kunming, 653100, China
| | - Ming-Xiang Pu
- Yunnan WALVAX Biotechnology Co., Ltd, Kunming, 650106, China
| | - Xing-Sheng Zuo
- Pharmaceutical deparment, Henan Province People's Hospital, No.7, Wei Wu Road, Zhengzhou, Henan, 450003, China
| | - Wen Qian
- Yunnan WALVAX Biotechnology Co., Ltd, Kunming, 650106, China
| | - Ping Ni
- Yunnan WALVAX Biotechnology Co., Ltd, Kunming, 650106, China
| | - Yong Zhang
- Eryuan No. one high school, Dali Bai nationality Prefecture, 671202, China
| | - Han Mei
- Yunnan Weather Modification Center, Kunming, 650034, China
| | - Song-Tao He
- Pharmaceutical deparment, Henan Province People's Hospital, No.7, Wei Wu Road, Zhengzhou, Henan, 450003, China.,Yunnan WALVAX Biotechnology Co., Ltd, Kunming, 650106, China.,Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, China
| |
Collapse
|
7
|
Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river. Sci Rep 2015; 5:17284. [PMID: 26607034 PMCID: PMC4660315 DOI: 10.1038/srep17284] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/28/2015] [Indexed: 01/18/2023] Open
Abstract
The impact of the installation of a technologically advanced wastewater treatment plant (WWTP) on the benthic microbial community of a vinyl chloride (VC) impacted eutrophic river was examined two years before, and three and four years after installation of the WWTP. Reduced dissolved organic carbon and increased dissolved oxygen concentrations in surface water and reduced total organic carbon and total nitrogen content in the sediment were recorded in the post-WWTP samples. Pyrosequencing of bacterial 16S rRNA gene fragments in sediment cores showed reduced relative abundance of heterotrophs and fermenters such as Chloroflexi and Firmicutes in more oxic and nutrient poor post-WWTP sediments. Similarly, quantitative PCR analysis showed 1–3 orders of magnitude reduction in phylogenetic and functional genes of sulphate reducers, denitrifiers, ammonium oxidizers, methanogens and VC-respiring Dehalococcoides mccartyi. In contrast, members of Proteobacteria adapted to nutrient-poor conditions were enriched in post-WWTP samples. This transition in the trophic state of the hyporheic sediments reduced but did not abolish the VC respiration potential in the post-WWTP sediments as an important hyporheic sediment function. Our results highlight effective nutrient load reduction and parallel microbial ecological state restoration of a human-stressed urban river as a result of installation of a WWTP.
Collapse
|
8
|
Zhang P, Van Nostrand JD, He Z, Chakraborty R, Deng Y, Curtis D, Fields MW, Hazen TC, Arkin AP, Zhou J. A Slow-Release Substrate Stimulates Groundwater Microbial Communities for Long-Term in Situ Cr(VI) Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12922-12931. [PMID: 25835088 DOI: 10.1021/acs.est.5b00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cr(VI) is a widespread environmental contaminant that is highly toxic and soluble. Previous work indicated that a one-time amendment of polylactate hydrogen-release compound (HRC) reduced groundwater Cr(VI) concentrations for >3.5 years at a contaminated aquifer; however, microbial communities responsible for Cr(VI) reduction are poorly understood. In this study, we hypothesized that HRC amendment would significantly change the composition and structure of groundwater microbial communities, and that the abundance of key functional genes involved in HRC degradation and electron acceptor reduction would increase long-term in response to this slowly degrading, complex substrate. To test these hypotheses, groundwater microbial communities were monitored after HRC amendment for >1 year using a comprehensive functional gene microarray. The results showed that the overall functional composition and structure of groundwater microbial communities underwent sequential shifts after HRC amendment. Particularly, the abundance of functional genes involved in acetate oxidation, denitrification, dissimilatory nitrate reduction, metal reduction, and sulfate reduction significantly increased. The overall community dynamics was significantly correlated with changes in groundwater concentrations of microbial biomass, acetate, NO3-, Cr(VI), Fe(II) and SO4(2-). Our results suggest that HRC amendment primarily stimulated key functional processes associated with HRC degradation and reduction of multiple electron acceptors in the aquifer toward long-term Cr(VI) reduction.
Collapse
Affiliation(s)
- Ping Zhang
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Zhili He
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Romy Chakraborty
- Earth Science Division, Lawrence Berkeley National Laboratory , Berkeley, California 94270, United States
| | - Ye Deng
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Daniel Curtis
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University , Bozeman, Montana 59717, United States
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, The University of Tennessee , Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6342, United States
| | - Adam P Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
- Earth Science Division, Lawrence Berkeley National Laboratory , Berkeley, California 94270, United States
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing 100084, China
| |
Collapse
|
9
|
Jing H, Xia X, Liu H, Zhou Z, Wu C, Nagarajan S. Anthropogenic impact on diazotrophic diversity in the mangrove rhizosphere revealed by nifH pyrosequencing. Front Microbiol 2015; 6:1172. [PMID: 26539189 PMCID: PMC4612719 DOI: 10.3389/fmicb.2015.01172] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 10/09/2015] [Indexed: 11/13/2022] Open
Abstract
Diazotrophs in the mangrove rhizosphere play a major role in providing new nitrogen to the mangrove ecosystem and their composition and activity are strongly influenced by anthropogenic activity and ecological conditions. In this study, the diversity of the diazotroph communities in the rhizosphere sediment of five tropical mangrove sites with different levels of pollution along the north and south coastline of Singapore were studied by pyrosequencing of the nifH gene. Bioinformatics analysis revealed that in all the studied locations, the diazotroph communities comprised mainly of members of the diazotrophic cluster I and cluster III. The detected cluster III diazotrophs, which were composed entirely of sulfate-reducing bacteria, were more abundant in the less polluted locations. The metabolic capacities of these diazotrophs indicate the potential for bioremediation and resiliency of the ecosystem to anthropogenic impact. In heavily polluted locations, the diazotrophic community structures were markedly different and the diversity of species was significantly reduced when compared with those in a pristine location. This, together with the increased abundance of Marinobacterium, which is a bioindicator of pollution, suggests that anthropogenic activity has a negative impact on the genetic diversity of diazotrophs in the mangrove rhizosphere.
Collapse
Affiliation(s)
- Hongmei Jing
- Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences Sanya, China
| | - Xiaomin Xia
- Division of Life Science, The Hong Kong University of Science and Technology Kowloon, Hong Kong
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and Technology Kowloon, Hong Kong
| | - Zhi Zhou
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore Singapore, Singapore
| | - Chen Wu
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore Singapore, Singapore
| | - Sanjay Nagarajan
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore Singapore, Singapore
| |
Collapse
|
10
|
Biogeography of Nocardiopsis strains from hypersaline environments of Yunnan and Xinjiang Provinces, western China. Sci Rep 2015; 5:13323. [PMID: 26289784 PMCID: PMC4542603 DOI: 10.1038/srep13323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 07/23/2015] [Indexed: 12/19/2022] Open
Abstract
The genus Nocardiopsis is a widespread group within the phylum Actinobacteria and has been isolated from various salty environments worldwide. However, little is known about whether biogeography affects Nocardiopsis distribution in various hypersaline environments. Such information is essential for understanding the ecology of Nocardiopsis. Here we analyzed 16S rRNA, gyrB, rpoB and sodA genes of 78 Nocardiopsis strains isolated from hypersaline environments in Yunnan and Xinjiang Provinces of western China. The obtained Nocardiopsis strains were classified into five operational taxonomic units, each comprising location-specific phylo- and genotypes. Statistical analyses showed that spatial distance and environmental factors substantially influenced Nocardiopsis distribution in hypersaline environments: the former had stronger influence at large spatial scales, whereas the latter was more influential at small spatial scales.
Collapse
|
11
|
Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction. Appl Environ Microbiol 2015; 81:4164-72. [PMID: 25862231 DOI: 10.1128/aem.00043-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/05/2015] [Indexed: 11/20/2022] Open
Abstract
A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.
Collapse
|
12
|
Korneeva VA, Pimenov NV, Krek AV, Tourova TP, Bryukhanov AL. Sulfate-reducing bacterial communities in the water column of the Gdansk Deep (Baltic Sea). Microbiology (Reading) 2015. [DOI: 10.1134/s002626171502006x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Angermeyer A, Crosby SC, Huber JA. Decoupled distance-decay patterns between dsrA and 16S rRNA genes among salt marsh sulfate-reducing bacteria. Environ Microbiol 2015; 18:75-86. [DOI: 10.1111/1462-2920.12821] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Angus Angermeyer
- Ecology and Evolutionary Biology; Brown University; Providence RI 02912 USA
- Josephine Bay Paul Center; Marine Biological Laboratory; Woods Hole MA 02543 USA
| | - Sarah C. Crosby
- Ecology and Evolutionary Biology; Brown University; Providence RI 02912 USA
- Ecosystems Center; Marine Biological Laboratory; Woods Hole MA 02543 USA
| | - Julie A. Huber
- Josephine Bay Paul Center; Marine Biological Laboratory; Woods Hole MA 02543 USA
| |
Collapse
|
14
|
Nishi E, Tashiro Y, Sakai K. Discrimination among individuals using terminal restriction fragment length polymorphism profiling of bacteria derived from forensic evidence. Int J Legal Med 2014; 129:425-33. [DOI: 10.1007/s00414-014-1092-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
|
15
|
Multidisciplinary approach to assess the water self-depuration characteristics of Suquía River (Córdoba, Argentina). REVISTA CHILENA DE HISTORIA NATURAL 2014. [DOI: 10.1186/s40693-014-0012-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Hamonts K, Ryngaert A, Smidt H, Springael D, Dejonghe W. Determinants of the microbial community structure of eutrophic, hyporheic river sediments polluted with chlorinated aliphatic hydrocarbons. FEMS Microbiol Ecol 2013; 87:715-32. [DOI: 10.1111/1574-6941.12260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 10/29/2013] [Accepted: 11/15/2013] [Indexed: 01/15/2023] Open
Affiliation(s)
- Kelly Hamonts
- Flemish Institute for Technological Research (VITO), Separation and Conversion Technology; Mol Belgium
- Division Soil and Water Management; KU Leuven; Heverlee Belgium
| | - Annemie Ryngaert
- Flemish Institute for Technological Research (VITO), Separation and Conversion Technology; Mol Belgium
| | - Hauke Smidt
- Laboratory of Microbiology; Wageningen University; Wageningen The Netherlands
| | - Dirk Springael
- Division Soil and Water Management; KU Leuven; Heverlee Belgium
| | - Winnie Dejonghe
- Flemish Institute for Technological Research (VITO), Separation and Conversion Technology; Mol Belgium
| |
Collapse
|
17
|
Varon-Lopez M, Dias ACF, Fasanella CC, Durrer A, Melo IS, Kuramae EE, Andreote FD. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments. Environ Microbiol 2013; 16:845-55. [DOI: 10.1111/1462-2920.12237] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/20/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Maryeimy Varon-Lopez
- Department of Soil Science; ‘Luiz de Queiroz’ College of Agriculture; University of São Paulo; Piracicaba SP Brazil
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO/KNAW); Wageningen The Netherlands
| | | | - Cristiane Cipolla Fasanella
- Department of Soil Science; ‘Luiz de Queiroz’ College of Agriculture; University of São Paulo; Piracicaba SP Brazil
| | - Ademir Durrer
- Department of Soil Science; ‘Luiz de Queiroz’ College of Agriculture; University of São Paulo; Piracicaba SP Brazil
| | - Itamar Soares Melo
- Laboratory of Environmental Microbiology; Embrapa Environment; Jaguariúna SP Brazil
| | - Eiko Eurya Kuramae
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO/KNAW); Wageningen The Netherlands
| | - Fernando Dini Andreote
- Department of Soil Science; ‘Luiz de Queiroz’ College of Agriculture; University of São Paulo; Piracicaba SP Brazil
| |
Collapse
|
18
|
Application of denaturing high-performance liquid chromatography for monitoring sulfate-reducing bacteria in oil fields. Appl Environ Microbiol 2013; 79:5186-96. [PMID: 23793633 DOI: 10.1128/aem.01015-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) participate in microbially induced corrosion (MIC) of equipment and H2S-driven reservoir souring in oil field sites. Successful management of industrial processes requires methods that allow robust monitoring of microbial communities. This study investigated the applicability of denaturing high-performance liquid chromatography (DHPLC) targeting the dissimilatory sulfite reductase ß-subunit (dsrB) gene for monitoring SRB communities in oil field samples from the North Sea, the United States, and Brazil. Fifteen of the 28 screened samples gave a positive result in real-time PCR assays, containing 9 × 10(1) to 6 × 10(5) dsrB gene copies ml(-1). DHPLC and denaturing gradient gel electrophoresis (DGGE) community profiles of the PCR-positive samples shared an overall similarity; both methods revealed the same samples to have the lowest and highest diversity. The SRB communities were diverse, and different dsrB compositions were detected at different geographical locations. The identified dsrB gene sequences belonged to several phylogenetic groups, such as Desulfovibrio, Desulfococcus, Desulfomicrobium, Desulfobulbus, Desulfotignum, Desulfonatronovibrio, and Desulfonauticus. DHPLC showed an advantage over DGGE in that the community profiles were very reproducible from run to run, and the resolved gene fragments could be collected using an automated fraction collector and sequenced without a further purification step. DGGE, on the other hand, included casting of gradient gels, and several rounds of rerunning, excising, and reamplification of bands were needed for successful sequencing. In summary, DHPLC proved to be a suitable tool for routine monitoring of the diversity of SRB communities in oil field samples.
Collapse
|
19
|
Mumford AC, Yee N, Young LY. Precipitation of alacranite (As8S9) by a novel As(V)-respiring anaerobe strain MPA-C3. Environ Microbiol 2013; 15:2748-60. [PMID: 23735175 DOI: 10.1111/1462-2920.12136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/20/2013] [Indexed: 01/15/2023]
Abstract
Strain MPA-C3 was isolated by incubating arsenic-bearing sediments under anaerobic, mesophilic conditions in minimal media with acetate as the sole source of energy and carbon, and As(V) as the sole electron acceptor. Following growth and the respiratory reduction of As(V) to As(III), a yellow precipitate formed in active cultures, while no precipitate was observed in autoclaved controls, or in uninoculated media supplemented with As(III). The precipitate was identified by X-ray diffraction as alacranite, As8 S9 , a mineral previously only identified in hydrothermal environments. Sequencing of the 16S rRNA gene indicated that strain MPA-C3 is a member of the Deferribacteres family, with relatively low (90%) identity to Denitrovibrio acetiphilus DSM 12809. The arsenate respiratory reductase gene, arrA, was sequenced, showing high homology to the arrA gene of Desulfitobacterium halfniense. In addition to As(V), strain MPA-C3 utilizes NO3(-), Se(VI), Se(IV), fumarate and Fe(III) as electron acceptors, and acetate, pyruvate, fructose and benzoate as sources of carbon and energy. Analysis of a draft genome sequence revealed multiple pathways for respiration and carbon utilization. The results of this work demonstrate that alacranite, a mineral previously thought to be formed only chemically under hydrothermal conditions, is precipitated under mesophilic conditions by the metabolically versatile strain MPA-C3.
Collapse
Affiliation(s)
- Adam C Mumford
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| | | | | |
Collapse
|
20
|
Besaury L, Ouddane B, Pavissich JP, Dubrulle-Brunaud C, González B, Quillet L. Impact of copper on the abundance and diversity of sulfate-reducing prokaryotes in two chilean marine sediments. MARINE POLLUTION BULLETIN 2012; 64:2135-2145. [PMID: 22921896 DOI: 10.1016/j.marpolbul.2012.07.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/10/2012] [Accepted: 07/19/2012] [Indexed: 06/01/2023]
Abstract
We studied the abundance and diversity of the sulfate-reducing prokaryotes (SRPs) in two 30-cm marine chilean sediment cores, one with a long-term exposure to copper-mining residues, the other being a non-exposed reference sediment. The abundance of SRPs was quantified by qPCR of the dissimilatory sulfite reductase gene β-subunit (dsrB) and showed that SRPs are sensitive to high copper concentrations, as the mean number of SRPs all along the contaminated sediment was two orders of magnitude lower than in the reference sediment. SRP diversity was analyzed by using the dsrB-sequences-based PCR-DGGE method and constructing gene libraries for dsrB-sequences. Surprisingly, the diversity was comparable in both sediments, with dsrB sequences belonging to Desulfobacteraceae, Syntrophobacteraceae, and Desulfobulbaceae, SRP families previously described in marine sediments, and to a deep branching dsrAB lineage. The hypothesis of the presence of horizontal transfer of copper resistance genes in the microbial population of the polluted sediment is discussed.
Collapse
Affiliation(s)
- Ludovic Besaury
- Faculté des Sciences, Université de Rouen, CNRS UMR 6143-M2C, Groupe de Microbiologie, Place Emile Blondel, 76821 Mont Saint Aignan Cedex, France.
| | | | | | | | | | | |
Collapse
|
21
|
Quillet L, Besaury L, Popova M, Paissé S, Deloffre J, Ouddane B. Abundance, diversity and activity of sulfate-reducing prokaryotes in heavy metal-contaminated sediment from a salt marsh in the Medway Estuary (UK). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:363-381. [PMID: 22124626 DOI: 10.1007/s10126-011-9420-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 11/17/2011] [Indexed: 05/31/2023]
Abstract
We investigated the diversity and activity of sulfate-reducing prokaryotes (SRP) in a 3.5-m sediment core taken from a heavy metal-contaminated site in the Medway Estuary, UK. The abundance of SRPs was quantified by qPCR of the dissimilatory sulfite reductase gene β-subunit (dsrB) and taking into account DNA extraction efficiency. This showed that SRPs were abundant throughout the core with maximum values in the top 50 cm of the sediment core making up 22.4% of the total bacterial community and were 13.6% at 250 cm deep. Gene libraries for dsrA (dissimilatory sulfite reductase α-subunit) were constructed from the heavily contaminated (heavy metals) surface sediment (top 20 cm) and from the less contaminated and sulfate-depleted, deeper zone (250 cm). Certain cloned sequences were similar to dsrA found in members of the Syntrophobacteraceae, Desulfobacteraceae and Desulfovibrionaceae as well as a large fraction (60%) of novel sequences that formed a deep branching dsrA lineage. Phylogenetic analysis of metabolically active SRPs was performed by reverse transcription PCR and single strand conformational polymorphism analysis (RT-PCR-SSCP) of dsrA genes derived from extracted sediment RNA. Subsequent comparative sequence analysis of excised SSCP bands revealed a high transcriptional activity of dsrA belonging to Desulfovibrio species in the surface sediment. These results may suggest that members of the Desulfovibrionaceae are more active than other SRP groups in heavy metal-contaminated surface sediments.
Collapse
Affiliation(s)
- Laurent Quillet
- Faculté des Sciences, Université de Rouen-CNRS 6143-M2C, Groupe de Microbiologie, Place Emile Blondel, Mont Saint Aignan Cedex 76821, France.
| | | | | | | | | | | |
Collapse
|
22
|
Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers. Appl Environ Microbiol 2011; 77:6502-9. [PMID: 21764959 DOI: 10.1128/aem.00576-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that the transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate-reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi)sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi)sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to environmental perturbations.
Collapse
|
23
|
Nogales B, Lanfranconi MP, Piña-Villalonga JM, Bosch R. Anthropogenic perturbations in marine microbial communities. FEMS Microbiol Rev 2011; 35:275-98. [DOI: 10.1111/j.1574-6976.2010.00248.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Belila A, Ghrabi A, Hassen A. Molecular analysis of the spatial distribution of sulfate-reducing bacteria in three eutrophicated wastewater stabilization ponds. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0174-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
25
|
Microorganisms with novel dissimilatory (bi)sulfite reductase genes are widespread and part of the core microbiota in low-sulfate peatlands. Appl Environ Microbiol 2010; 77:1231-42. [PMID: 21169452 DOI: 10.1128/aem.01352-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peatlands of the Lehstenbach catchment (Germany) house as-yet-unidentified microorganisms with phylogenetically novel variants of the dissimilatory (bi)sulfite reductase genes dsrAB. These genes are characteristic of microorganisms that reduce sulfate, sulfite, or some organosulfonates for energy conservation but can also be present in anaerobic syntrophs. However, nothing is currently known regarding the abundance, community dynamics, and biogeography of these dsrAB-carrying microorganisms in peatlands. To tackle these issues, soils from a Lehstenbach catchment site (Schlöppnerbrunnen II fen) from different depths were sampled at three time points over a 6-year period to analyze the diversity and distribution of dsrAB-containing microorganisms by a newly developed functional gene microarray and quantitative PCR assays. Members of novel, uncultivated dsrAB lineages (approximately representing species-level groups) (i) dominated a temporally stable but spatially structured dsrAB community and (ii) represented "core" members (up to 1% to 1.7% relative abundance) of the autochthonous microbial community in this fen. In addition, denaturing gradient gel electrophoresis (DGGE)- and clone library-based comparisons of the dsrAB diversity in soils from a wet meadow, three bogs, and five fens of various geographic locations (distance of ∼1 to 400 km) identified that one Syntrophobacter-related and nine novel dsrAB lineages are widespread in low-sulfate peatlands. Signatures of biogeography in dsrB-based DGGE data were not correlated with geographic distance but could be explained largely by soil pH and wetland type, implying that the distribution of dsrAB-carrying microorganisms in wetlands on the scale of a few hundred kilometers is not limited by dispersal but determined by local environmental conditions.
Collapse
|
26
|
Rees GN, Baldwin DS, Watson GO, Hall KC. Sulfide formation in freshwater sediments, by sulfate-reducing microorganisms with diverse tolerance to salt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 409:134-139. [PMID: 20934202 DOI: 10.1016/j.scitotenv.2010.08.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 05/30/2023]
Abstract
Understanding how sulfate-reducing microbes in freshwater systems respond to added salt, and therefore sulfate, is becoming increasingly important in inland systems where the threat from salinisation is increasing. To address this knowledge gap, we carried out mesocosm studies to determine how the sulfate-reducing microbial community in sediments from a freshwater wetland would respond to salinisation. The levels of inorganic mineral sulfides produced after 6months incubation were measured to determine whether they were in sufficient quantity to be harmful if re-oxidized. Comparative sequence analysis of the dissimilatory sulfite reductase (DSR) gene was used to compare the sulfate-reducing community structure in mesocosms without salt and those incubated with moderate levels of salt. The amount of total S, acid volatile sulfide or chromium-reducible sulfide produced in sediments with 0, 1 or 5gL(-1) added salt were not significantly different. Sediments subjected to 15gL(-1) salt contained significantly higher total S and acid volatile sulfide, and levels were above trigger values for potential harm if re-oxidation occurred. The overall community structure of the sulfate-reducing microbiota (SRM) was explained by the level of salt added to sediments. However, a group of sulfate reducers were identified that occurred in both the high salt and freshwater treatments. These results demonstrate that freshwater sediments contain sulfate reducers with diverse abilities to respond to salt and can respond rapidly to increasing salinity, explaining the observation that harmful levels of acid volatile sulfides can form rapidly in sediments with no history of exposure to salt.
Collapse
Affiliation(s)
- Gavin N Rees
- Murray-Darling Freshwater Research Centre and CSIRO Land and Water, Wodonga, Victoria 3690, Australia.
| | | | | | | |
Collapse
|
27
|
Cantrell SA, Baez-Félix C. Fungal molecular diversity of a Puerto Rican subtropical hypersaline microbial mat. FUNGAL ECOL 2010. [DOI: 10.1016/j.funeco.2010.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Improved dsrA-based terminal restriction fragment length polymorphism analysis of sulfate-reducing bacteria. Appl Environ Microbiol 2010; 76:5308-11. [PMID: 20543035 DOI: 10.1128/aem.03004-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better describe the community structure of sulfate-reducing bacteria in environmental systems, we compared several dissimilatory sulfite reductase (dsr) primer sets for terminal restriction fragment length polymorphism application. A new reverse primer that increased allelic diversity estimates up to 5-fold was applied to hydrocarbon seep samples to examine the relationship between guild activity and diversity.
Collapse
|
29
|
Diversity of dissimilatory sulfite reductase genes (dsrAB) in a salt marsh impacted by long-term acid mine drainage. Appl Environ Microbiol 2010; 76:4819-28. [PMID: 20472728 DOI: 10.1128/aem.03006-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) play a major role in the coupled biogeochemical cycling of sulfur and chalcophilic metal(loid)s. By implication, they can exert a strong influence on the speciation and mobility of multiple metal(loid) contaminants. In this study, we combined DsrAB gene sequencing and sulfur isotopic profiling to identify the phylogeny and distribution of SRB and to assess their metabolic activity in salt marsh sediments exposed to acid mine drainage (AMD) for over 100 years. Recovered dsrAB sequences from three sites sampled along an AMD flow path indicated the dominance of a single Desulfovibrio species. Other major sequence clades were related most closely to Desulfosarcina, Desulfococcus, Desulfobulbus, and Desulfosporosinus species. The presence of metal sulfides with low delta(34)S values relative to delta(34)S values of pore water sulfate showed that sediment SRB populations were actively reducing sulfate under ambient conditions (pH of approximately 2), although possibly within less acidic microenvironments. Interestingly, delta(34)S values for pore water sulfate were lower than those for sulfate delivered during tidal inundation of marsh sediments. 16S rRNA gene sequence data from sediments and sulfur isotope data confirmed that sulfur-oxidizing bacteria drove the reoxidation of biogenic sulfide coupled to oxygen or nitrate reduction over a timescale of hours. Collectively, these findings imply a highly dynamic microbially mediated cycling of sulfate and sulfide, and thus the speciation and mobility of chalcophilic contaminant metal(loid)s, in AMD-impacted marsh sediments.
Collapse
|
30
|
Nested PCR and new primers for analysis of sulfate-reducing bacteria in low-cell-biomass environments. Appl Environ Microbiol 2010; 76:2856-65. [PMID: 20228118 DOI: 10.1128/aem.02023-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New primers were designed for the amplification of dsrAB genes by nested PCR to investigate the diversity of sulfate-reducing prokaryotes (SRP) in environments with low bacterial cell density. The success of the nested PCR for the determination of SRP diversity was estimated by terminal-restriction fragment length polymorphism analysis in the Reigous, a small creek at an inactive mine (Carnoulès, France), which constitutes an extreme acidic arsenic-rich environment. Nested PCR limits were evaluated in dsrAB-rich sediments, and this technique was compared to direct PCR using either known primers (DSR1F/DSR4R) or new primers (dsr619AF/dsr1905BR). The comparison of clone libraries revealed that, even if the levels of diversity observed were not identical, nested PCR did not reduce the diversity compared to that of direct DSR1F/DSR4R PCR. Clone sequences were affiliated mainly with the Desulfobacteraceae and Desulfohalobiaceae families. Many sequences (approximately 30%) were related to a deeply branching lineage unaffiliated with any cultured SRP. Although this dsrAB cluster was found in all libraries, the new primers better amplified this lineage, providing more information on this unknown bacterial group. Thanks to these new primers in nested PCR, the SRP community from Carnoulès could be characterized. Specific SRP populations were obtained according to environmental characteristics. Desulfomicrobiaceae-related sequences were recovered in samples with low pH, low levels of dissolved oxygen, and high As content, while sequences belonging to the deeply branching group were found in a less extreme sample. Furthermore, for the first time, dsrAB sequences related to the latter group were recovered from freshwater.
Collapse
|
31
|
Taketani RG, Franco NO, Rosado AS, van Elsas JD. Microbial community response to a simulated hydrocarbon spill in mangrove sediments. J Microbiol 2010; 48:7-15. [PMID: 20221723 DOI: 10.1007/s12275-009-0147-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 08/09/2009] [Indexed: 02/01/2023]
Abstract
In this study, we examined the hypothesis that the microbial communities in mangrove sediments with different chemical and historical characteristics respond differently to the disturbance of a hydrocarbon spill. Two different mangrove sediments were sampled, one close to an oil refinery that had suffered a recent oil spill and another that had not been in contact with oil. Based on the sampled sediment, two sets of mesocosms were built, and oil was added to one of them. They were subjected to mimicked mangrove conditions and monitored for 75 days. Archaeal and bacterial communities were evaluated through PCR-DGGE. Both communities showed the emergence of small numbers of novel bands in response to oil pollution. 16S rRNA gene clone libraries were constructed from both mesocosms before the addition of oil and at day 75 after oil addition. LIBSHUFF analysis showed that both mangrove-based mesocosms contained similar communities at the start of the experiment and that they were different from the initial one, as well as from each other, after 75 days. These results hint at a role of environmental history that is not obvious from community diversity indicators, but is apparent from the response to the applied stress.
Collapse
Affiliation(s)
- Rodrigo Gouvêa Taketani
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
32
|
Boudaud N, Coton M, Coton E, Pineau S, Travert J, Amiel C. Biodiversity analysis by polyphasic study of marine bacteria associated with biocorrosion phenomena. J Appl Microbiol 2009; 109:166-79. [PMID: 20059620 DOI: 10.1111/j.1365-2672.2009.04643.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS A polyphasic approach was used to study the biodiversity bacteria associated with biocorrosion processes, in particular sulfate-reducing bacteria (SRB) and thiosulfate-reducing bacteria (TRB) which are described to be particularly aggressive towards metallic materials, notably via hydrogen sulfide release. METHODS AND RESULTS To study this particular flora, an infrared spectra library of 22 SRB and TRB collection strains were created using a Common Minimum Medium (CMM) developed during this study and standardized culture conditions. The CMM proved its ability to allow for growth of both SRB and TRB strains. These sulfurogen collection strains were clearly discriminated and differentiated at the genus level by fourier transform infrared (FT-IR) spectroscopy. In a second step, infrared spectra of isolates, recovered from biofilms formed on carbon steel coupons immersed for 1 year in three different French harbour areas, were compared to the infrared reference spectra library. In parallel, molecular methods (M13-PCR and 16S rRNA gene sequencing) were used to qualitatively evaluate the intra- and inter-species genetic diversity of biofilm isolates. The biodiversity study indicated that strains belonging to the Vibrio genus were the dominant population; strains belonging to the Desulfovibrio genus (SRB) and Peptostreptococcaceae were also identified. CONCLUSION Overall, the combination of the FT-IR spectroscopy and molecular approaches allowed for the taxonomic and ecological study of a bacterial flora, cultivated on CMM, associated with microbiology-induced corrosion (MIC) processes. SIGNIFICANCE AND IMPACT OF THE STUDY Via the use of the CMM medium, the culture of marine bacteria (including both SRB and TRB bacteria) was allowed, and the implication of nonsulforogen bacteria in MIC was observed. Their involvement in the biocorrosion phenomena will have to be studied and taken into account in the future.
Collapse
Affiliation(s)
- N Boudaud
- Equipe de Recherche en Physico-Chimie et Biotechnologies, Université Caen Basse Normandie, Caen Cedex, France
| | | | | | | | | | | |
Collapse
|
33
|
Wu XJ, Pan JL, Liu XL, Tan J, Li DT, Yang H. Sulfate-reducing bacteria in leachate-polluted aquifers along the shore of the East China Sea. Can J Microbiol 2009; 55:818-28. [PMID: 19767854 DOI: 10.1139/w09-037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diversity of sulfate-reducing bacteria (SRB) in the aquifer underlying the Laogang Landfill along the shore of the East China Sea was investigated. The DNA extracted from 15 groundwater samples was subjected to PCR amplification of the dissimilatory sulfite reductase (dsr) gene. Full-length dsrAB amplicons (approximately 1.9 kb) were then used to construct 4 clone libraries, while the dsrB amplicons (approximately 350 bp) were used for denaturing gradient gel electrophoresis (DGGE) analysis. The clones in the 4 libraries covered all cultured SRB lineages, as well as a deeply branching clade not affiliated with any cultured SRB. In addition, nearly 80% of the 388 clones in the 4 libraries were similar to sequences of the Deltaproteobacteria, Desulfobacteriaceae, Desulfovibrionales, Syntrophaceae, and Desulfobulbaceae. Furthermore, a wide variety of marine SRB was detected, which indicated that seawater has infiltrated the aquifer. Indeed, the DGGE profiles revealed obvious variations in SRB diversity among the 15 samples, which clustered in accordance with the sulfate concentration of the samples ([SO4(2-)]). Moreover, the sulfate concentrations and SRB diversity along the leachate plume did not show regular variation, which suggests the impact of both groundwater flow and seawater intrusion.
Collapse
Affiliation(s)
- Xiu-Juan Wu
- MOE Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
34
|
Agrawal A, Lal B. Rapid detection and quantification of bisulfite reductase genes in oil field samples using real-time PCR. FEMS Microbiol Ecol 2009; 69:301-12. [PMID: 19527290 DOI: 10.1111/j.1574-6941.2009.00714.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) pose a serious problem to offshore oil industries by producing sulfide, which is highly reactive, corrosive and toxic. The dissimilatory sulfite reductase (dsr) gene encodes for enzyme dissimilatory sulfite reductase and catalyzes the conversion of sulfite to sulfide. Because this gene is required by all sulfate reducers, it is a potential candidate as a functional marker. Denaturing gradient gel electrophoresis fingerprints revealed the presence of considerable genetic diversity in the DNA extracts achieved from production water collected from various oil fields. A quantitative PCR (qPCR) assay was developed for rapid and accurate detection of dsrB in oil field samples. A standard curve was prepared based on a plasmid containing the appropriate dsrB fragment from Desulfomicrobium norvegicum. The quantification range of this assay was six orders of magnitude, from 4.5 x 10(7) to 4.5 x 10(2) copies per reaction. The assay was not influenced by the presence of foreign DNA. This assay was tested against several DNA samples isolated from formation water samples collected from geographically diverse locations of India. The results indicate that this qPCR approach can provide valuable information related to the abundance of the bisulfite reductase gene in harsh environmental samples.
Collapse
|
35
|
Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C, Jørgensen BB. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Environ Microbiol 2009; 11:1278-91. [PMID: 19220398 DOI: 10.1111/j.1462-2920.2008.01855.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to better understand the main factors that influence the distribution of sulfate-reducing bacteria (SRB), their population size and their metabolic activity in high- and low-sulfate zones, we studied the SRB diversity in 3- to 5-m-deep sediment cores, which comprised the entire sulfate reduction zone and the upper methanogenic zone. By combining EMA (ethidium monoazide that can only enter damaged/dead cells and may also bind to free DNA) treatment with real-time PCR, we determined the distributions of total intact bacteria (16S rDNA genes) and intact SRB (dsrAB gene), their relative population sizes, and the proportion of dead cells or free DNA with depth. The abundance of SRB corresponded in average to 13% of the total bacterial community in the sulfate zone, 22% in the sulfate-methane transition zone and 8% in the methane zone. Compared with the total bacterial community, there were relatively less dead/damaged cells and free DNA present than among the SRB and this fraction did not change systematically with depth. By DGGE analysis, based on the amplification of the dsrA gene (400 bp), we found that the richness of SRB did not change with depth through the geochemical zones; but the clustering was related to the chemical zonation. A full-length clone library of the dsrAB gene (1900 bp) was constructed from four different depths (20, 110, 280 and 500 cm), and showed that the dsrAB genes in the near-surface sediment (20 cm) was mainly composed of sequences close to the Desulfobacteraceae, including marine complete and incomplete oxidizers such as Desulfosarcina, Desulfobacterium and Desulfococcus. The three other libraries were predominantly composed of Gram-positive SRB.
Collapse
Affiliation(s)
- Julie Leloup
- Laboratoire BioEmco CNRS 7618, site de l'Ecole Normale Supérieure, Paris, France.
| | | | | | | | | | | |
Collapse
|
36
|
Beheregaray LB. Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Mol Ecol 2008; 17:3754-74. [PMID: 18627447 DOI: 10.1111/j.1365-294x.2008.03857.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phylogeography is a young, vigorous and integrative field of study that uses genetic data to understand the history of populations. This field has recently expanded into many areas of biology and also into several historical disciplines of Earth sciences. In this review, I present a numerical synthesis of the phylogeography literature based on an examination of over 3000 articles published during the first 20 years of the field (i.e. from 1987 to 2006). Information from several topics needed to evaluate the progress, tendencies and deficiencies of the field is summarized for 10 major groups of organisms and at a global scale. The topics include the geography of phylogeographic surveys, comparative nature of studies, temporal scales and major environments investigated, and genetic markers used. I also identify disparities in research productivity between the developing and the developed world, and propose ways to reduce some of the challenges faced by phylogeographers from less affluent countries. Phylogeography has experienced explosive growth in recent years fuelled by developments in DNA technology, theory and statistical analysis. I argue that the intellectual maturation of the field will eventually depend not only on these recent developments, but also on syntheses of comparative information across different regions of the globe. For this to become a reality, many empirical phylogeographic surveys in regions of the Southern Hemisphere (and in developing countries of the Northern Hemisphere) are needed. I expect the information and views presented here will assist in promoting international collaborative work in phylogeography and in guiding research efforts at both regional and global levels.
Collapse
Affiliation(s)
- Luciano B Beheregaray
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
37
|
Tiquia SM. Diversity of sulfate-reducing genes (dsrAB) in sediments from Puget Sound. ENVIRONMENTAL TECHNOLOGY 2008; 29:1095-1108. [PMID: 18942577 DOI: 10.1080/09593330802190608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The aims of this study were to characterize the population structure and diversity of sulfate-reducing bacteria (SRB) from three distinct sites at Puget Sound, and relate the biogeochemical properties of the sediments to the sulfate-reducer communities. The population composition and diversity of sulfate-reducing bacteria carrying dsrAB genes from surface Puget Sound sediments was investigated using a polymerase chain reaction-based cloning approach. Sediment cores were collected from three different locations: Carr Inlet (C1A), Shallow Bud Inlet (S1A), and Turning Basin (T1A). A total of 498 dsrAB clones were sequenced from the three sites. Ecological indices indicated that T1A had the highest diversity and evenness values and C1A had the lowest. Correlations were also found between diversity indices and geochemical parameters. The diversity of the SRB decreased with decreasing carbon concentrations and sulfate reduction rates, and increasing levels of oxygen. A phylogenetic comparison revealed that the majority of the dsrAB sequences were associated with the delta-proteobacterial phylotypes Desulfonema, Desulfococcus and Desulfosarcina, suggesting that complete oxidizers with high substrate versatility dominate in the sediments. The environmental conditions and energy sources available in the sediments may have dictated microbial community structure and diversity of SRBs. Distinctive community structures of SRBs in Puget Sound sediments were found to vary at different sites with different redox profiles. The dominance of the Desulfobacteraceae-like sequences may be due to the presence of a diverse spectrum of substrates in the sediments. This study represents one of the first efforts to characterize the population of sulfate-reducing microbes in the oxygenated regions of Puget Sound sediments. The phylogenetic identification of dsrAB genes in the sediment samples allows the composition of sulfate-reducing prokaryotic communities to be inferred, and working hypotheses about their likely carbon substrates to be formed.
Collapse
Affiliation(s)
- S M Tiquia
- Department of Natural Sciences, 115F Science Building, The University of Michigan, Dearborn, MI 48128, USA
| |
Collapse
|
38
|
Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 2008; 80:365-80. [PMID: 18648804 DOI: 10.1007/s00253-008-1565-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/29/2008] [Accepted: 06/01/2008] [Indexed: 10/21/2022]
Abstract
Terminal restriction fragment length polymorphism (T-RFLP) analysis is a popular high-throughput fingerprinting technique used to monitor changes in the structure and composition of microbial communities. This approach is widely used because it offers a compromise between the information gained and labor intensity. In this review, we discuss the progress made in T-RFLP analysis of 16S rRNA genes and functional genes over the last 10 years and evaluate the performance of this technique when used in conjunction with different statistical methods. Web-based tools designed to perform virtual polymerase chain reaction and restriction enzyme digests greatly facilitate the choice of primers and restriction enzymes for T-RFLP analysis. Significant improvements have also been made in the statistical analysis of T-RFLP profiles such as the introduction of objective procedures to distinguish between signal and noise, the alignment of T-RFLP peaks between profiles, and the use of multivariate statistical methods to detect changes in the structure and composition of microbial communities due to spatial and temporal variation or treatment effects. The progress made in T-RFLP analysis of 16S rRNA and genes allows researchers to make methodological and statistical choices appropriate for the hypotheses of their studies.
Collapse
|
39
|
Drenovsky RE, Feris KP, Batten KM, Hristova K. New and Current Microbiological Tools for Ecosystem Ecologists: Towards a Goal of Linking Structure and Function. AMERICAN MIDLAND NATURALIST 2008. [DOI: 10.1674/0003-0031(2008)160[140:nacmtf]2.0.co;2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Evaluation of the sulfate-reducing bacterial population associated with stored swine slurry. Anaerobe 2008; 14:172-80. [DOI: 10.1016/j.anaerobe.2008.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 12/13/2007] [Accepted: 03/20/2008] [Indexed: 01/30/2023]
|
41
|
Chin KJ, Sharma ML, Russell LA, O'Neill KR, Lovley DR. Quantifying expression of a dissimilatory (bi)sulfite reductase gene in petroleum-contaminated marine harbor sediments. MICROBIAL ECOLOGY 2008; 55:489-99. [PMID: 17786505 DOI: 10.1007/s00248-007-9294-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 05/17/2023]
Abstract
The possibility of quantifying in situ levels of transcripts for dissimilatory (bi)sulfite reductase (dsr) genes to track the activity of sulfate-reducing microorganisms in petroleum-contaminated marine harbor sediments was evaluated. Phylogenetic analysis of the cDNA generated from mRNA for a ca. 1.4 kbp portion of the contiguous dsrA and dsrB genes suggested that Desulfosarcina species, closely related to cultures known to anaerobically oxidize aromatic hydrocarbons, were active sulfate reducers in the sediments. The levels of dsrA transcripts (per mug total mRNA) were quantified in sediments incubated anaerobically at the in situ temperature as well as in sediments incubated at higher temperatures and/or with added acetate to increase the rate of sulfate reduction. Levels of dsrA transcripts were low when there was no sulfate reduction because the sediments were depleted of sulfate or if sulfate reduction was inhibited with added molybdate. There was a direct correlation between dsrA transcript levels and rates of sulfate reduction when sulfate was at ca. 10 mM in the various sediment treatments, but it was also apparent that within a given sediment, dsrA levels increased over time as long as sulfate was available, even when sulfate reduction rates did not increase. These results suggest that phylogenetic analysis of dsr transcript sequences may provide insight into the active sulfate reducers in marine sediments and that quantifying levels of dsrA transcripts can indicate whether sulfate reducers are active in particular sediment. Furthermore, it may only be possible to use dsrA transcript levels to compare the relative rates of sulfate reduction in sediments when sulfate concentrations, and possibly other environmental conditions, are comparable.
Collapse
MESH Headings
- Anaerobiosis
- DNA, Bacterial/genetics
- DNA, Ribosomal/genetics
- Desulfitobacterium/classification
- Desulfitobacterium/enzymology
- Desulfitobacterium/genetics
- Desulfitobacterium/isolation & purification
- Gene Expression
- Geologic Sediments/chemistry
- Geologic Sediments/microbiology
- Hydrogensulfite Reductase/genetics
- Molecular Sequence Data
- Petroleum/microbiology
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Bacterial/isolation & purification
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/genetics
- Temperature
Collapse
Affiliation(s)
- Kuk-Jeong Chin
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | |
Collapse
|
42
|
Dias M, Salvado J, Monperrus M, Caumette P, Amouroux D, Duran R, Guyoneaud R. Characterization of Desulfomicrobium salsuginis sp. nov. and Desulfomicrobium aestuarii sp. nov., two new sulfate-reducing bacteria isolated from the Adour estuary (French Atlantic coast) with specific mercury methylation potentials. Syst Appl Microbiol 2008; 31:30-7. [DOI: 10.1016/j.syapm.2007.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Patron NJ, Durnford DG, Kopriva S. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers. BMC Evol Biol 2008; 8:39. [PMID: 18248682 PMCID: PMC2275785 DOI: 10.1186/1471-2148-8-39] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 02/04/2008] [Indexed: 12/17/2022] Open
Abstract
Background The sulfate assimilation pathway is present in photosynthetic organisms, fungi, and many bacteria, providing reduced sulfur for the synthesis of cysteine and methionine and a range of other metabolites. In photosynthetic eukaryotes sulfate is reduced in the plastids whereas in aplastidic eukaryotes the pathway is cytosolic. The only known exception is Euglena gracilis, where the pathway is localized in mitochondria. To obtain an insight into the evolution of the sulfate assimilation pathway in eukaryotes and relationships of the differently compartmentalized isoforms we determined the locations of the pathway in lineages for which this was unknown and performed detailed phylogenetic analyses of three enzymes involved in sulfate reduction: ATP sulfurylase (ATPS), adenosine 5'-phosphosulfate reductase (APR) and sulfite reductase (SiR). Results The inheritance of ATPS, APR and the related 3'-phosphoadenosine 5'-phosphosulfate reductase (PAPR) are remarkable, with multiple origins in the lineages that comprise the opisthokonts, different isoforms in chlorophytes and streptophytes, gene fusions with other enzymes of the pathway, evidence a eukaryote to prokaryote lateral gene transfer, changes in substrate specificity and two reversals of cellular location of host- and endosymbiont-originating enzymes. We also found that the ATPS and APR active in the mitochondria of Euglena were inherited from its secondary, green algal plastid. Conclusion Our results reveal a complex history for the enzymes of the sulfate assimilation pathway. Whilst they shed light on the origin of some characterised novelties, such as a recently described novel isoform of APR from Bryophytes and the origin of the pathway active in the mitochondria of Euglenids, the many distinct and novel isoforms identified here represent an excellent resource for detailed biochemical studies of the enzyme structure/function relationships.
Collapse
Affiliation(s)
- Nicola J Patron
- School of Botany, University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
44
|
Phylogenetic Analysis of Sulfate Assimilation and Cysteine Biosynthesis in Phototrophic Organisms. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
45
|
Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Appl Environ Microbiol 2007; 74:783-91. [PMID: 18065621 DOI: 10.1128/aem.01384-07] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A high-throughput microbial profiling tool based on terminal restriction fragment length polymorphism was developed to monitor the poultry gut microbiota in response to dietary manipulations. Gut microbial communities from the duodena, jejuna, ilea, and ceca of 48 birds fed either a barley control diet or barley diet supplemented with exogenous enzymes for degrading nonstarch polysaccharide were characterized by using multivariate statistical methods. Analysis of samples showed that gut microbial communities varied significantly among gut sections, except between the duodenum and jejunum. Significant diet-associated differences in gut microbial communities were detected within the ileum and cecum only. The dissimilarity in bacterial community composition between diets was 73 and 66% within the ileum and cecum, respectively. Operational taxonomic units, representing bacterial species or taxonomically related groups, contributing to diet-associated differences were identified. Several bacterial species contributed to differences between diet-related gut microbial community composition, with no individual bacterial species contributing more than 1 to 5% of the total. Using canonical analysis of principal coordinates biplots, we correlated differences in gut microbial community composition within the ileum and cecum to improved performance, as measured by apparent metabolizable energy. This is the first report that directly links differences in the composition of the gut microbial community with improved performance, which implies that the presence of specific beneficial and/or absence of specific detrimental bacterial species may contribute to the improved performance in these birds.
Collapse
|
46
|
Miletto M, Bodelier PLE, Laanbroek HJ. Improved PCR-DGGE for high resolution diversity screening of complex sulfate-reducing prokaryotic communities in soils and sediments. J Microbiol Methods 2007; 70:103-11. [PMID: 17481757 DOI: 10.1016/j.mimet.2007.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 03/22/2007] [Accepted: 03/28/2007] [Indexed: 11/20/2022]
Abstract
In this study we evaluated a high resolution PCR-DGGE strategy for the characterization of complex sulfate-reducing microbial communities inhabiting natural environments. dsrB fragments were amplified with a two-step nested PCR protocol using combinations of primers targeting the dissimilatory (bi)sulfite reductase genes. The PCR-DGGE conditions were initially optimized using a dsrAB clone library obtained from a vegetated intertidal riparian soil along the river Rhine (Rozenburg, the Netherlands). Partial dsrB were successfully amplified from the same environmental DNA extracts used to construct the library, DGGE-separated and directly sequenced. The two approaches were in good agreement: the phylogenetic distribution of clones and DGGE-separated dsrB was comparable, suggesting the presence of sulfate-reducing prokaryotes (SRP) belonging to the families 'Desulfobacteraceae,' 'Desulfobulbaceae' and 'Syntrophobacteraceae,' and to the Desulfomonile tiedjei- and Desulfobacterium anilini-groups. The nested PCR-DGGE was also used to analyze sediment samples (Appels, Belgium) from a series of microcosms subjected to a tidal flooding regime with water of different salinity, and proved to be a valid tool also to monitor the SRP community variation over time and space as a consequence of environmental changes.
Collapse
Affiliation(s)
- Marzia Miletto
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Wetland Ecology, Rijksstraatweg 6, 3631 AC Nieuwersluis, The Netherlands.
| | | | | |
Collapse
|
47
|
Kaneko R, Hayashi T, Tanahashi M, Naganuma T. Phylogenetic diversity and distribution of dissimilatory sulfite reductase genes from deep-sea sediment cores. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:429-36. [PMID: 17497195 DOI: 10.1007/s10126-007-9003-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 01/29/2007] [Indexed: 05/15/2023]
Abstract
The diversity and distribution of sulfate-reducing prokaryotes (SRP) was investigated in the Nankai Trough sediments of off-central Japan by exploring the diversity of a functional gene, dissimilatory sulfite reductase (dsrAB). Bulk DNAs were extracted from five piston-cored samples (up to 4.5 m long) with 41 vertical sections, and full-length dsrABgene sequences (ca. 1.9 kb) were PCR amplified and cloned. A total of 382 dsrAB clones yielded eight phylogenetic groups with an indigenous group forming a unique dsrAB lineage. The deltaproteobacterial dsrAB genes were found in almost all sediment samples, especially in the surface layer. One unique dsrAB clone group was also widespread in the dsrAB profiles of the studied sediments, and the percentage of its clones was generally shown gradual increase with sediment depth.
Collapse
Affiliation(s)
- Ryo Kaneko
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima, 739-8528, Japan
| | | | | | | |
Collapse
|
48
|
Schmalenberger A, Drake HL, Küsel K. High unique diversity of sulfate-reducing prokaryotes characterized in a depth gradient in an acidic fen. Environ Microbiol 2007; 9:1317-28. [PMID: 17472643 DOI: 10.1111/j.1462-2920.2007.01251.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dissimilatory reduction of sulfate contributes to the retention of sulfur in acidic mineratrophic peatlands. Novel sulfate-reducing prokaryotes (SRPs) colonize these low-sulfate fens. This study assessed the community structures of SRPs in a depth gradient (0-50 cm) in a fen, located in the Fichtelgebirge (Spruce Mountains), Germany. Detection of SRPs with multiplex (terminal-) restriction fragment length polymorphism analysis of amplified dissimilatory (bi)sulfite reductase genes (dsrAB) separated three subgroups derived from (i) the upper 5 and 10 cm, (ii) 15-25 cm, and (iii) 30-50 cm depth. Biogeochemical parameters measured in the soil solution from July 2001 to July 2004 documented that the upper 5-10 cm were exposed to drying and oxygenation prior to sampling. Periodic oxygenation reached a maximum depth of 25 cm in the water-saturated fen and was concomitant with relative high concentrations of nitrate (120 microM) and sulfate (up to 310 microM). The fen soil was permanently anoxic below 30 cm depth with average concentrations of sulfate below 40 microM and maximum concentrations of methane. Cloning of dsrAB PCR products from 5, 20 and 40 cm depth yielded a total of 84 unique dsrAB restriction patterns. Partial sequencing of 61 distinct clones resulted in 59 unique partial protein sequences that mainly clustered with DsrA sequences of uncultivated sulfate reducers. Syntrophobacter fumaroxidans- and Syntrophobacter wolinii-related bacteria appeared to be present only in 40 cm depth. Differences in the SRP community structures suggested that SRPs present in the upper fen soil have to tolerate O(2) and even drying, whereas SRPs present in deep anoxic zones may act as syntrophic fermentors in cooperation with H(2)-utilizing methanogens.
Collapse
Affiliation(s)
- Achim Schmalenberger
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth 95440, Germany
| | | | | |
Collapse
|
49
|
Wawrik B, Kutliev D, Abdivasievna UA, Kukor JJ, Zylstra GJ, Kerkhof L. Biogeography of actinomycete communities and type II polyketide synthase genes in soils collected in New Jersey and Central Asia. Appl Environ Microbiol 2007; 73:2982-9. [PMID: 17337547 PMCID: PMC1892886 DOI: 10.1128/aem.02611-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soil microbial communities are believed to be comprised of thousands of different bacterial species. One prevailing idea is that "everything is everywhere, and the environment selects," implying that all types of bacteria are present in all environments where their growth requirements are met. We tested this hypothesis using actinomycete communities and type II polyketide synthase (PKS) genes found in soils collected from New Jersey and Uzbekistan (n = 91). Terminal restriction fragment length polymorphism analysis using actinomycete 16S rRNA and type II PKS genes was employed to determine community profiles. The terminal fragment frequencies in soil samples had a lognormal distribution, indicating that the majority of actinomycete phylotypes and PKS pathways are present infrequently in the environment. Less than 1% of peaks were detected in more than 50% of samples, and as many as 18% of the fragments were unique and detected in only one sample. Actinomycete 16S rRNA fingerprints clustered by country of origin, indicating that unique populations are present in North America and Central Asia. Sequence analysis of type II PKS gene fragments cloned from Uzbek soil revealed 35 novel sequence clades whose levels of identity to genes in the GenBank database ranged from 68 to 92%. The data indicate that actinomycetes are patchily distributed but that distinct populations are present in North American and Central Asia. These results have implications for microbial bioprospecting and indicate that the cosmopolitan actinomycete species and PKS pathways may account for only a small proportion of the total diversity in soil.
Collapse
Affiliation(s)
- Boris Wawrik
- Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers University, New Brunswick, NJ 08901-8521, USA
| | | | | | | | | | | |
Collapse
|
50
|
Dar SA, Yao L, van Dongen U, Kuenen JG, Muyzer G. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Appl Environ Microbiol 2006; 73:594-604. [PMID: 17098925 PMCID: PMC1796976 DOI: 10.1128/aem.01875-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we describe the diversity and activity of sulfate-reducing bacteria (SRB) in sulfidogenic bioreactors by using the simultaneous analysis of PCR products obtained from DNA and RNA of the 16S rRNA and dissimilatory sulfite reductase (dsrAB) genes. We subsequently analyzed the amplified gene fragments by using denaturing gradient gel electrophoresis (DGGE). We observed fewer bands in the RNA-based DGGE profiles than in the DNA-based profiles, indicating marked differences in the populations present and in those that were metabolically active at the time of sampling. Comparative sequence analyses of the bands obtained from rRNA and dsrB DGGE profiles were congruent, revealing the same SRB populations. Bioreactors that received either ethanol or isopropanol as an energy source showed the presence of SRB affiliated with Desulfobulbus rhabdoformis and/or Desulfovibrio sulfodismutans, as well as SRB related to the acetate-oxidizing Desulfobacca acetoxidans. The reactor that received wastewater containing a diverse mixture of organic compounds showed the presence of nutritionally versatile SRB affiliated with Desulfosarcina variabilis and another acetate-oxidizing SRB, affiliated with Desulfoarculus baarsii. In addition to DGGE analysis, we performed whole-cell hybridization with fluorescently labeled oligonucleotide probes to estimate the relative abundances of the dominant sulfate-reducing bacterial populations. Desulfobacca acetoxidans-like populations were most dominant (50 to 60%) relative to the total SRB communities, followed by Desulfovibrio-like populations (30 to 40%), and Desulfobulbus-like populations (15 to 20%). This study is the first to identify metabolically active SRB in sulfidogenic bioreactors by using the functional gene dsrAB as a molecular marker. The same approach can also be used to infer the ecological role of coexisting SRB in other habitats.
Collapse
Affiliation(s)
- Shabir A Dar
- Environmental Biotechnology, Department of Biotechnology, Delft University of Technology, NL-2628 BC Delft, The Netherlands
| | | | | | | | | |
Collapse
|