1
|
Nam O, Suzuki I, Shiraiwa Y, Jin E. Association of Phosphatidylinositol-Specific Phospholipase C with Calcium-Induced Biomineralization in the Coccolithophore Emiliania huxleyi. Microorganisms 2020; 8:E1389. [PMID: 32927844 PMCID: PMC7563939 DOI: 10.3390/microorganisms8091389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022] Open
Abstract
Biomineralization by calcifying microalgae is a precisely controlled intracellular calcification process that produces delicate calcite scales (or coccoliths) in the coccolithophore Emiliania huxleyi (Haptophycea). Despite its importance in biogeochemical cycles and the marine environment globally, the underlying molecular mechanism of intracellular coccolith formation, which requires calcium, bicarbonate, and coccolith-polysaccharides, remains unclear. In E. huxleyi CCMP 371, we demonstrated that reducing the calcium concentration from 10 (ambient seawater) to 0.1 mM strongly restricted coccolith production, which was then recovered by adding 10 mM calcium, irrespective of inorganic phosphate conditions, indicating that coccolith production could be finely controlled by the calcium supply. Using this strain, we investigated the expression of differentially expressed genes (DEGs) to observe the cellular events induced by changes in calcium concentrations. Intriguingly, DEG analysis revealed that the phosphatidylinositol-specific phospholipase C (PI-PLC) gene was upregulated and coccolith production by cells was blocked by the PI-PLC inhibitor U73122 under conditions closely associated with calcium-induced calcification. These findings imply that PI-PLC plays an important role in the biomineralization process of the coccolithophore E. huxleyi.
Collapse
Affiliation(s)
- Onyou Nam
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea;
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; (I.S.); (Y.S.)
| | - Yoshihiro Shiraiwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; (I.S.); (Y.S.)
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea;
| |
Collapse
|
2
|
Nam O, Park JM, Lee H, Jin E. De novo transcriptome profile of coccolithophorid alga Emiliania huxleyi CCMP371 at different calcium concentrations with proteome analysis. PLoS One 2019; 14:e0221938. [PMID: 31465514 PMCID: PMC6715215 DOI: 10.1371/journal.pone.0221938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
The haptophyte alga Emiliania huxleyi is the most abundant coccolithophore in the modern ocean and produces elaborate calcite crystals, called coccolith, in a separate intracellular compartment known as the coccolith vesicle. Despite the importance of biomineralization in coccolithophores, the molecular mechanism underlying it remains unclear. Understanding this precise machinery at the molecular level will provide the knowledge needed to enable further manipulation of biomineralization. In our previous study, altering the calcium concentration modified the calcifying ability of E. huxleyi CCMP371. Therefore in this study, we tested E. huxleyi cells acclimated to three different calcium concentrations (0, 0.1, and 10 mM). To understand the whole transcript profile at different calcium concentrations, RNA-sequencing was performed and used for de novo assembly and annotation. The differentially expressed genes (DEGs) among the three different calcium concentrations were analyzed. The functional classification by gene ontology (GO) revealed that 'intrinsic component of membrane' was the most enriched of the GO terms at the ambient calcium concentration (10 mM) compared with the limited calcium concentrations (0 and 0.1 mM). Moreover, the DEGs in those comparisons were enriched mainly in 'secondary metabolites biosynthesis, transport and catabolism' and 'signal transduction mechanisms' in the KOG clusters and 'processing in endoplasmic reticulum', and 'ABC transporters' in the KEGG pathways. Furthermore, metabolic pathways involved in protein synthesis were enriched among the differentially expressed proteins. The results of this study provide a molecular profile for understanding the expression of transcripts and proteins in E. huxleyi at different calcium concentrations, which will help to identify the detailed mechanism of its calcification.
Collapse
Affiliation(s)
- Onyou Nam
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Jong-Moon Park
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Blueprints for the Next Generation of Bioinspired and Biomimetic Mineralised Composites for Bone Regeneration. Mar Drugs 2018; 16:md16080288. [PMID: 30127281 PMCID: PMC6117730 DOI: 10.3390/md16080288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022] Open
Abstract
Coccolithophores are unicellular marine phytoplankton, which produce intricate, tightly regulated, exoskeleton calcite structures. The formation of biogenic calcite occurs either intracellularly, forming ‘wheel-like’ calcite plates, or extracellularly, forming ‘tiled-like’ plates known as coccoliths. Secreted coccoliths then self-assemble into multiple layers to form the coccosphere, creating a protective wall around the organism. The cell wall hosts a variety of unique species-specific inorganic morphologies that cannot be replicated synthetically. Although biomineralisation has been extensively studied, it is still not fully understood. It is becoming more apparent that biologically controlled mineralisation is still an elusive goal. A key question to address is how nature goes from basic building blocks to the ultrafine, highly organised structures found in coccolithophores. A better understanding of coccolithophore biomineralisation will offer new insight into biomimetic and bioinspired synthesis of advanced, functionalised materials for bone tissue regeneration. The purpose of this review is to spark new interest in biomineralisation and gain new insight into coccolithophores from a material science perspective, drawing on existing knowledge from taxonomists, geologists, palaeontologists and phycologists.
Collapse
|
4
|
Genome variations associated with viral susceptibility and calcification in Emiliania huxleyi. PLoS One 2013; 8:e80684. [PMID: 24260453 PMCID: PMC3834299 DOI: 10.1371/journal.pone.0080684] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
Emiliania huxleyi, a key player in the global carbon cycle is one of the best studied coccolithophores with respect to biogeochemical cycles, climatology, and host-virus interactions. Strains of E. huxleyi show phenotypic plasticity regarding growth behaviour, light-response, calcification, acidification, and virus susceptibility. This phenomenon is likely a consequence of genomic differences, or transcriptomic responses, to environmental conditions or threats such as viral infections. We used an E. huxleyi genome microarray based on the sequenced strain CCMP1516 (reference strain) to perform comparative genomic hybridizations (CGH) of 16 E. huxleyi strains of different geographic origin. We investigated the genomic diversity and plasticity and focused on the identification of genes related to virus susceptibility and coccolith production (calcification). Among the tested 31940 gene models a core genome of 14628 genes was identified by hybridization among 16 E. huxleyi strains. 224 probes were characterized as specific for the reference strain CCMP1516. Compared to the sequenced E. huxleyi strain CCMP1516 variation in gene content of up to 30 percent among strains was observed. Comparison of core and non-core transcripts sets in terms of annotated functions reveals a broad, almost equal functional coverage over all KOG-categories of both transcript sets within the whole annotated genome. Within the variable (non-core) genome we identified genes associated with virus susceptibility and calcification. Genes associated with virus susceptibility include a Bax inhibitor-1 protein, three LRR receptor-like protein kinases, and mitogen-activated protein kinase. Our list of transcripts associated with coccolith production will stimulate further research, e.g. by genetic manipulation. In particular, the V-type proton ATPase 16 kDa proteolipid subunit is proposed to be a plausible target gene for further calcification studies.
Collapse
|
5
|
Jones BM, Edwards RJ, Skipp PJ, O'Connor CD, Iglesias-Rodriguez MD. Shotgun proteomic analysis of Emiliania huxleyi, a marine phytoplankton species of major biogeochemical importance. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:496-504. [PMID: 20924652 DOI: 10.1007/s10126-010-9320-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 09/07/2010] [Indexed: 05/30/2023]
Abstract
Emiliania huxleyi is a unicellular marine phytoplankton species known to play a significant role in global biogeochemistry. Through the dual roles of photosynthesis and production of calcium carbonate (calcification), carbon is transferred from the atmosphere to ocean sediments. Almost nothing is known about the molecular mechanisms that control calcification, a process that is tightly regulated within the cell. To initiate proteomic studies on this important and phylogenetically remote organism, we have devised efficient protein extraction protocols and developed a bioinformatics pipeline that allows the statistically robust assignment of proteins from MS/MS data using preexisting EST sequences. The bioinformatics tool, termed BUDAPEST (Bioinformatics Utility for Data Analysis of Proteomics using ESTs), is fully automated and was used to search against data generated from three strains. BUDAPEST increased the number of identifications over standard protein database searches from 37 to 99 proteins when data were amalgamated. Proteins involved in diverse cellular processes were uncovered. For example, experimental evidence was obtained for a novel type I polyketide synthase and for various photosystem components. The proteomic and bioinformatic approaches developed in this study are of wider applicability, particularly to the oceanographic community where genomic sequence data for species of interest are currently scarce.
Collapse
Affiliation(s)
- Bethan M Jones
- School of Ocean and Earth Science, National Oceanography Centre, Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK.
| | | | | | | | | |
Collapse
|
6
|
Richier S, Fiorini S, Kerros ME, von Dassow P, Gattuso JP. Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high pCO 2: from physiology to molecular level. MARINE BIOLOGY 2010; 158:551-560. [PMID: 24391258 PMCID: PMC3873069 DOI: 10.1007/s00227-010-1580-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 11/03/2010] [Indexed: 05/10/2023]
Abstract
The emergence of ocean acidification as a significant threat to calcifying organisms in marine ecosystems creates a pressing need to understand the physiological and molecular mechanisms by which calcification is affected by environmental parameters. We report here, for the first time, changes in gene expression induced by variations in pH/pCO2 in the widespread and abundant coccolithophore Emiliania huxleyi. Batch cultures were subjected to increased partial pressure of CO2 (pCO2; i.e. decreased pH), and the changes in expression of four functional gene classes directly or indirectly related to calcification were investigated. Increased pCO2 did not affect the calcification rate and only carbonic anhydrase transcripts exhibited a significant down-regulation. Our observation that elevated pCO2 induces only limited changes in the transcription of several transporters of calcium and bicarbonate gives new significant elements to understand cellular mechanisms underlying the early response of E. huxleyi to CO2-driven ocean acidification.
Collapse
Affiliation(s)
- Sophie Richier
- />INSU-CNRS, Laboratoire d’Océanographie de Villefranche, B.P. 28, 06234 Villefranche-sur-mer Cedex, France
- />UPMC University of Paris 06, Observatoire Océanologique de Villefranche, 06230 Villefranche-sur-mer, France
- />National Oceanography Centre, Southampton, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH UK
| | - Sarah Fiorini
- />INSU-CNRS, Laboratoire d’Océanographie de Villefranche, B.P. 28, 06234 Villefranche-sur-mer Cedex, France
- />UPMC University of Paris 06, Observatoire Océanologique de Villefranche, 06230 Villefranche-sur-mer, France
- />Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 140, 4400 AC Yerseke, The Netherlands
| | - Marie-Emmanuelle Kerros
- />INSU-CNRS, Laboratoire d’Océanographie de Villefranche, B.P. 28, 06234 Villefranche-sur-mer Cedex, France
- />UPMC University of Paris 06, Observatoire Océanologique de Villefranche, 06230 Villefranche-sur-mer, France
| | - Peter von Dassow
- />Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Catolica de Chile, Alameda #340, Santiago, Chile
| | - Jean-Pierre Gattuso
- />INSU-CNRS, Laboratoire d’Océanographie de Villefranche, B.P. 28, 06234 Villefranche-sur-mer Cedex, France
- />UPMC University of Paris 06, Observatoire Océanologique de Villefranche, 06230 Villefranche-sur-mer, France
| |
Collapse
|
7
|
Garbeva P, de Boer W. Inter-specific interactions between carbon-limited soil bacteria affect behavior and gene expression. MICROBIAL ECOLOGY 2009; 58:36-46. [PMID: 19267150 DOI: 10.1007/s00248-009-9502-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 02/11/2009] [Indexed: 05/16/2023]
Abstract
Recent publications indicate that inter-specific interactions between soil bacteria may strongly affect the behavior of the strains involved, e.g., by increased production of antibiotics or extracellular enzymes. This may point at an enhanced competitive ability due to inter-specific triggering of gene expression. However, it is not known if such inter-specific interactions also occur during competition for carbon which is the normal situation in soil. Here, we report on competitive interactions between two taxonomically non-related bacterial strains, Pseudomonas sp. A21 and Pedobacter sp. V48, that were isolated from a dune soil. The strains showed strong effects on each other's behavior and gene expression patterns when growing together under carbon-limited conditions on agar. The most pronounced observed visual changes in mixed cultures as compared to monocultures were (1) strong inhibition of a bioindicator fungus, suggesting the production of a broad-spectrum antibiotic, and (2) the occurrence of gliding-like movement of Pedobacter cells. Two independent techniques, namely random arbitrary primed-PCR (RAP-PCR) and suppressive subtractive hybridization (SSH), identified in total 24 genes that had higher expression in mixed cultures compared to monocultures. Microbial interactions were clearly bidirectional, as differentially expressed genes were detected for both bacteria in mixed cultures. Sequence analysis of the differentially expressed genes indicated that several of them were most related to genes involved in motility and chemotaxis, secondary metabolite production and two-component signal transduction systems. The gene expression patterns suggest an interference competition strategy by the Pseudomonas strain and an escape/explorative strategy by the Pedobacter strain during confrontation with each other. Our results show that the bacterial strains can distinguish between intra- and inter-specific carbon competition.
Collapse
Affiliation(s)
- Paolina Garbeva
- Netherlands Institute of Ecology (NIOO-KNAW), Center for Terrestrial Ecology, Heteren, The Netherlands.
| | | |
Collapse
|
8
|
Light-dependent transcriptional regulation of genes of biogeochemical interest in the diploid and haploid life cycle stages of Emiliania huxleyi. Appl Environ Microbiol 2009; 75:3366-9. [PMID: 19304825 DOI: 10.1128/aem.02737-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of genes of biogeochemical interest in calcifying and noncalcifying life stages of the coccolithophore Emiliania huxleyi was investigated. Transcripts potentially involved in calcification were tested through a light-dark cycle. These transcripts were more abundant in calcifying cells and were upregulated in the light. Their application as potential candidates for in situ biogeochemical proxies is also suggested.
Collapse
|
9
|
Grossman AR. In the Grip of Algal Genomics. TRANSGENIC MICROALGAE AS GREEN CELL FACTORIES 2008; 616:54-76. [DOI: 10.1007/978-0-387-75532-8_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Fujiwara S, Hirokawa Y, Takatsuka Y, Suda K, Asamizu E, Takayanagi T, Shibata D, Tabata S, Tsuzuki M. Gene expression profiling of coccolith-bearing cells and naked cells in haptophyte Pleurochrysis haptonemofera with a cDNA macroarray system. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:550-60. [PMID: 17659451 DOI: 10.1007/s10126-007-9039-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 03/05/2007] [Indexed: 05/16/2023]
Abstract
Pleurochrysis haptonemofera is a unicellular marine coccolithophorid that has calcified scales, coccoliths, on the cell surface. Some coccolithophorids including P. haptonemofera have a coccolith-bearing stage and a naked stage in their life cycles. To characterize genes involved in the coccolithogenesis, we generated a total of 9550 expressed sequence tags (EST) from a normalized cDNA library that was prepared using both coccolith-bearing cells (C-cells) and naked cells (N-cells), constructed a cDNA macroarray using the EST clones, and then analyzed the gene expression specificity in C-cells and N-cells. When cDNA clones whose expression ratio exceeded 3-fold were selected, as many as 180 clones were identified as C-cell-specific ones, while only 12 were found to be N-cell-specific ones. These clones were sequenced, assembled, and homology-searched against a public nonredundant protein database. As a result, they were grouped into 54 C-cell-specific and 6 N-cell-specific genes, and 59% and 50% of these genes exhibited significant similarity to those of other known proteins, respectively. To assess mRNA expression further, Northern hybridization was performed for 12 of the C-cell-specific genes and one of the N-cell-specific ones. These clones, together with the new cDNA macroarray, will provide a powerful tool for the future genome-wide functional analysis of uncharacterized genes related to the regulation of the calcification and life cycle of coccolithophorids.
Collapse
Affiliation(s)
- Shoko Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Quinn P, Bowers RM, Zhang X, Wahlund TM, Fanelli MA, Olszova D, Read BA. cDNA microarrays as a tool for identification of biomineralization proteins in the coccolithophorid Emiliania huxleyi (Haptophyta). Appl Environ Microbiol 2006; 72:5512-26. [PMID: 16885305 PMCID: PMC1538752 DOI: 10.1128/aem.00343-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine unicellular coccolithophore algae produce species-specific calcite scales otherwise known as coccoliths. While the coccoliths and their elaborate architecture have attracted the attention of investigators from various scientific disciplines, our knowledge of the underpinnings of the process of biomineralization in this alga is still in its infancy. The processes of calcification and coccolithogenesis are highly regulated and likely to be complex, requiring coordinated expression of many genes and pathways. In this study, we have employed cDNA microarrays to investigate changes in gene expression associated with biomineralization in the most abundant coccolithophorid, Emiliania huxleyi. Expression profiling of cultures grown under calcifying and noncalcifying conditions has been carried out using cDNA microarrays corresponding to approximately 2,300 expressed sequence tags. A total of 127 significantly up- or down-regulated transcripts were identified using a P value of 0.01 and a change of >2.0-fold. Real-time reverse transcriptase PCR was used to test the overall validity of the microarray data, as well as the relevance of many of the proteins predicted to be associated with biomineralization, including a novel gamma-class carbonic anhydrase (A. R. Soto, H. Zheng, D. Shoemaker, J. Rodriguez, B. A. Read, and T. M. Wahlund, Appl. Environ. Microbiol. 72:5500-5511, 2006). Differentially regulated genes include those related to cellular metabolism, ion channels, transport proteins, vesicular trafficking, and cell signaling. The putative function of the vast majority of candidate transcripts could not be defined. Nonetheless, the data described herein represent profiles of the transcription changes associated with biomineralization-related pathways in E. huxleyi and have identified novel and potentially useful targets for more detailed analysis.
Collapse
Affiliation(s)
- Patrick Quinn
- Department of Biological Sciences, California State University-San Marcos, San Marcos, CA 92078, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Soto AR, Zheng H, Shoemaker D, Rodriguez J, Read BA, Wahlund TM. Identification and preliminary characterization of two cDNAs encoding unique carbonic anhydrases from the marine alga Emiliania huxleyi. Appl Environ Microbiol 2006; 72:5500-11. [PMID: 16885304 PMCID: PMC1538761 DOI: 10.1128/aem.00237-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 05/25/2006] [Indexed: 11/20/2022] Open
Abstract
Marine coccolithophorid algae are thought to play a significant role in carbon cycling due to their ability to incorporate dissolved inorganic carbon (DIC) into both calcite and photosynthetic products. Among coccolithophorids, Emiliania huxleyi is the most prolific, forming massive blooms that affect the global environment. In addition to its ecological importance, the elaborate calcite structures (coccoliths) are being investigated for the design of potential materials for science and biotechnological devices. To date, most of the research focus in this organism has involved the partitioning of DIC between calcification and photosynthesis, primarily using measurements of an external versus internal carbonic anhydrase (CA) activity under defined conditions. The actual genes, proteins, and pathways employed in these processes have not been identified and characterized (see the work of Quinn et al. in this issue [P. Quinn, R. M. Bowers, X. Zhang, T. M. Wahlund, M. A. Fanelli, D. Olszova, and B. A. Read, Appl. Environ. Microbiol. 72:5512-5526, 2006]). In this study, the cloning and preliminary characterization of two genetically distinct carbonic anhydrase cDNAs are described. Phylogenetic analysis indicated that these two genes belonged to the gamma (gamma-EhCA2) and delta (delta-EhCA1) classes of carbonic anhydrases. The deduced amino acid sequence of delta-EhCA1 revealed that it encodes a protein of 702 amino acids (aa) (ca. 77.3 kDa), with a transmembrane N-terminal region of 373 aa and an in-frame C-terminal open reading frame of 329 aa that defines the CA region. The gamma-EhCA2 protein was 235 aa in length (ca. 24.9 kDa) and was successfully expressed in Escherichia coli BL21(DE3) and purified as an active recombinant CA. The expression levels of each transcript from quantitative reverse transcription-PCR experiments under bicarbonate limitation and over a 24-h time course suggest that these isozymes perform different functions in E. huxleyi.
Collapse
Affiliation(s)
- Amelia R Soto
- Department of Biological Sciences, California State University-San Marcos, San Marcos, CA 92096-0001, USA
| | | | | | | | | | | |
Collapse
|
13
|
Dyhrman ST, Haley ST, Birkeland SR, Wurch LL, Cipriano MJ, McArthur AG. Long serial analysis of gene expression for gene discovery and transcriptome profiling in the widespread marine coccolithophore Emiliania huxleyi. Appl Environ Microbiol 2006; 72:252-60. [PMID: 16391051 PMCID: PMC1352234 DOI: 10.1128/aem.72.1.252-260.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 09/21/2005] [Indexed: 11/20/2022] Open
Abstract
The abundant and widespread coccolithophore Emiliania huxleyi plays an important role in mediating CO2 exchange between the ocean and the atmosphere through its impact on marine photosynthesis and calcification. Here, we use long serial analysis of gene expression (SAGE) to identify E. huxleyi genes responsive to nitrogen (N) or phosphorus (P) starvation. Long SAGE is an elegant approach for examining quantitative and comprehensive gene expression patterns without a priori knowledge of gene sequences via the detection of 21-bp nucleotide sequence tags. E. huxleyi appears to have a robust transcriptional-level response to macronutrient deficiency, with 42 tags uniquely present or up-regulated twofold or greater in the N-starved library and 128 tags uniquely present or up-regulated twofold or greater in the P-starved library. The expression patterns of several tags were validated with reverse transcriptase PCR. Roughly 48% of these differentially expressed tags could be mapped to publicly available genomic or expressed sequence tag (EST) sequence data. For example, in the P-starved library a number of the tags mapped to genes with a role in P scavenging, including a putative phosphate-repressible permease and a putative polyphosphate synthetase. In short, the long SAGE analyses have (i) identified many new differentially regulated gene sequences, (ii) assigned regulation data to EST sequences with no database homology and unknown function, and (iii) highlighted previously uncharacterized aspects of E. huxleyi N and P physiology. To this end, our long SAGE libraries provide a new public resource for gene discovery and transcriptional analysis in this biogeochemically important marine organism.
Collapse
Affiliation(s)
- Sonya T Dyhrman
- Biology Department MS#32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | | | | | | | | | |
Collapse
|