1
|
Waditee-Sirisattha R, Kageyama H. Novel NhaC Na +/H + antiporter in cyanobacteria contributes to key molecular processes for salt tolerance. PLANT MOLECULAR BIOLOGY 2024; 114:111. [PMID: 39404982 DOI: 10.1007/s11103-024-01510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
Genome mining has revealed the halotolerant cyanobacterium Halothece sp. PCC7418 harbors considerable enrichment in the ion transport gene family for putative Na+/H+ antiporters. Here, we compared transcriptomic profiles of these encoding genes under various abiotic stresses and discovered that Halothece NhaC (hnhaC) was one of 24 genes drastically upregulated under salt stress. Critical roles of HnhaC in salt-stress protection and response were identified by a complementation assay using the salt-sensitive mutant Escherichia coli strain TO114. Expression of HnhaC rendered this mutant more tolerant to high concentrations of NaCl and LiCl. Antiporter activity assays showed that HnhaC protein predominantly exhibited Na+/H+ and Li+/H+ antiporter activities under neutral or alkaline pH conditions. Furthermore, expression of HnhaC conferred adaptive benefits onto E. coli by enabling a conditional filamentation phenotype. Dissecting the molecular mechanism of this phenotype revealed that differentially expressed genes were associated with clusters of SOS-cell division inhibitor, SOS response repair, and Z-associated proteins. Together, these results strongly indicate that HnhaC is an Na+/H+ antiporter that contributes to salt tolerance. The ubiquitous existence of several Na+/H+ antiporters represents a complex molecular system in halotolerant cyanobacteria, which can be deployed differently in response to growth and to environmental stresses.
Collapse
Affiliation(s)
- Rungaroon Waditee-Sirisattha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Hakuto Kageyama
- Department of Chemistry, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi, 468-8502, Japan.
- Graduate School of Environmental and Human Sciences, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi, 468-8502, Japan.
| |
Collapse
|
2
|
Kageyama H, Waditee-Sirisattha R. Halotolerance mechanisms in salt‑tolerant cyanobacteria. ADVANCES IN APPLIED MICROBIOLOGY 2023; 124:55-117. [PMID: 37597948 DOI: 10.1016/bs.aambs.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Cyanobacteria are ubiquitously distributed in nature and are the most abundant photoautotrophs on Earth. Their long evolutionary history reveals that cyanobacteria have a remarkable capacity and strong adaptive tendencies to thrive in a variety of conditions. Thus, they can survive successfully, especially in harsh environmental conditions such as salty environments, high radiation, or extreme temperatures. Among others, salt stress because of excessive salt accumulation in salty environments, is the most common abiotic stress in nature and hampers agricultural growth and productivity worldwide. These detrimental effects point to the importance of understanding the molecular mechanisms underlying the salt stress response. While it is generally accepted that the stress response mechanism is a complex network, fewer efforts have been made to represent it as a network. Substantial evidence revealed that salt-tolerant cyanobacteria have evolved genomic specific mechanisms and high adaptability in response to environmental changes. For example, extended gene families and/or clusters of genes encoding proteins involved in the adaptation to high salinity have been collectively reported. This chapter focuses on recent advances and provides an overview of the molecular basis of halotolerance mechanisms in salt‑tolerant cyanobacteria as well as multiple regulatory pathways. We elaborate on the major protective mechanisms, molecular mechanisms associated with halotolerance, and the global transcriptional landscape to provide a gateway to uncover gene regulation principles. Both knowledge and omics approaches are utilized in this chapter to decipher the mechanistic insights into halotolerance. Collectively, this chapter would have a profound impact on providing a comprehensive understanding of halotolerance in salt‑tolerant cyanobacteria.
Collapse
Affiliation(s)
- Hakuto Kageyama
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, Japan; Department of Chemistry, Faculty of Science and Technology, Meijo University, Nagoya, Japan.
| | | |
Collapse
|
3
|
Waditee-Sirisattha R, Ito H, Kageyama H. Global transcriptional and circadian regulation in a halotolerant cyanobacterium Halothece sp. PCC7418. Sci Rep 2022; 12:13190. [PMID: 35962002 PMCID: PMC9374696 DOI: 10.1038/s41598-022-17406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Substantial evidence has been accumulated about the molecular basis underlying halotolerance; however, insights into the regulatory networks for relevant genes and mechanisms of their interplay remain elusive. Here, we present a comprehensive transcriptome investigation, using RNA sequencing, of specific metabolic pathways and networks in a halotolerant cyanobacterium, Halothece sp. PCC7418, including the circadian rhythm profile. Dissecting the transcriptome presented the intracellular regulation of gene expressions, which was linked with ion homeostasis, protein homeostasis, biosynthesis of compatible solutes, and signal transduction, for adaptations to high-salinity environments. The efficient production and distribution of energy were also implicated in this acclimation process. Furthermore, we found that high-salinity environments had a dramatic effect on the global transcriptional expression regulated by the circadian clock. Our findings can provide a comprehensive transcriptome for elucidating the molecular mechanisms underlying halotolerance in cyanobacteria.
Collapse
Affiliation(s)
- Rungaroon Waditee-Sirisattha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Hiroshi Ito
- Faculty of Design, Kyushu University, Fukuoka, 815-8540, Japan.
| | - Hakuto Kageyama
- Department of Chemistry, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi, 468-8502, Japan. .,Graduate School of Environmental and Human Sciences, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi, 468-8502, Japan.
| |
Collapse
|
4
|
Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization. Biotechnol Adv 2020; 43:107578. [PMID: 32553809 DOI: 10.1016/j.biotechadv.2020.107578] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/17/2020] [Accepted: 06/05/2020] [Indexed: 02/04/2023]
Abstract
Photosynthetic cyanobacteria are capable of utilizing sunlight and CO2 as sole energy and carbon sources, respectively. With genetically modified cyanobacteria being used as a promising chassis to produce various biofuels and chemicals in recent years, future large-scale cultivation of cyanobacteria would have to be performed in seawater, since freshwater supplies of the earth are very limiting. However, high concentration of salt is known to inhibit the growth of cyanobacteria. This review aims at comparing the mechanisms that different cyanobacteria respond to salt stress, and then summarizing various strategies of developing salt-tolerant cyanobacteria for seawater cultivation, including the utilization of halotolerant cyanobacteria and the engineering of salt-tolerant freshwater cyanobacteria. In addition, the challenges and potential strategies related to further improving salt tolerance in cyanobacteria are also discussed.
Collapse
|
5
|
Structural and kinetic properties of serine hydroxymethyltransferase from the halophytic cyanobacterium Aphanothece halophytica provide a rationale for salt tolerance. Int J Biol Macromol 2020; 159:517-529. [PMID: 32417544 DOI: 10.1016/j.ijbiomac.2020.05.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/22/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) is a pyridoxal 5'-phosphate-dependent enzyme that plays a pivotal role in cellular one‑carbon metabolism. In plants and cyanobacteria, this enzyme is also involved in photorespiration and confers salt tolerance, as in the case of SHMT from the halophilic cyanobacterium Aphanothece halophytica (AhSHMT). We have characterized the catalytic properties of AhSHMT in different salt and pH conditions. Although the kinetic properties of AhSHMT correlate with those of the mesophilic orthologue from Escherichia coli, AhSHMT appears more catalytically efficient, especially in presence of salt. Our studies also reveal substrate inhibition, previously unobserved in AhSHMT. Furthermore, addition of the osmoprotectant glycine betaine under salt conditions has a distinct positive effect on AhSHMT activity. The crystal structures of AhSHMT in three forms, as internal aldimine, as external aldimine with the l-serine substrate, and as a covalent complex with malonate, give structural insights on the possible role of specific amino acid residues implicated in the halophilic features of AhSHMT. Importantly, we observed that overexpression of the gene encoding SHMT, independently from its origin, increases the capability of E. coli to grow in high salt conditions, suggesting that the catalytic activity of this enzyme in itself plays a fundamental role in salt tolerance.
Collapse
|
6
|
Nature and bioprospecting of haloalkaliphilics: a review. World J Microbiol Biotechnol 2020; 36:66. [DOI: 10.1007/s11274-020-02841-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/14/2020] [Indexed: 01/07/2023]
|
7
|
Lebre PH, Cowan DA. Genomics of Alkaliphiles. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:135-155. [PMID: 30796503 DOI: 10.1007/10_2018_83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alkalinicity presents a challenge for life due to a "reversed" proton gradient that is unfavourable to many bioenergetic processes across the membranes of microorganisms. Despite this, many bacteria, archaea, and eukaryotes, collectively termed alkaliphiles, are adapted to life in alkaline ecosystems and are of great scientific and biotechnological interest due to their niche specialization and ability to produce highly stable enzymes. Advances in next-generation sequencing technologies have propelled not only the genomic characterization of many alkaliphilic microorganisms that have been isolated from nature alkaline sources but also our understanding of the functional relationships between different taxa in microbial communities living in these ecosystems. In this review, we discuss the genetics and molecular biology of alkaliphiles from an "omics" point of view, focusing on how metagenomics and transcriptomics have contributed to our understanding of these extremophiles. Graphical Abstract.
Collapse
Affiliation(s)
- Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
8
|
Zhang B, Chen X, Lu X, Shu N, Wang X, Yang X, Wang S, Wang J, Guo L, Wang D, Ye W. Transcriptome Analysis of Gossypium hirsutum L. Reveals Different Mechanisms among NaCl, NaOH and Na 2CO 3 Stress Tolerance. Sci Rep 2018; 8:13527. [PMID: 30202076 PMCID: PMC6131252 DOI: 10.1038/s41598-018-31668-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 08/23/2018] [Indexed: 11/29/2022] Open
Abstract
As an important source of fiber and edible oil, cotton has great economic value. In comparison to their individual studies, association and differentiation between salt and alkaline tolerance has not been focused yet by scientists. We have used next-generation RNA-Seq technique to analyze transcriptional changes under salt and alkaline stresses in cotton. Overall, 25,929 and 6,564 differentially expressed genes (DEGs) were identified in roots and leaves, respectively. Gene functional annotation showed that genes involving ionic homeostasis were significantly up-regulated under NaCl stress and Na2CO3 stress, and genes enriched in starch and sucrose metabolism were up-regulated under NaOH stress and Na2CO3 stress. Furthermore, a synergistic enhancing effect between NaCl and NaOH stress was also observed in this study. Likewise, our studies indicate further that genes related with starch and sucrose metabolism were regulated to respond to the high pH under Na2CO3 stress, inducing plant hormone signal transduction and key enzyme reactive oxygen species (ROS) activity to respond to ionic toxicity and intracellular ionic homeostasis. By analyzing the expression profiles of diverse tissues under different salt and alkaline stresses, this study provides valuable ideas for genetic improvements of cotton tolerance to salt-alkaline stress.
Collapse
Affiliation(s)
- Binglei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Na Shu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Xiaoge Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Xiaomin Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Lixue Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China.
| |
Collapse
|
9
|
Tailoring cyanobacterial cell factory for improved industrial properties. Biotechnol Adv 2018; 36:430-442. [DOI: 10.1016/j.biotechadv.2018.01.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 11/20/2022]
|
10
|
Nakanishi K, Deuchi K. Culture of a high-chlorophyll-producing and halotolerant Chlorella vulgaris. J Biosci Bioeng 2013; 117:617-9. [PMID: 24331982 DOI: 10.1016/j.jbiosc.2013.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/26/2013] [Accepted: 10/29/2013] [Indexed: 10/25/2022]
Abstract
In order to increase the value of freshwater algae as raw ingredients for health foods and feed for seawater-based farmed fish, we sought to breed high-chlorophyll halotolerant Chlorella with the objective of generating strains with both high chlorophyll concentrations (≥ 5%) and halotolerance (up to 1% NaCl). We used the Chlorella vulgaris K strain in our research institute culture collection and induced mutations with UV irradiation and acriflavine which is known to effect mutations of mitochondrial DNA that are associated with chlorophyll production. Screenings were conducted on seawater-based "For Chlorella spp." (FC) agar medium, and dark-green-colored colonies were visually selected by macroscopic inspection. We obtained a high-chlorophyll halotolerant strain (designated C. vulgaris M-207A7) that had a chlorophyll concentration of 6.7% (d.m.), a level at least three-fold higher than that of K strain. This isolate also exhibited a greater survival rate in seawater that of K strain.
Collapse
Affiliation(s)
- Koichi Nakanishi
- Research Laboratory for Beverage Technology, Kirin Company Limited, Technovillage 3F, 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8628, Japan.
| | - Keiji Deuchi
- Research Laboratory for Beverage Technology, Kirin Company Limited, Technovillage 3F, 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8628, Japan
| |
Collapse
|
11
|
Adaptation in Haloalkaliphiles and Natronophilic Bacteria. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Bhargava S, Kachouli RK, Maithil R, Kaithwas V. Evidence for a sodium-dependent proline and glycine-betaine uptake in the cyanobacterium Nostoc muscorum. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261711040035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium. Appl Environ Microbiol 2011; 77:5178-83. [PMID: 21666012 DOI: 10.1128/aem.00667-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alkaline phosphatases (APases) are important enzymes in organophosphate utilization. Three prokaryotic APase gene families, PhoA, PhoX, and PhoD, are known; however, their functional characterization in cyanobacteria largely remains to be clarified. In this study, we cloned the phoD gene from a halotolerant cyanobacterium, Aphanothece halophytica (phoD(Ap)). The deduced protein, PhoD(Ap), contains Tat consensus motifs and a peptidase cleavage site at the N terminus. The PhoD(Ap) enzyme was activated by Ca(2+) and exhibited APase and phosphodiesterase (APDase) activities. Subcellular localization experiments revealed the secretion and processing of PhoD(Ap) in a transformed cyanobacterium. Expression of the phoD(Ap) gene in A. halophytica cells was upregulated not only by phosphorus (P) starvation but also under salt stress conditions. Our results suggest that A. halophytica cells possess a PhoD that participates in the assimilation of P under salinity stress.
Collapse
|
14
|
Soontharapirakkul K, Promden W, Yamada N, Kageyama H, Incharoensakdi A, Iwamoto-Kihara A, Takabe T. Halotolerant cyanobacterium Aphanothece halophytica contains an Na+-dependent F1F0-ATP synthase with a potential role in salt-stress tolerance. J Biol Chem 2011; 286:10169-76. [PMID: 21262962 DOI: 10.1074/jbc.m110.208892] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium that can grow in media of up to 3.0 m NaCl and pH 11. Here, we show that in addition to a typical H(+)-ATP synthase, Aphanothece halophytica contains a putative F(1)F(0)-type Na(+)-ATP synthase (ApNa(+)-ATPase) operon (ApNa(+)-atp). The operon consists of nine genes organized in the order of putative subunits β, ε, I, hypothetical protein, a, c, b, α, and γ. Homologous operons could also be found in some cyanobacteria such as Synechococcus sp. PCC 7002 and Acaryochloris marina MBIC11017. The ApNa(+)-atp operon was isolated from the A. halophytica genome and transferred into an Escherichia coli mutant DK8 (Δatp) deficient in ATP synthase. The inverted membrane vesicles of E. coli DK8 expressing ApNa(+)-ATPase exhibited Na(+)-dependent ATP hydrolysis activity, which was inhibited by monensin and tributyltin chloride, but not by the protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The Na(+) ion protected the inhibition of ApNa(+)-ATPase by N,N'-dicyclohexylcarbodiimide. The ATP synthesis activity was also observed using the Na(+)-loaded inverted membrane vesicles. Expression of the ApNa(+)-atp operon in the heterologous cyanobacterium Synechococcus sp. PCC 7942 showed its localization in the cytoplasmic membrane fractions and increased tolerance to salt stress. These results indicate that A. halophytica has additional Na(+)-dependent F(1)F(0)-ATPase in the cytoplasmic membrane playing a potential role in salt-stress tolerance.
Collapse
|
15
|
|
16
|
An Mrp-like cluster in the halotolerant cyanobacterium Aphanothece halophytica functions as a Na+/H+ antiporter. Appl Environ Microbiol 2009; 75:6626-9. [PMID: 19700555 DOI: 10.1128/aem.01387-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mrp homolog gene cluster mrpCD1D2EFGAB (Ap-mrp) was found in a halotolerant cyanobacterium, Aphanothece halophytica, amplified, and expressed in Escherichia coli mutant TO114. Ap-mrp complemented the salt-sensitive phenotype of TO114 and exhibited Na(+)/H(+) and Li(+)/H(+) exchange activities, indicating that Ap-Mrp functions as a Na(+)/H(+) antiporter.
Collapse
|
17
|
The Bacillus cereus GerN and GerT protein homologs have distinct roles in spore germination and outgrowth, respectively. J Bacteriol 2008; 190:6148-52. [PMID: 18641133 DOI: 10.1128/jb.00789-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GerT protein of Bacillus cereus shares 74% amino acid identity with its homolog GerN. The latter is a Na(+)/H(+)-K(+) antiporter that is required for normal spore germination in inosine. The germination properties of single and double mutants of B. cereus ATCC 10876 reveal that unlike GerN, which is required for all germination responses that involve the GerI germinant receptor, the GerT protein does not have a significant role in germination, although it is required for the residual GerI-mediated inosine germination response of a gerN mutant. In contrast, GerT has a significant role in outgrowth; gerT mutant spores do not outgrow efficiently under alkaline conditions and outgrow more slowly than the wild type in the presence of high NaCl concentrations. The GerT protein in B. cereus therefore contributes to the success of spore outgrowth from the germinated state during alkaline or Na(+) stress.
Collapse
|
18
|
Two members of a network of putative Na+/H+ antiporters are involved in salt and pH tolerance of the freshwater cyanobacterium Synechococcus elongatus. J Bacteriol 2008; 190:6318-29. [PMID: 18641132 DOI: 10.1128/jb.00696-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Synechococcus elongatus strain PCC 7942 is an alkaliphilic cyanobacterium that tolerates a relatively high salt concentration as a freshwater microorganism. Its genome sequence revealed seven genes, nha1 to nha7 (syn_pcc79420811, syn_pcc79421264, syn_pcc7942359, syn_pcc79420546, syn_pcc79420307, syn_pcc79422394, and syn_pcc79422186), and the deduced amino acid sequences encoded by these genes are similar to those of Na(+)/H(+) antiporters. The present work focused on molecular and functional characterization of these nha genes encoding Na(+)/H(+) antiporters. Our results show that of the nha genes expressed in Escherichia coli, only nha3 complemented the deficient Na(+)/H(+) antiporter activity of the Na(+)-sensitive TO114 recipient strain. Moreover, two of the cyanobacterial strains with separate disruptions in the nha genes (Deltanha1, Deltanha2, Deltanha3, Deltanha4, Deltanha5, and Deltanha7) had a phenotype different from that of the wild type. In particular, DeltanhA3 cells showed a high-salt- and alkaline-pH-sensitive phenotype, while Deltanha2 cells showed low salt and alkaline pH sensitivity. Finally, the transcriptional profile of the nha1 to nha7 genes, monitored using the real-time PCR technique, revealed that the nha6 gene is upregulated and the nha1 gene is downregulated under certain environmental conditions.
Collapse
|
19
|
Wei Y, Liu J, Ma Y, Krulwich TA. Three putative cation/proton antiporters from the soda lake alkaliphile Alkalimonas amylolytica N10 complement an alkali-sensitive Escherichia coli mutant. MICROBIOLOGY-SGM 2007; 153:2168-2179. [PMID: 17600061 PMCID: PMC2538799 DOI: 10.1099/mic.0.2007/007450-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Attempts to identify members of the antiporter complement of the alkali- and saline-adapted soda lake alkaliphile Alkalimonas amylolytica N10 have used screens of DNA libraries in antiporter-deficient Escherichia coli KNabc. Earlier screens used Na(+) or Li(+) for selection but only identified one NhaD-type antiporter whose properties were inconsistent with a robust role in pH homeostasis. Here, new screens using elevated pH for selection identified three other putative antiporter genes that conferred resistance to pH >or=8.5 as well as Na(+) resistance. The three predicted gene products were in the calcium/cation antiporter (CaCA), cation/proton antiporter-2 (CPA2) and cation/proton antiporter-1 (CPA1) families of membrane transporters, and were designated Aa-CaxA, Aa-KefB and Aa-NhaP respectively, reflecting homology within those families. Aa-CaxA conferred the poorest Na(+) resistance and also conferred modest Ca(2+) resistance. Aa-KefB and Aa-NhaP inhibited growth of a K(+) uptake-deficient E. coli mutant (TK2420), suggesting that they catalysed K(+) efflux. For Aa-NhaP, the reversibility of the growth inhibition by high K(+) concentrations depended upon an organic nitrogen source, e.g. glutamine, rather than ammonium. This suggests that as well as K(+) efflux is catalysed by Aa-NhaP. Vesicles of E. coli KNabc expressing Aa-NhaP, which conferred the strongest alkali resistance, exhibited K(+)/H(+) antiport activity in a pH range from 7.5 to 9.5, and with an apparent K(m) for K(+) of 0.5 mM at pH 8.0. The properties of this antiporter are consistent with the possibility that this soda lake alkaliphile uses K(+)( )/H(+) antiport as part of its alkaline pH homeostasis mechanism and part of its capacity to reduce potentially toxic accumulation of cytoplasmic K(+) or respectively, under conditions of high osmolarity or active amino acid catabolism.
Collapse
Affiliation(s)
- Yi Wei
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Jun Liu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Yanhe Ma
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | - Terry A Krulwich
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
20
|
Wiangnon K, Raksajit W, Incharoensakdi A. Presence of a Na+-stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophytica. FEMS Microbiol Lett 2007; 270:139-45. [PMID: 17302934 DOI: 10.1111/j.1574-6968.2007.00667.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aphanothece cells could take up Na(+) and this uptake was strongly inhibited by the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). Cells preloaded with Na(+) exhibited Na(+) extrusion ability upon energizing with glucose. Na(+) was also taken up by the plasma membranes supplied with ATP and the uptake was abolished by gramicidin D, monensin or Na(+)-ionophore. Orthovanadate and CCCP strongly inhibited Na(+) uptake, whereas N, N'-dicyclohexylcarbodiimide (DCCD) slightly inhibited the uptake. Plasma membranes could hydrolyse ATP in the presence of Na(+) but not with K(+), Ca(2+) and Li(+). The K(m) values for ATP and Na(+) were 1.66+/-0.12 and 25.0+/-1.8 mM, respectively, whereas the V(max) value was 0.66+/-0.05 mumol min(-1) mg(-1). Mg(2+) was required for ATPase activity whose optimal pH was 7.5. The ATPase was insensitive to N-ethylmaleimide, nitrate, thiocyanate, azide and ouabain, but was substantially inhibited by orthovanadate and DCCD. Amiloride, a Na(+)/H(+) antiporter inhibitor, and CCCP showed little or no effect. Gramicidin D and monensin stimulated ATPase activity. All these results suggest the existence of a P-type Na(+)-stimulated ATPase in Aphanothece halophytica. Plasma membranes from cells grown under salt stress condition showed higher ATPase activity than those from cells grown under nonstress condition.
Collapse
Affiliation(s)
- Kanjana Wiangnon
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|
21
|
Furrer EM, Ronchetti MF, Verrey F, Pos KM. Functional characterization of a NapA Na+/H+antiporter fromThermus thermophilus. FEBS Lett 2007; 581:572-8. [PMID: 17254570 DOI: 10.1016/j.febslet.2006.12.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 12/29/2006] [Indexed: 10/23/2022]
Abstract
Na(+)/H(+) antiporters are ubiquitous membrane proteins and play an important role in cell homeostasis. We amplified a gene encoding a member of the monovalent cation:proton antiporter-2 (CPA2) family (TC 2.A.37) from the Thermus thermophilus genome and expressed it in Escherichia coli. The gene product was identified as a member of the NapA subfamily and was found to be an active Na(+)(Li(+))/H(+) antiporter as it conferred resistance to the Na(+) and Li(+) sensitive strain E. coli EP432 (DeltanhaA, DeltanhaB) upon exposure to high concentration of these salts in the growth medium. Fluorescence measurements using the pH sensitive dye 9-amino-6-chloro-2-methoxyacridine in everted membrane vesicles of complemented E. coli EP432 showed high Li(+)/H(+) exchange activity at pH 6, but marginal Na(+)/H(+) antiport activity. Towards more alkaline conditions, Na(+)/H(+) exchange activity increased to a relative maximum at pH 8, where by contrast the Li(+)/H(+) exchange activity reached its relative minimum. Substitution of conserved residues D156 and D157 (located in the putative transmembrane helix 6) with Ala resulted in the complete loss of Na(+)/H(+) activity. Mutation of K305 (putative transmembrane helix 10) to Ala resulted in a compromised phenotype characterized by an increase in apparent K(m) for Na(+) (36 vs. 7.6 mM for the wildtype) and Li(+) (17 vs. 0.22 mM), In summary, the Na(+)/H(+) antiport activity profile of the NapA type transporter of T. thermophilus resembles that of NhaA from E. coli, whereas in contrast to NhaA the T. thermophilus NapA antiporter is characterized by high Li(+)/H(+) antiport activity at acidic pH.
Collapse
Affiliation(s)
- Esther M Furrer
- Institute of Physiology and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, Zürich, Switzerland
| | | | | | | |
Collapse
|
22
|
Laloknam S, Tanaka K, Buaboocha T, Waditee R, Incharoensakdi A, Hibino T, Tanaka Y, Takabe T. Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity. Appl Environ Microbiol 2006; 72:6018-26. [PMID: 16957224 PMCID: PMC1563673 DOI: 10.1128/aem.00733-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium which can grow in media of up to 3.0 M NaCl and pH 11. This cyanobacterium can synthesize betaine from glycine by three-step methylation using S-adenosylmethionine as a methyl donor. To unveil the mechanism of betaine uptake and efflux in this alkaliphile, we isolated and characterized a betaine transporter. A gene encoding a protein (BetT(A. halophytica)) that belongs to the betaine-choline-carnitine transporter (BCCT) family was isolated. Although the predicted isoelectric pH of a typical BCCT family transporter, OpuD of Bacillus subtilis, is basic, 9.54, that of BetT(A. halophytica) is acidic, 4.58. BetT(A. halophytica) specifically catalyzed the transport of betaine. Choline, gamma-aminobutyric acid, betaine aldehyde, sarcosine, dimethylglycine, and amino acids such as proline did not compete for the uptake of betaine by BetT(A. halophytica). Sodium markedly enhanced betaine uptake rates, whereas potassium and other cations showed no effect, suggesting that BetT(A. halophytica) is a Na(+)-betaine symporter. Betaine uptake activities of BetT(A. halophytica) were high at alkaline pH values, with the optimum pH around 9.0. Freshwater Synechococcus cells overexpressing BetT(A. halophytica) showed NaCl-activated betaine uptake activities with enhanced salt tolerance, allowing growth in seawater supplemented with betaine. Kinetic properties of betaine uptake in Synechococcus cells overexpressing BetT(A. halophytica) were similar to those in A. halophytica cells. These findings indicate that A. halophytica contains a Na(+)-betaine symporter that contributes to the salt stress tolerance at alkaline pH. BetT(A. halophytica) is the first identified transporter for compatible solutes in cyanobacteria.
Collapse
Affiliation(s)
- Surasak Laloknam
- Research Institute of Meijo University, Tenpaku-ku, Nagoya 468-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|