1
|
Rey-Velasco X, Deulofeu-Capo O, Sanz-Sáez I, Cardelús C, Ferrera I, Gasol JM, Sánchez O. Expanding success in the isolation of abundant marine bacteria after reduction in grazing and viral pressure and increase in nutrient availability. Microbiol Spectr 2023; 11:e0089023. [PMID: 37747249 PMCID: PMC10580928 DOI: 10.1128/spectrum.00890-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Isolation of microorganisms is a useful approach to gathering knowledge about their genomic properties, physiology, and ecology, in addition to allowing the characterization of novel taxa. We performed an extensive isolation effort on samples from seawater manipulation experiments that were carried out during the four astronomical seasons in a coastal site of the northwest Mediterranean to evaluate the impact of grazing, viral mortality, resource competition reduction, and light presence/absence on bacterioplankton growth. Isolates were retrieved using two growth media, and their full 16S rRNA gene was sequenced to assess their identity and calculate their culturability across seasons and experimental conditions. A total of 1,643 isolates were obtained, mainly affiliated to the classes Gammaproteobacteria (44%), Alphaproteobacteria (26%), and Bacteroidia (17%). Isolates pertaining to class Gammaproteobacteria were the most abundant in all experiments, while Bacteroidia were preferentially enriched in the treatments with reduced grazing. Sixty-one isolates had a similarity below 97% to cultured taxa and are thus putatively novel. Comparison of isolate sequences with 16S rRNA gene amplicon sequences from the same samples showed that the percentage of reads corresponding to isolates was 21.4% within the whole data set, with dramatic increases in the summer virus-reduced (71%) and diluted (47%) treatments. In fact, we were able to isolate the top 10 abundant taxa in several experiments and from the whole data set. We also show that top-down and bottom-up controls differentially affect taxa in terms of culturability. Our results indicate that culturing marine bacteria using agar plates can be successful in certain ecological situations. IMPORTANCE Bottom-up and top-down controls greatly influence marine microbial community composition and dynamics, which in turn have effects on their culturability. We isolated a high amount of heterotrophic bacterial strains from experiments where seawater environmental conditions had been manipulated and found that decreasing grazing and viral pressure as well as rising nutrient availability are key factors increasing the success in culturing marine bacteria. Our data hint at factors influencing culturability and underpin bacterial cultures as a powerful way to discover new taxa.
Collapse
Affiliation(s)
| | - Ona Deulofeu-Capo
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| | - Isabel Sanz-Sáez
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
- Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Clara Cardelús
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| | - Isabel Ferrera
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, (IEO-CSIC), Fuengirola, Málaga, Spain
| | - Josep M. Gasol
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| | - Olga Sánchez
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
2
|
Seo EY, Jung D, Epstein SS, Zhang W, Owen JS, Baba H, Yamamoto A, Harada M, Nakashimada Y, Kato S, Aoi Y, He S. A targeted liquid cultivation method for previously uncultured non-colony forming microbes. Front Microbiol 2023; 14:1194466. [PMID: 37362942 PMCID: PMC10288195 DOI: 10.3389/fmicb.2023.1194466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
A large number of microbes are not able to form colonies using agar-plating methods, which is one of the reasons that cultivation based on solid media leaves the majority of microbial diversity in the environment inaccessible. We developed a new Non-Colony-Forming Liquid Cultivation method (NCFLC) that can selectively isolate non-colony-forming microbes that exclusively grow in liquid culture. The NCFLC method involves physically separating cells using dilution-to-extinction (DTE) cultivation and then selecting those that could not grow on a solid medium. The NCFLC was applied to marine samples from a coastal intertidal zone and soil samples from a forest area, and the results were compared with those from the standard direct plating method (SDP). The NCFLC yielded fastidious bacteria from marine samples such as Acidobacteriota, Epsilonproteobacteria, Oligoflexia, and Verrucomicrobiota. Furthermore, 62% of the isolated strains were potential new species, whereas only 10% were novel species from SDP. From soil samples, isolates belonging to Acidobacteriota and Armatimonadota (which are known as rare species among identified isolates) were exclusively isolated by NCFLC. Colony formation capabilities of isolates cultivated by NCFLC were tested using solid agar plates, among which approximately one-third of the isolates were non-colony-forming, approximately half-formed micro-colonies, and only a minority could form ordinary size colonies. This indicates that the majority of the strains cultivated by NCFLC were previously uncultured microbial species unavailable using the SDP method. The NCFCL method described here can serve as a new approach to accessing the hidden microbial dark matter.
Collapse
Affiliation(s)
- Eun-Young Seo
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, China
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
| | - Dawoon Jung
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, China
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
| | - Slava S. Epstein
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Weiyan Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Jeffrey S. Owen
- Department of Environmental Science, Hankuk University of Foreign Studies, Yongin, Republic of Korea
| | - Hiroaki Baba
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Akina Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Mifuyu Harada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Setsu Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Yoshiteru Aoi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, China
| |
Collapse
|
3
|
Gurunathan R, Rathinam AJ, Hwang JS, Dahms HU. Shallow Hydrothermal Vent Bacteria and Their Secondary Metabolites with a Particular Focus on Bacillus. Mar Drugs 2021; 19:681. [PMID: 34940680 PMCID: PMC8704404 DOI: 10.3390/md19120681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022] Open
Abstract
Extreme environments are hostile for most organisms, but such habitats represent suitable settings to be inhabited by specialized microorganisms. A marine shallow-water hydrothermal vent field is located offshore in northeast Taiwan, near the shallow shore of the southeast of Kueishantao Island (121°55' E, 24°50' N). Research on extremophilic microorganisms makes use of the biotechnological potential associated with such microorganisms and their cellular products. With the notion that extremophiles are capable of surviving in extreme environments, it is assumed that their metabolites are adapted to function optimally under such conditions. As extremophiles, they need specific culture conditions, and only a fraction of species from the original samples are recovered in culture. We used different non-selective and selective media to isolate bacterial species associated with the hydrothermal vent crab Xenograpsus testudinatus and the sediments of its habitat. The highest number of colonies was obtained from Zobell marine agar plates with an overall number of 29 genetically distinct isolates. 16sRNA gene sequencing using the Sanger sequencing method revealed that most of the bacterial species belonged to the phylum Firmicutes and the class Bacilli. The present study indicates that hydrothermal vent bacteria and their secondary metabolites may play an important role for the reconstruction of the evolutionary history of the phylum Procaryota.
Collapse
Grants
- MOST 107-2621-M-019-001, MOST 108-2621-M-019-003, MOST 109-2621-M-019-002 and MOST 110-2621-M-019-001 Ministry of Science and Technology, Taiwan.
- 109J13801-51, 110J13801-51 Center of Excellence for Ocean Engineering, NTOU, Taiwan.
- MOST 107-2621-M-037-001, MOST 108-2621-M-037-001, and MOST 109-2621-M-037-001 Ministry of Science and Technology, Taiwan.
- KMU-TC108A01 and KMU-TC108A02 Kaohsiung Medical University Research Center, Taiwan.
Collapse
Affiliation(s)
- Revathi Gurunathan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Arthur James Rathinam
- Department of Marine Science, Bharathidasan University, Tiruchirapalli 620024, India
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
4
|
Pan Y, Ren Q, Chen P, Wu J, Wu Z, Zhang G. Insight Into Microbial Community Aerosols Associated With Electronic Waste Handling Facilities by Culture-Dependent and Culture-Independent Methods. Front Public Health 2021; 9:657784. [PMID: 33889561 PMCID: PMC8055949 DOI: 10.3389/fpubh.2021.657784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Airborne microorganisms in the waste associated environments are more active and complex compared to other places. However, the diversity and structure of airborne bacteria in waste-associated environments are still not clearly understood. The purpose of this study was to assess airborne bacterial community in electronic waste dismantling site and a waste transfer station based on culture-dependent and culture-independent methods. A total of 229 isolates were obtained from four airborne sites collected from residential area, electronic industrial park, and office area in or near an electronic waste dismantling site and a waste transfer station in Southern China in the morning, afternoon, and evening. Most of the isolates were isolated from air for the first time and 14 potentially novel species were identified by Sanger sequencing. Bacterial communities in waste-associated bioaerosols were predominated by Proteobacteria and Bacteroidetes. Abundant genera (>1%) included Paracaedibacteraceae (uncultured EF667926), Ralstonia, Chroococcidiopsis, Chitinophagaceae (uncultured FN428761), Sphingobium, and Heliimonas. One-third of the species in these genera were uncultured approximately. Differences community structure existed in airborne bacterial diversity among different sampling sites. These results showed that waste-associated environments have unique bacterial diversity. Further studies on such environments could provide new insights into bacterial community.
Collapse
Affiliation(s)
- Yimin Pan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qiaoqiao Ren
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Pei Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiguo Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhendong Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guoxia Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| |
Collapse
|
5
|
Stabili L, Rizzo L, Basso L, Marzano M, Fosso B, Pesole G, Piraino S. The Microbial Community Associated with Rhizostoma pulmo: Ecological Significance and Potential Consequences for Marine Organisms and Human Health. Mar Drugs 2020; 18:md18090437. [PMID: 32839397 PMCID: PMC7551628 DOI: 10.3390/md18090437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
Jellyfish blooms are frequent and widespread in coastal areas worldwide, often associated with significant ecological and socio-economic consequences. Recent studies have also suggested cnidarian jellyfish may act as vectors of bacterial pathogens. The scyphomedusa Rhizostoma pulmo is an outbreak-forming jellyfish widely occurring across the Mediterranean basin. Using combination of culture-based approaches and a high-throughput amplicon sequencing (HTS), and based on available knowledge on a warm-affinity jellyfish-associated microbiome, we compared the microbial community associated with R. pulmo adult jellyfish in the Gulf of Taranto (Ionian Sea) between summer (July 2016) and winter (February 2017) sampling periods. The jellyfish-associated microbiota was investigated in three distinct compartments, namely umbrella, oral arms, and the mucus secretion. Actinobacteria, Bacteroidetes, Chlamydiae, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Fusobacteria, Planctomycetes, Proteobacteria, Rhodothermaeota, Spirochaetes, Tenericutes, and Thaumarchaeota were the phyla isolated from all the three R. pulmo compartments in the sampling times. In particular, the main genera Mycoplasma and Spiroplasma, belonging to the class Mollicutes (phylum Tenericutes), have been identified in all the three jellyfish compartments. The taxonomic microbial data were coupled with metabolic profiles resulting from the utilization of 31 different carbon sources by the BIOLOG Eco-Plate system. Microorganisms associated with mucus are characterized by great diversity. The counts of culturable heterotrophic bacteria and potential metabolic activities are also remarkable. Results are discussed in terms of R. pulmo ecology, the potential health hazard for marine and human life as well as the potential biotechnological applications related to the associated microbiome.
Collapse
Affiliation(s)
- Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
- Institute of Water Research of the National Research Council, S.S. di Taranto, Via Roma 3, 74123 Taranto, Italy
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Lucia Rizzo
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Lorena Basso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
| | - Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, 70121 Bari, Italy
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
- CoNISMa, Piazzale Flaminio 9, 00196 Rome, Italy
| |
Collapse
|
6
|
|
7
|
Basso L, Rizzo L, Marzano M, Intranuovo M, Fosso B, Pesole G, Piraino S, Stabili L. Jellyfish summer outbreaks as bacterial vectors and potential hazards for marine animals and humans health? The case of Rhizostoma pulmo (Scyphozoa, Cnidaria). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:305-318. [PMID: 31349170 DOI: 10.1016/j.scitotenv.2019.07.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Jellyfish represent an important component of marine food webs characterized by large fluctuations of population density, with the ability to abruptly form outbreaks, followed by rarity periods. In spite of considerable efforts to investigate how jellyfish populations are responding globally to anthropogenic change, available evidence still remains unclear. In the last 50 years, jellyfish are seemingly on the rise in a number of coastal areas, including the Mediterranean Sea, where jellyfish blooms periodically become an issue to marine and maritime human activities. Their impacts on marine organism welfare have been poorly quantified. The jellyfish, Rhizostoma pulmo, is an outbreak-forming scyphomedusa whose large populations spread across the Mediterranean, with increasing periodicity and variable abundance. Studies on cnidarian jellyfish suggested being important vectors of bacterial pathogens. In the present study, by combination of conventional culture-based methods and a high-throughput amplicon sequencing (HTS) approach, we characterized the diversity of the bacterial community associated with this jellyfish during their summer outbreak. Three distinct jellyfish compartments, namely umbrella, oral arms, and the mucus secretion obtained from whole specimens were screened for specifically associated microbiota. A total of 17 phyla, 30 classes, 73 orders, 146 families and 329 genera of microbial organisms were represented in R. pulmo samples with three major clades (i.e. Spiroplasma, Mycoplasma and Wolinella) representing over 90% of the retrieved total sequences. The taxonomic microbial inventory was then combined with metabolic profiling data obtained from the Biolog Eco-Plate system. Significant differences among the jellyfish compartments were detected in terms of bacterial abundance, diversity and metabolic utilization of 31 different carbon sources with the highest value of abundance and metabolic potential in the mucus secretion compared to the umbrella and oral arms. Results are discussed in the framework of the species ecology as well as the potential health hazard for marine organisms and humans.
Collapse
Affiliation(s)
- Lorena Basso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy
| | - Lucia Rizzo
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy; Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, Bari, Italy
| | - Marianna Intranuovo
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, Bari, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, Bari, Italy; Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy.
| | - Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Water Research Institute of the National Research Council, (IRSA-CNR), Taranto, Italy.
| |
Collapse
|
8
|
Parages ML, Gutiérrez-Barranquero JA, Reen FJ, Dobson ADW, O'Gara F. Integrated (Meta) Genomic and Synthetic Biology Approaches to Develop New Biocatalysts. Mar Drugs 2016; 14:E62. [PMID: 27007381 PMCID: PMC4810074 DOI: 10.3390/md14030062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries as a valuable and promising source of novel bioactive compounds. Marine biodiscovery programmes have begun to reveal the extent of novel compounds encoded within the enormous bacterial richness and diversity of the marine ecosystem. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel biocatalytic activities. With the growing need for green alternatives to industrial processes, and the unique transformations which nature is capable of performing, marine biocatalysts have the potential to markedly improve current industrial pipelines. Furthermore, biocatalysts are known to possess chiral selectivity and specificity, a key focus of pharmaceutical drug design. In this review, we discuss how the explosion in genomics based sequence analysis, allied with parallel developments in synthetic and molecular biology, have the potential to fast-track the discovery and subsequent improvement of a new generation of marine biocatalysts.
Collapse
Affiliation(s)
- María L Parages
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - José A Gutiérrez-Barranquero
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|
9
|
Çiftçi Türetken PS, Altuğ G. Bacterial pollution, activity and heterotrophic diversity of the northern part of the Aegean Sea, Turkey. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:127. [PMID: 26832724 DOI: 10.1007/s10661-016-5109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Isolation and characterization studies of marine heterotrophic bacteria are important to describe and understand eco-metobolism of the marine environments. In this study, diversity and community structures of the culturable heterotrophic bacteria, metabollicaly active bacteria and bacterial pollution in the coastal and offshore areas of Gökçeada Island, in the Northern Aegean Sea, Turkey were investigated from March 2012 to November 2013. The primary hydrographic parameters were recorded in situ. The frequency of the metabolically active bacteria was determined by using a modified staining technique. The indicator bacteria were determined by using membrane filtration technique; 126 bacteria isolates, 24 of them first records for this region, were identified using an automated micro-identification system, VITEK2 Compact30. The results showed that detected bacterial community profiles were significantly different when compared with previous studies conducted in polluted marine areas of Turkey. High frequency of faecal bacteria detected at station 2 indicated that increasing human activities and terrestrial pollution sources are shaping factors for possible risks, regarding recreational uses of this region, in the summer seasons.
Collapse
Affiliation(s)
- Pelin S Çiftçi Türetken
- Faculty of Fisheries, Marine Biology Department, Istanbul University, Ordu St. No. 200 34130 Fatih, Istanbul, Turkey.
| | - Gülşen Altuğ
- Faculty of Fisheries, Marine Biology Department, Istanbul University, Ordu St. No. 200 34130 Fatih, Istanbul, Turkey
| |
Collapse
|
10
|
Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Mar Drugs 2014; 12:3516-59. [PMID: 24918453 PMCID: PMC4071589 DOI: 10.3390/md12063516] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 12/30/2022] Open
Abstract
Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity) and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups) are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds.
Collapse
|
11
|
Hahnke S, Brock NL, Zell C, Simon M, Dickschat JS, Brinkhoff T. Physiological diversity of Roseobacter clade bacteria co-occurring during a phytoplankton bloom in the North Sea. Syst Appl Microbiol 2013; 36:39-48. [DOI: 10.1016/j.syapm.2012.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 11/24/2022]
|
12
|
Puspita ID, Kamagata Y, Tanaka M, Asano K, Nakatsu CH. Are uncultivated bacteria really uncultivable? Microbes Environ 2012; 27:356-66. [PMID: 23059723 PMCID: PMC4103542 DOI: 10.1264/jsme2.me12092] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 06/20/2012] [Indexed: 11/16/2022] Open
Abstract
Many strategies have been used to increase the number of bacterial cells that can be grown from environmental samples but cultivation efficiency remains a challenge for microbial ecologists. The difficulty of cultivating a fraction of bacteria in environmental samples can be classified into two non-exclusive categories. Bacterial taxa with no cultivated representatives for which appropriate laboratory conditions necessary for growth are yet to be identified. The other class is cells in a non-dividing state (also known as dormant or viable but not culturable cells) that require the removal or addition of certain factors to re-initiate growth. A number of strategies, from simple to high throughput techniques, are reviewed that have been used to increase the cultivation efficiency of environmental samples. Some of the underlying mechanisms that contribute to the success of these cultivation strategies are described. Overall this review emphasizes the need of researchers to first understand the factors that are hindering cultivation to identify the best strategies to improve cultivation efficiency.
Collapse
Affiliation(s)
- Indun Dewi Puspita
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Yoichi Kamagata
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido 062–8517,
Japan
| | - Michiko Tanaka
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Kozo Asano
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Cindy H. Nakatsu
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907,
USA
| |
Collapse
|
13
|
Voolaid V, Jõers A, Kisand V, Tenson T. Co-occurrence of resistance to different antibiotics among aquatic bacteria. BMC Microbiol 2012; 12:225. [PMID: 23031674 PMCID: PMC3519559 DOI: 10.1186/1471-2180-12-225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 09/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antibiotic resistance is not confined to pathogens, but is also widespread in various natural environments. In nature the microbes producing antibiotic compounds have been around for millions of years. Heavy use of antibiotics in medicine and veterinary practice may lead to the accumulation of resistance genes in microbial populations, followed by a rise in multiresistant bacteria. RESULTS To test the extent of resistance among aquatic bacteria, we have collected 760 isolates resistant to at least one antibiotic. The phylogeny of the isolates covers a wide range of Proteobacteria, Actinobacteria and Bacteroidetes. In order to determine the extent of multiresistance, the isolates were tested on six antibiotics. As the growth rate of the different bacteria was highly variable, the classical medical resistance tests could not be used, and an alternative method considering the full growth curve was developed. In general, the overall resistances to different antibiotics could be explained by random, independent distribution. An exception to this was the resistances against tetracycline and chloramphenicol, which tended to occur in pairs. CONCLUSIONS We conclude that there is no massive spread of multiresistance determinants in the studied environment, although some specific cases can be found, awaiting for molecular characterization of the resistance mechanisms.
Collapse
Affiliation(s)
- Veiko Voolaid
- University of Tartu Institute of Technology, Nooruse St 1, Tartu, 50411, Estonia
| | - Arvi Jõers
- University of Tartu Institute of Technology, Nooruse St 1, Tartu, 50411, Estonia
| | - Veljo Kisand
- University of Tartu Institute of Technology, Nooruse St 1, Tartu, 50411, Estonia
| | - Tanel Tenson
- University of Tartu Institute of Technology, Nooruse St 1, Tartu, 50411, Estonia
| |
Collapse
|
14
|
Asplund ME, Rehnstam-Holm AS, Atnur V, Raghunath P, Saravanan V, Härnström K, Collin B, Karunasagar I, Godhe A. Water column dynamics of Vibrio in relation to phytoplankton community composition and environmental conditions in a tropical coastal area. Environ Microbiol 2011; 13:2738-51. [PMID: 21895909 DOI: 10.1111/j.1462-2920.2011.02545.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vibrio abundance generally displays seasonal patterns. In temperate coastal areas, temperature and salinity influence Vibrio growth, whereas in tropical areas this pattern is not obvious. The present study assessed the dynamics of Vibrio in the Arabian Sea, 1-2 km off Mangalore on the south-west coast of India, during temporally separated periods. The two sampling periods were signified by oligotrophic conditions, and stable temperatures and salinity. Vibrio abundance was estimated by culture-independent techniques in relation to phytoplankton community composition and environmental variables. The results showed that the Vibrio density during December 2007 was 10- to 100-fold higher compared with the February-March 2008 period. High Vibrio abundance in December coincided with a diatom-dominated phytoplankton assemblage. A partial least squares (PLS) regression model indicated that diatom biomass was the primary predictor variable. Low nutrient levels suggested high water column turnover rate, which bacteria compensated for by using organic molecules leaking from phytoplankton. The abundance of potential Vibrio predators was low during both sampling periods; therefore it is suggested that resource supply from primary producers is more important than top-down control by predators.
Collapse
Affiliation(s)
- Maria E Asplund
- Department of Marine Ecology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Annual variations in the diversity, viability, and origin of airborne bacteria. Appl Environ Microbiol 2010; 76:3015-25. [PMID: 20228096 DOI: 10.1128/aem.02092-09] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of bacteria in aerosols has been known for centuries, but information on their identity and role in dispersing microbial traits is still limited. This study monitored the airborne bacterial community during an annual survey using samples collected from a 25-m tower near the Baltic Sea coast. The number of CFU was estimated using agar plates while the most probable number (MPN) of viable bacteria was estimated using dilution-to-extinction culturing assays (DCAs). The MPN and CFU values produced quantitatively similar results, displaying a pronounced seasonal pattern, with the highest numbers in winter. The most dominant bacteria growing in the DCAs all formed colonies on agar plates, were mostly pigmented (80%), and closely resembled (>97%) previously cultured bacteria based on their 16S rRNA gene sequences. 16S rRNA gene clone libraries were constructed on eight occasions during the survey; these revealed a highly diverse community with a few abundant operational taxonomic units (OTUs) and a long tail of rare OTUs. A majority of the cloned sequences (60%) were also most closely related to previously "cultured" bacteria. Thus, both culture-dependent and culture-independent techniques indicated that bacteria able to form colonies on agar plates predominate in the atmosphere. Both the DCAs and clone libraries indicated the dominance of bacteria belonging to the genera Sphingomonas sp. and Pseudomonas sp. on several sampling occasions. Potentially pathogenic strains as well as sequences closely resembling bacteria known to act as ice nuclei were found using both approaches. The origin of the sampled air mass was estimated using backward trajectories, indicating a predominant marine source.
Collapse
|
16
|
Nunes da Rocha U, Van Overbeek L, Van Elsas JD. Exploration of hitherto-uncultured bacteria from the rhizosphere. FEMS Microbiol Ecol 2009; 69:313-28. [DOI: 10.1111/j.1574-6941.2009.00702.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Rodrigues AL, Brito AG, Janknecht P, Silva J, Machado AV, Nogueira R. Characterization of biofilm formation on a humic material. J Ind Microbiol Biotechnol 2008; 35:1269-76. [DOI: 10.1007/s10295-008-0424-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
|
18
|
Mayali X, Franks PJS, Azam F. Cultivation and ecosystem role of a marine roseobacter clade-affiliated cluster bacterium. Appl Environ Microbiol 2008; 74:2595-603. [PMID: 18326670 PMCID: PMC2394886 DOI: 10.1128/aem.02191-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 02/29/2008] [Indexed: 11/20/2022] Open
Abstract
Isolation and cultivation are a crucial step in elucidating the physiology, biogeochemistry, and ecosystem role of microorganisms. Many abundant marine bacteria, including the widespread Roseobacter clade-affiliated (RCA) cluster group, have not been cultured with traditional methods. Using novel techniques of cocultivation with algal cultures, we have accomplished successful isolation and propagation of a strain of the RCA cluster. Our experiments revealed that, in addition to growing on alga-excreted organic matter, additions of washed bacterial cells led to significant biomass decrease of dinoflagellate cultures as measured by in vivo fluorescence. Bacterial filtrate did not adversely affect the algal cultures, suggesting attachment-mediated activity. Using an RCA cluster-specific rRNA probe, we documented increasing attachment of these algicidal bacteria during a dinoflagellate bloom, with a maximum of 70% of the algal cells colonized just prior to bloom termination. Cross-correlation analyses between algal abundances and RCA bacterial colonization were statistically significant, in agreement with predator-prey models suggesting that RCA cluster bacteria caused algal bloom decline. Further investigation of molecular databases revealed that RCA cluster bacteria were numerically abundant during algal blooms sampled worldwide. Our findings suggest that the widespread RCA cluster bacteria may exert significant control over phytoplankton biomass and community structure in the oceans. We also suggest that coculture with phytoplankton may be a useful strategy to isolate and successfully grow previously uncultured but ecologically abundant marine heterotrophs.
Collapse
MESH Headings
- Animals
- Bacterial Adhesion
- Coculture Techniques
- Colony Count, Microbial
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Dinoflagellida/microbiology
- Ecosystem
- Eukaryota/growth & development
- Eukaryota/metabolism
- Eutrophication
- Genes, rRNA
- Molecular Sequence Data
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Roseobacter/genetics
- Roseobacter/growth & development
- Roseobacter/isolation & purification
- Roseobacter/physiology
- Seawater/microbiology
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Xavier Mayali
- Marine Biology Research Division, UCSD Mail Code 0202, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
19
|
Riemann L, Leitet C, Pommier T, Simu K, Holmfeldt K, Larsson U, Hagström A. The native bacterioplankton community in the central baltic sea is influenced by freshwater bacterial species. Appl Environ Microbiol 2008; 74:503-15. [PMID: 18039821 PMCID: PMC2223248 DOI: 10.1128/aem.01983-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 11/09/2007] [Indexed: 11/20/2022] Open
Abstract
The Baltic Sea is one of the largest brackish environments on Earth. Despite extensive knowledge about food web interactions and pelagic ecosystem functioning, information about the bacterial community composition in the Baltic Sea is scarce. We hypothesized that due to the eutrophic low-salinity environment and the long water residence time (>5 years), the bacterioplankton community from the Baltic proper shows a native "brackish" composition influenced by both freshwater and marine phylotypes. The bacterial community composition in surface water (3-m depth) was examined at a single station throughout a full year. Denaturing gradient gel electrophoresis (DGGE) showed that the community composition changed over the year. Further, it indicated that at the four extensive samplings (16S rRNA gene clone libraries and bacterial isolates from low- and high-nutrient agar plates and seawater cultures), different bacterial assemblages associated with different environmental conditions were present. Overall, the sequencing of 26 DGGE bands, 160 clones, 209 plate isolates, and 9 dilution culture isolates showed that the bacterial assemblage in surface waters of the central Baltic Sea was dominated by Bacteroidetes but exhibited a pronounced influence of typical freshwater phylogenetic groups within Actinobacteria, Verrucomicrobia, and Betaproteobacteria and a lack of typical marine taxa. This first comprehensive analysis of bacterial community composition in the central Baltic Sea points to the existence of an autochthonous estuarine community uniquely adapted to the environmental conditions prevailing in this brackish environment.
Collapse
Affiliation(s)
- L Riemann
- Department of Natural Sciences, Kalmar University, S-391 82 Kalmar, Sweden.
| | | | | | | | | | | | | |
Collapse
|
20
|
Boström KH, Riemann L, Kühl M, Hagström A. Isolation and gene quantification of heterotrophic N2-fixing bacterioplankton in the Baltic Sea. Environ Microbiol 2007; 9:152-64. [PMID: 17227420 DOI: 10.1111/j.1462-2920.2006.01124.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyanobacteria are regarded as the main N(2)-fixing organisms in marine waters. However, recent clone libraries from various oceans show a wide distribution of the dinitrogenase reductase gene (nifH) originating from heterotrophic bacterioplankton. We isolated heterotrophic N(2)-fixing bacteria from Baltic Sea bacterioplankton using low-nitrogen plates and semi-solid diazotroph medium (SSDM) tubes. Isolates were analysed for the nitrogenase (nifH) gene and active N(2) fixation by nested polymerase chain reaction (PCR) and acetylene reduction respectively. A primer-probe set targeting the nifH gene from a gamma-proteobacterial isolate, 97% 16S rDNA similarity to Pseudomonas stutzeri, was designed for measuring in situ dynamics using quantitative real-time PCR. This nifH gene sequence was detected at two of 11 stations in a Baltic Proper transect at abundances of 3 x 10(4) and 0.8 x 10(3) copies per litre seawater respectively. Oxygen requirements of isolates were examined by cultivation in SSDM tubes where oxygen gradients were determined with microelectrodes. Growth, and thereby N(2) fixation, was observed as horizontal bands formed at oxygen levels of 0-6% air saturation. The apparent microaerophilic or facultative anaerobic nature of the isolates explains why the SSDM approach is the most appropriate isolation method. Our study illustrates how combined isolation, functional analyses and in situ quantification yielded insights into the oxygen requirements of heterotrophic N(2)-fixing bacterioplankton isolates, which were confirmed to be present in situ.
Collapse
Affiliation(s)
- Kjärstin H Boström
- Department of Biology and Environmental Science, Kalmar University, S-391 82 Kalmar, Sweden
| | | | | | | |
Collapse
|
21
|
Sivonen K, Halinen K, Sihvonen LM, Koskenniemi K, Sinkko H, Rantasärkkä K, Moisander PH, Lyra C. Bacterial diversity and function in the Baltic Sea with an emphasis on cyanobacteria. AMBIO 2007; 36:180-5. [PMID: 17520932 DOI: 10.1579/0044-7447(2007)36[180:bdafit]2.0.co;2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this article we summarize the current knowledge of Baltic Sea cyanobacteria, focusing on diversity, toxicity, and nitrogen fixation in the filamentous heterocystous taxa. We also review the recent results of our microbial diversity studies in planktonic and benthic habitats in the Baltic Sea. Based on molecular analyses, we have improved the understanding of cyanobacterial population structure by assessing genetic diversity within species that are morphologically inseparable. Moreover, we have studied microbial functions such as toxin production and nitrogen fixation in situ under different environmental conditions. Phosphorus limitation of bloom-forming, nitrogen-fixing cyanobacteria was clearly verified, emphasizing the importance of continuous efforts to reduce this element in the Baltic Sea. We have designed a rapid and reliable detection method for the toxic cyanobacterium Nodularia spumigena, which can be used to study bloom formation of this important toxin producer.
Collapse
Affiliation(s)
- Kaarina Sivonen
- Department of Applied Chemistry and Microbiology, Viikki Biocenter, University of Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tuomainen J, Hietanen S, Kuparinen J, Martikainen PJ, Servomaa K. Community structure of the bacteria associated with Nodularia sp. (Cyanobacteria) aggregates in the Baltic Sea. MICROBIAL ECOLOGY 2006; 52:513-22. [PMID: 16944338 DOI: 10.1007/s00248-006-9130-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 06/12/2006] [Indexed: 05/11/2023]
Abstract
The community structure of the bacteria associated with Nodularia spumigena (Mertens) cyanobacterial aggregates in the Baltic Sea was studied with temperature gradient gel electrophoresis (TGGE), using a 16S rRNA gene fragment as a target. Various developmental stages of the aggregates and free-floating cyanobacterial filaments were sampled to reveal possible changes in associated microbial community structure during development and senescence of the aggregates. The microbial community structures of all samples differed, and the communities of young and decaying aggregates were separated by cluster analysis of the TGGE fingerprint data. Sequencing of the TGGE fragments indicated the presence of bacteria from the alpha-, beta-, and gamma-proteobacterial groups, as well as members of Cytophaga-Flexibacter-Bacteroides lineages and gram-positive Actinobacteria spp. The majority of the Nodularia-associated sequences were not closely related to previously reported 16S rDNA sequences from the Baltic Sea or any other environment. The structure of the bacterial assemblage reflects the environmental changes associated with the succession and decay of the cyanobacterial aggregates. In addition, the sequence data suggest that the N. spumigena (Mertens) blooms in the Baltic Sea may host thus far uncharacterized bacterial species.
Collapse
Affiliation(s)
- Jaana Tuomainen
- Department of Environmental Sciences, University of Kuopio, Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|