1
|
Ali M, Rice CA, Byrne AW, Paré PE, Beauvais W. Modelling dynamics between free-living amoebae and bacteria. Environ Microbiol 2024; 26:e16623. [PMID: 38715450 DOI: 10.1111/1462-2920.16623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/04/2024] [Indexed: 05/23/2024]
Abstract
Free-living amoebae (FLA) serve as hosts for a variety of endosymbionts, which are microorganisms that reside and multiply within the FLA. Some of these endosymbionts pose a pathogenic threat to humans, animals, or both. The symbiotic relationship with FLA not only offers these microorganisms protection but also enhances their survival outside their hosts and assists in their dispersal across diverse habitats, thereby escalating disease transmission. This review is intended to offer an exhaustive overview of the existing mathematical models that have been applied to understand the dynamics of FLA, especially concerning their interactions with bacteria. An extensive literature review was conducted across Google Scholar, PubMed, and Scopus databases to identify mathematical models that describe the dynamics of interactions between FLA and bacteria, as published in peer-reviewed scientific journals. The literature search revealed several FLA-bacteria model systems, including Pseudomonas aeruginosa, Pasteurella multocida, and Legionella spp. Although the published mathematical models account for significant system dynamics such as predator-prey relationships and non-linear growth rates, they generally overlook spatial and temporal heterogeneity in environmental conditions, such as temperature, and population diversity. Future mathematical models will need to incorporate these factors to enhance our understanding of FLA-bacteria dynamics and to provide valuable insights for future risk assessment and disease control measures.
Collapse
Affiliation(s)
- Marwa Ali
- Comparative Pathobiology Department, Purdue Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Christopher A Rice
- Comparative Pathobiology Department, Purdue Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Drug Discovery (PIDD), Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette, Indiana, USA
- Regenstrief Center for Healthcare Engineering (RHCE), Purdue University, West Lafayette, Indiana, USA
| | - Andrew W Byrne
- One Health Scientific Support Unit, National Disease Control Centre, Agriculture House, Dublin, Ireland
| | - Philip E Paré
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Wendy Beauvais
- Comparative Pathobiology Department, Purdue Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Genomic Analysis of Pasteurella atlantica Provides Insight on Its Virulence Factors and Phylogeny and Highlights the Potential of Reverse Vaccinology in Aquaculture. Microorganisms 2021; 9:microorganisms9061215. [PMID: 34199775 PMCID: PMC8226905 DOI: 10.3390/microorganisms9061215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022] Open
Abstract
Pasteurellosis in farmed lumpsuckers, Cyclopterus lumpus, has emerged as a serious disease in Norwegian aquaculture in recent years. Genomic characterization of the causative agent is essential in understanding the biology of the bacteria involved and in devising an efficient preventive strategy. The genomes of two clinical Pasteurella atlantica isolates were sequenced (≈2.3 Mbp), and phylogenetic analysis confirmed their position as a novel species within the Pasteurellaceae. In silico analyses revealed 11 genomic islands and 5 prophages, highlighting the potential of mobile elements as driving forces in the evolution of this species. The previously documented pathogenicity of P. atlantica is strongly supported by the current study, and 17 target genes were recognized as putative primary drivers of pathogenicity. The expression level of a predicted vaccine target, an uncharacterized adhesin protein, was significantly increased in both broth culture and following the exposure of P. atlantica to lumpsucker head kidney leucocytes. Based on in silico and functional analyses, the strongest gene target candidates will be prioritized in future vaccine development efforts to prevent future pasteurellosis outbreaks.
Collapse
|
3
|
Varshney R, Varshney R, Chaturvedi VK, Rawat M, Saminathan M, Singh V, Singh R, Sahoo M, Gupta PK. Development of novel iron-regulated Pasteurella multocida B: 2 bacterin and refinement of vaccine quality in terms of minimum variation in particle size and distribution vis-a-vis critical level of iron in media. Microb Pathog 2020; 147:104375. [PMID: 32679244 DOI: 10.1016/j.micpath.2020.104375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 11/29/2022]
Abstract
To enhance the qualitative bacterial biomass per unit of media and to overcome the limitations of the existing haemorrhagic septicaemia (HS) vaccines, a comprehensive study was undertaken encompassing the role of iron on the bacterial biomass of Pasteurella multocida B: 2 to vaccine development. Trypsin digested hydrochloric acid-treated sheep blood (THSB) as a novel iron rich supplement had been devised for the first time for augmenting the qualitative bacterial biomass per unit of media which was evident with growth kinetic study. The higher recovery of iron from THSB became evident via atomic absorbance spectrophotometry. The critical level of iron in the media as well as mode of iron supplementation showed a major impact on the outer membrane protein profile of P. multocida B:2 and variation in droplet size and particle-size distribution of formulated vaccine. Immune response study against iron-regulated bacterin adjuvanted with aluminum hydroxide gel in mouse model showed that 3% THSB supplementation of casein sucrose yeast (CSY) not only augmented the growth of P. multocida B:2 significantly but conferred highest pre-challenged ELISA IgG titer and protection against pasteurellosis. Thus, THSB supplementation of CSY can resolve existing up-scaling and immunogenic potential problems of HS vaccine production.
Collapse
Affiliation(s)
- Rajat Varshney
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India; Department of Veterinary Microbiology, FVAS, IAS, RGSC, BHU, Barkachha, Mirzapur, UP, 231001, India
| | - Ritu Varshney
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Vinod Kumar Chaturvedi
- Division of Biological Products, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India.
| | - Mayank Rawat
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India
| | - M Saminathan
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India
| | - Vidya Singh
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India
| | - Rahul Singh
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India
| | - Monalisa Sahoo
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India
| | - Praveen Kumar Gupta
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India
| |
Collapse
|
4
|
Bard GCV, Taveira GB, Souza TAM, Mello ÉO, Souza SB, Ramos AC, Carvalho AO, Pereira LS, Zottich U, Rodrigues R, Gomes VM. Coffea canephora Peptides in Combinatorial Treatment with Fluconazole: Antimicrobial Activity against Phytopathogenic Fungus. Int J Microbiol 2018; 2018:8546470. [PMID: 30123275 PMCID: PMC6079426 DOI: 10.1155/2018/8546470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/09/2018] [Accepted: 05/26/2018] [Indexed: 01/11/2023] Open
Abstract
The objective of the present study was to evaluate the antimicrobial activity of the Cc-LTP2 and Cc-GRP peptides isolated from Coffea canephora seeds and their possible synergistic activity with the azole drug fluconazole and characterize their mechanisms of action on cells of pathogenic fungi. Cc-LTP2 and Cc-GRP alone or in combination with 20 µg/mL of fluconazole were evaluated for their antimicrobial activity on the fungus Fusarium solani, and the effects of these peptides on the permeability of membranes and the induction of oxidative stress were determined. Our results show that these peptides at a concentration of 400 µg/mL combined with 20 µg/mL of fluconazole were able to inhibit the growth of the tested fungi, promote changes in their growth pattern, permeabilize the membrane, and induce reactive oxygen species (ROS). Some of these results were also observed with the peptides alone or with fluconazole alone, suggesting that the peptides act synergistically, promoting the potentiation of antimicrobial action. In this study, it was shown that Cc-LTP2 and Cc-GRP in combination with fluconazole were able to inhibit the growth of the fungus F. solani, to promote permeabilization of its membrane, and to induce the production of ROS, suggesting a combinatorial activity between the peptides and fluconazole.
Collapse
Affiliation(s)
- Gabriela C. V. Bard
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Gabriel B. Taveira
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Thaynã A. M. Souza
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Érica O. Mello
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Sávio B. Souza
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Alessandro C. Ramos
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - André O. Carvalho
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Lídia S. Pereira
- Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Umberto Zottich
- Centro de Ciências da Saúde, Universidade Federal de Roraima, Boa Vista, RR, Brazil
| | - Rosana Rodrigues
- Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Valdirene M. Gomes
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
5
|
Zeybek Z, Binay AR. Growth ability of Gram negative bacteria in free-living amoebae. Exp Parasitol 2014; 145 Suppl:S121-6. [DOI: 10.1016/j.exppara.2014.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 06/04/2014] [Accepted: 06/12/2014] [Indexed: 11/30/2022]
|
6
|
Kubatzky KF, Kloos B, Hildebrand D. Signaling cascades of Pasteurella multocida toxin in immune evasion. Toxins (Basel) 2013; 5:1664-81. [PMID: 24064721 PMCID: PMC3798879 DOI: 10.3390/toxins5091664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 12/11/2022] Open
Abstract
Pasteurella multocida toxin (PMT) is a protein toxin found in toxigenic strains of Pasteurella multocida. PMT is the causative agent for atrophic rhinitis in pigs, a disease characterized by loss of nasal turbinate bones due to an inhibition of osteoblast function and an increase in osteoclast activity and numbers. Apart from this, PMT acts as a strong mitogen, protects from apoptosis and has an impact on the differentiation and function of immune cells. Many signaling pathways have been elucidated, however, the effect of these signaling cascades as a means to subvert the host’s immune system are just beginning to unravel.
Collapse
Affiliation(s)
- Katharina F Kubatzky
- Medical Microbiology and Hygiene, Department of Infectious Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 324, Heidelberg 69120, Germany.
| | | | | |
Collapse
|
7
|
Mardare C, Delahay RJ, Dale JW. Environmental amoebae do not support the long-term survival of virulent mycobacteria. J Appl Microbiol 2013; 114:1388-94. [PMID: 23398391 DOI: 10.1111/jam.12166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/04/2013] [Accepted: 01/11/2013] [Indexed: 11/29/2022]
Abstract
AIMS To test the hypothesis that Mycobacterium bovis can persist in the environment within protozoa. METHODS AND RESULTS In this study, we used a novel approach to detect internalized mycobacteria in environmental protozoa from badger latrines. Acid-fast micro-organisms were visualized in isolated amoebae, although we were unable to identify them to species level as no mycobacteria were grown from these samples nor was M. bovis detected by IS6110 PCR. Co-incubation of Acanthamoeba castellanii with virulent M. bovis substantially reduced levels of bacilli, indicating that the amoebae have a negative effect on the persistence of M. bovis. CONCLUSIONS The internalization of mycobacteria in protozoa might be a rare event under environmental conditions. The results suggest that amoebae might contribute to the inactivation of M. bovis rather than representing a potential environmental reservoir. SIGNIFICANCE AND IMPACT OF THE STUDY Protozoa have been suggested to act as an environmental reservoir for M. bovis. The current study suggests that environmental amoebae play at most a minor role as potential reservoirs of M. bovis and that protozoa might inhibit persistence of M. bovis in the environment.
Collapse
Affiliation(s)
- C Mardare
- Microbial Sciences Group, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK.
| | | | | |
Collapse
|
8
|
Wilkie IW, Harper M, Boyce JD, Adler B. Pasteurella multocida: diseases and pathogenesis. Curr Top Microbiol Immunol 2012; 361:1-22. [PMID: 22643916 DOI: 10.1007/82_2012_216] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pasteurella multocida is an enigmatic pathogen. It is remarkable both for the number and range of specific disease syndromes with which it is associated, and the wide range of host species affected. The pathogenic mechanisms involved in causing the different syndromes are, for the most part, poorly understood or completely unknown. The biochemical and serological properties of some organisms responsible for quite different syndromes appear to be similar. Thus, the molecular basis for host predilection remains unknown. The recent development of genetic manipulation systems together with the availability of multiple genome sequences should help to explain the association of particular pathological conditions with particular hosts as well as helping to elucidate pathogenic mechanisms.
Collapse
Affiliation(s)
- I W Wilkie
- Department of Microbiology, Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, VIC 3800, Australia
| | | | | | | |
Collapse
|
9
|
McKinlay JB, Laivenieks M, Schindler BD, McKinlay AA, Siddaramappa S, Challacombe JF, Lowry SR, Clum A, Lapidus AL, Burkhart KB, Harkins V, Vieille C. A genomic perspective on the potential of Actinobacillus succinogenes for industrial succinate production. BMC Genomics 2010; 11:680. [PMID: 21118570 PMCID: PMC3091790 DOI: 10.1186/1471-2164-11-680] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 11/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Succinate is produced petrochemically from maleic anhydride to satisfy a small specialty chemical market. If succinate could be produced fermentatively at a price competitive with that of maleic anhydride, though, it could replace maleic anhydride as the precursor of many bulk chemicals, transforming a multi-billion dollar petrochemical market into one based on renewable resources. Actinobacillus succinogenes naturally converts sugars and CO2 into high concentrations of succinic acid as part of a mixed-acid fermentation. Efforts are ongoing to maximize carbon flux to succinate to achieve an industrial process. RESULTS Described here is the 2.3 Mb A. succinogenes genome sequence with emphasis on A. succinogenes's potential for genetic engineering, its metabolic attributes and capabilities, and its lack of pathogenicity. The genome sequence contains 1,690 DNA uptake signal sequence repeats and a nearly complete set of natural competence proteins, suggesting that A. succinogenes is capable of natural transformation. A. succinogenes lacks a complete tricarboxylic acid cycle as well as a glyoxylate pathway, and it appears to be able to transport and degrade about twenty different carbohydrates. The genomes of A. succinogenes and its closest known relative, Mannheimia succiniciproducens, were compared for the presence of known Pasteurellaceae virulence factors. Both species appear to lack the virulence traits of toxin production, sialic acid and choline incorporation into lipopolysaccharide, and utilization of hemoglobin and transferrin as iron sources. Perspectives are also given on the conservation of A. succinogenes genomic features in other sequenced Pasteurellaceae. CONCLUSIONS Both A. succinogenes and M. succiniciproducens genome sequences lack many of the virulence genes used by their pathogenic Pasteurellaceae relatives. The lack of pathogenicity of these two succinogens is an exciting prospect, because comparisons with pathogenic Pasteurellaceae could lead to a better understanding of Pasteurellaceae virulence. The fact that the A. succinogenes genome encodes uptake and degradation pathways for a variety of carbohydrates reflects the variety of carbohydrate substrates available in the rumen, A. succinogenes's natural habitat. It also suggests that many different carbon sources can be used as feedstock for succinate production by A. succinogenes.
Collapse
Affiliation(s)
- James B McKinlay
- Department of Microbiology and Molecular Genetics, 2215 Biomedical Biophysical Sciences building, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Thomas V, McDonnell G, Denyer SP, Maillard JY. Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol Rev 2010; 34:231-59. [DOI: 10.1111/j.1574-6976.2009.00190.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Vaccination with Pasteurella multocida recombinant OmpA induces strong but non-protective and deleterious Th2-type immune response in mice. Vaccine 2008; 26:4345-51. [DOI: 10.1016/j.vaccine.2008.06.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/28/2008] [Accepted: 06/04/2008] [Indexed: 11/20/2022]
|
12
|
Gourabathini P, Brandl MT, Redding KS, Gunderson JH, Berk SG. Interactions between food-borne pathogens and protozoa isolated from lettuce and spinach. Appl Environ Microbiol 2008; 74:2518-25. [PMID: 18310421 PMCID: PMC2293137 DOI: 10.1128/aem.02709-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 02/21/2008] [Indexed: 01/15/2023] Open
Abstract
The survival of Salmonella enterica was recently shown to increase when the bacteria were sequestered in expelled food vacuoles (vesicles) of Tetrahymena. Because fresh produce is increasingly linked to outbreaks of enteric illness, the present investigation aimed to determine the prevalence of protozoa on spinach and lettuce and to examine their interactions with S. enterica, Escherichia coli O157:H7, and Listeria monocytogenes. Glaucoma sp., Colpoda steinii, and Acanthamoeba palestinensis were cultured from store-bought spinach and lettuce and used in our study. A strain of Tetrahymena pyriformis previously isolated from spinach and a soil-borne Tetrahymena sp. were also used. Washed protozoa were allowed to graze on green fluorescent protein- or red fluorescent protein-labeled enteric pathogens. Significant differences in interactions among the various protist-enteric pathogen combinations were observed. Vesicles were produced by Glaucoma with all of the bacterial strains, although L. monocytogenes resulted in the smallest number per ciliate. Vesicle production was observed also during grazing of Tetrahymena on E. coli O157:H7 and S. enterica but not during grazing on L. monocytogenes, in vitro and on leaves. All vesicles contained intact fluorescing bacteria. In contrast, C. steinii and the amoeba did not produce vesicles from any of the enteric pathogens, nor were pathogens trapped within their cysts. Studies of the fate of E. coli O157:H7 in expelled vesicles revealed that by 4 h after addition of spinach extract, the bacteria multiplied and escaped the vesicles. The presence of protozoa on leafy vegetables and their sequestration of enteric bacteria in vesicles indicate that they may play an important role in the ecology of human pathogens on produce.
Collapse
Affiliation(s)
- Poornima Gourabathini
- Center for the Management, Utilization, and Protection of Water Resources, Tennessee Technological University, Cookeville, TN 38505, USA.
| | | | | | | | | |
Collapse
|
13
|
13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations. Metab Eng 2008; 10:55-68. [DOI: 10.1016/j.ymben.2007.08.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/24/2007] [Accepted: 08/20/2007] [Indexed: 11/22/2022]
|
14
|
Adékambi T, Ben Salah S, Khlif M, Raoult D, Drancourt M. Survival of environmental mycobacteria in Acanthamoeba polyphaga. Appl Environ Microbiol 2006; 72:5974-81. [PMID: 16957218 PMCID: PMC1563627 DOI: 10.1128/aem.03075-05] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 06/16/2006] [Indexed: 11/20/2022] Open
Abstract
Free-living amoebae in water are hosts to many bacterial species living in such an environment. Such an association enables bacteria to select virulence factors and survive in adverse conditions. Waterborne mycobacteria (WBM) are important sources of community- and hospital-acquired outbreaks of nontuberculosis mycobacterial infections. However, the interactions between WBM and free-living amoebae in water have been demonstrated for only few Mycobacterium spp. We investigated the ability of a number (n = 26) of Mycobacterium spp. to survive in the trophozoites and cysts of Acanthamoeba polyphaga. All the species tested entered the trophozoites of A. polyphaga and survived at this location over a period of 5 days. Moreover, all Mycobacterium spp. survived inside cysts for a period of 15 days. Intracellular Mycobacterium spp. within amoeba cysts survived when exposed to free chlorine (15 mg/liter) for 24 h. These data document the interactions between free-living amoebae and the majority of waterborne Mycobacterium spp. Further studies are required to examine the effects of various germicidal agents on the survival of WBM in an aquatic environment.
Collapse
Affiliation(s)
- Toïdi Adékambi
- Unité des Rickettsies, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | | | | | | | | |
Collapse
|
15
|
Frischknecht F, Renaud O, Shorte SL. Imaging today's infectious animalcules. Curr Opin Microbiol 2006; 9:297-306. [PMID: 16687252 DOI: 10.1016/j.mib.2006.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 04/25/2006] [Indexed: 12/11/2022]
Abstract
The study of pathogens and their interactions with host cells has advanced hand-in-hand with developments in optical microscopy. Whereas microbiology benefits enormously from modern imaging technologies, for example, digital imaging and confocal microscopy, it also presents unique challenges. To overcome these, microbiologists are adept at customising imaging methods, and recently there have been studies using state-of-the-art quantitative imaging methods to probe host-pathogen interactions at the single-cell level. Of particular interest are the studies using combined light and electron microscopy methods, bi-arsenical tetra-cysteine tag labelling and automated image-acquisition and analysis for high-throughput/high-content experimentation. These applications demonstrate how imaging methodologies, adapted for microbiology, continue to open avenues for studies that previously have proven inaccessible.
Collapse
Affiliation(s)
- Freddy Frischknecht
- Department of Parasitology, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | | |
Collapse
|