1
|
Friess L, Bottacini F, McAuliffe FM, O’Neill IJ, Cotter PD, Lee C, Munoz-Munoz J, van Sinderen D. Two extracellular α-arabinofuranosidases are required for cereal-derived arabinoxylan metabolism by Bifidobacterium longum subsp. longum. Gut Microbes 2024; 16:2353229. [PMID: 38752423 PMCID: PMC11318964 DOI: 10.1080/19490976.2024.2353229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/03/2024] [Indexed: 08/11/2024] Open
Abstract
Members of the genus Bifidobacterium are commonly found in the human gut and are known to utilize complex carbohydrates that are indigestible by the human host. Members of the Bifidobacterium longum subsp. longum taxon can metabolize various plant-derived carbohydrates common to the human diet. To metabolize such polysaccharides, which include arabinoxylan, bifidobacteria need to encode appropriate carbohydrate-active enzymes in their genome. In the current study, we describe two GH43 family enzymes, denoted here as AxuA and AxuB, which are encoded by B. longum subsp. longum NCIMB 8809 and are shown to be required for cereal-derived arabinoxylan metabolism by this strain. Based on the observed hydrolytic activity of AxuA and AxuB, assessed by employing various synthetic and natural substrates, and based on in silico analyses, it is proposed that both AxuA and AxuB represent extracellular α-L-arabinofuranosidases with distinct substrate preferences. The variable presence of the axuA and axuB genes and other genes previously described to be involved in the metabolism of arabinose-containing glycans can in the majority cases explain the (in)ability of individual B. longum subsp. longum strains to grow on cereal-derived arabinoxylans and arabinan.
Collapse
Affiliation(s)
- Lisa Friess
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fionnuala M. McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ian J. O’Neill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Teagasc Food Research Centre, Cork, Ireland
| | - Ciaran Lee
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Jose Munoz-Munoz
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Yeon Jo C, Kang HJ, Mun S. Optimization studies for improving the throughput and solvent usage levels of a tandem simulated-moving-bed process for recovery of galactotriose from crude galacto-oligosaccharides. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Zhang Y, Liu Y, Zeng C, Shu Y, Wang X, Liang S, Wang S, Zhan R, Wang K. Characterization of two novel highly active glycoside hydrolase family 53 endo-1,4-β-galactanases and their synergism with other carbohydrases in plant polysaccharide decomposition. Int J Biol Macromol 2022; 224:653-666. [DOI: 10.1016/j.ijbiomac.2022.10.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
4
|
Continuous recovery of high-grade prebiotic ingredient from crude galacto-oligosaccharides using a simulated-moving-bed technology. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Fuhren J, Schwalbe M, Boekhorst J, Rösch C, Schols HA, Kleerebezem M. Dietary calcium phosphate strongly impacts gut microbiome changes elicited by inulin and galacto-oligosaccharides consumption. MICROBIOME 2021; 9:218. [PMID: 34732247 PMCID: PMC8567720 DOI: 10.1186/s40168-021-01148-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/16/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Fructo-oligosaccharides (FOS), inulin, and galacto-oligosaccharides (GOS) are widely recognized prebiotics that profoundly affect the intestinal microbiota, including stimulation of bifidobacteria and lactobacilli, and are reported to elicit several health benefits. The combination of dietary FOS and inulin with calcium phosphate was reported to stimulate commensal Lactobacillus populations and protect the host against pathogenic Enterobacteriaceae, but little is known about the effects of GOS in diets with a different level of calcium phosphate. METHODS We investigated the microbiome changes elicited by dietary supplementation with GOS or inulin using diets with high (100 mmol/kg) and low (30 mmol/kg) calcium phosphate levels in adult Wistar rats. Rats were acclimatized to the respective experimental diets for 14 days, after which fecal material was collected, DNA was extracted from fecal material, and the V3‑V4 region of the bacterial 16S rRNA gene was amplified with PCR, followed by microbial composition analysis. In tandem, the organic acid profiles of the fecal material were analyzed. RESULTS Feeding rats non-supplemented (no prebiotic-added) diets revealed that diets rich in calcium phosphate favored members of the Firmicutes and increased fecal lactic, succinic, acetic, propionic, and butyric acid levels. In contrast, relatively low dietary calcium phosphate levels promoted the abundance of mucin degrading genera like Akkermansia and Bacteroides, and resulted in increased fecal propionic acid levels and modest increases in lactic and butyric acid levels. Irrespective of the calcium phosphate levels, supplementation with GOS or inulin strongly stimulated Bifidobacterium, while only high calcium phosphate diets increased the endogenous Faecalibaculum populations. CONCLUSIONS Despite the prebiotic's substantial difference in chemical structure, sugar composition, oligomer size, and the microbial degradation pathway involved in their utilization, inulin and GOS modulated the gut microbiota very similarly, in a manner that strongly depended on the dietary calcium phosphate level. Therefore, our study implies that the collection of detailed diet information including micronutrient balance is necessary to correctly assess diet-driven microbiota analysis. Video Abstract.
Collapse
Affiliation(s)
- Jori Fuhren
- Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Markus Schwalbe
- Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Jos Boekhorst
- Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Christiane Rösch
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Henk A. Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
6
|
Li S, Hu J, Yao H, Geng F, Nie S. Interaction between four galactans with different structural characteristics and gut microbiota. Crit Rev Food Sci Nutr 2021:1-11. [PMID: 34669541 DOI: 10.1080/10408398.2021.1992605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human gut microbiota played a key role in maintaining and regulating host health. Gut microbiota composition could be altered by daily diet and related nutrients. Diet polysaccharide, an important dietary nutrient, was one kind of biological macromolecules linked by the glycosidic bonds. Galactans were widely used in foods due to their gelling, thickening and stabilizing properties. Recently, effects of different galactans on gut microbiota have attracted much attention. This review described the structural characteristics of 4 kinds of galactans, including porphyran, agarose, carrageenan, and arabinogalactan, along with the effects of different galactans on gut microbiota and production of short-chain fatty acids. The ability of gut microbiota to utilize galactans with different structural characteristics and related degradation mechanism were also summarized. All these four galactans could be used by gut Bacteroides. Besides, the porphyran could be utilized by Lactobacillus and Bifidobacterium, while the arabinogalactan could be utilized by Lactobacillus, Bifidobacterium and Roseburia. Four galactans with significant difference in molecular weight/degree of polymerization, glycosidic linkage, esterification, branching and monosaccharide composition required gut microbes which could utilize them have corresponding genes encoding the corresponding enzymes for decomposition. This review could help to understand the relationship between galactans with different structural characteristics and gut microbiota, and provide information for potential use of galactans as functional foods.
Collapse
Affiliation(s)
- Song Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Haoyingye Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| |
Collapse
|
7
|
Gene-Phenotype Associations Involving Human-Residential Bifidobacteria (HRB) Reveal Significant Species- and Strain-Specificity in Carbohydrate Catabolism. Microorganisms 2021; 9:microorganisms9050883. [PMID: 33919102 PMCID: PMC8143103 DOI: 10.3390/microorganisms9050883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022] Open
Abstract
Bifidobacteria are among the first colonizers of the human gastrointestinal tract. Different bacterial species use different mechanisms for utilization of various carbon sources in order to establish themselves in the complex microbial ecosystem of the gut. However, these mechanisms still need to be explored. Here, a large gene–phenotype correlation analysis was carried out to explore the metabolic and genetic diversity of bifidobacterial carbohydrate utilization abilities. In this study, we used 21 different carbohydrates to determine the growth phenotypes, the distribution of glycoside hydrolases (GHs), and gene clusters related to the utilization of multiple carbon sources in six human-residential Bifidobacterium species. Five carbohydrates significantly stimulated growth of almost all strains, while the remaining sugars exhibited species- and strain-specificity. Correspondingly, different Bifidobacterium species also had specific GHs involved in fermentation of plant or host glycans. Moreover, we analyzed several carbohydrate utilization gene clusters, such as 2-fucosyllactose (2′FL), sialic acid (SA), and fructooligosaccharide (FOS). In summary, by using 217 bifidobacterial strains and a wide range of growth substrates, our research revealed inter- and intra-species differences in bifidobacterial in terms of carbohydrate utilization. The findings of this study are useful for the process of developing prebiotics for optimum growth of probiotics, especially Bifidobacterium species.
Collapse
|
8
|
Kelly SM, Munoz-Munoz J, van Sinderen D. Plant Glycan Metabolism by Bifidobacteria. Front Microbiol 2021; 12:609418. [PMID: 33613480 PMCID: PMC7889515 DOI: 10.3389/fmicb.2021.609418] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the genus Bifidobacterium, of which the majority have been isolated as gut commensals, are Gram-positive, non-motile, saccharolytic, non-sporulating, anaerobic bacteria. Many bifidobacterial strains are considered probiotic and therefore are thought to bestow health benefits upon their host. Bifidobacteria are highly abundant among the gut microbiota of healthy, full term, breast-fed infants, yet the relative average abundance of bifidobacteria tends to decrease as the human host ages. Because of the inverse correlation between bifidobacterial abundance/prevalence and health, there has been an increasing interest in maintaining, increasing or restoring bifidobacterial populations in the infant, adult and elderly gut. In order to colonize and persist in the gastrointestinal environment, bifidobacteria must be able to metabolise complex dietary and/or host-derived carbohydrates, and be resistant to various environmental challenges of the gut. This is not only important for the autochthonous bifidobacterial species colonising the gut, but also for allochthonous bifidobacteria provided as probiotic supplements in functional foods. For example, Bifidobacterium longum subsp. longum is a taxon associated with the metabolism of plant-derived poly/oligosaccharides in the adult diet, being capable of metabolising hemicellulose and various pectin-associated glycans. Many of these plant glycans are believed to stimulate the metabolism and growth of specific bifidobacterial species and are for this reason classified as prebiotics. In this review, bifidobacterial carbohydrate metabolism, with a focus on plant poly-/oligosaccharide degradation and uptake, as well as its associated regulation, will be discussed.
Collapse
Affiliation(s)
- Sandra M Kelly
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jose Munoz-Munoz
- Microbial Enzymology Group, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Arabinogalactan Utilization by Bifidobacterium longum subsp. longum NCC 2705 and Bacteroides caccae ATCC 43185 in Monoculture and Coculture. Microorganisms 2020; 8:microorganisms8111703. [PMID: 33142707 PMCID: PMC7693162 DOI: 10.3390/microorganisms8111703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Arabinogalactan (AG) has been studied as a potential prebiotic in view of stimulating bifidobacteria presence in the gut microbiota. However, bifidobacteria prefer fermentation of oligosaccharides to that of polysaccharides. The contribution of other gut bacteria may allow better growth of bifidobacteria on AG. β-galactanases and β-galactosidases are the main enzymes for the degradation of AG. Additional enzymes such as α-L-arabinofuranosidase and β-L-arabinopyranosidase are required to remove the arabinose side chains. All of these predicted functions are encoded by the genomes of both Bifidobacterium longum subsp. longum NCC 2705 and Bacteroides caccae ATCC 43185. However, neither strain was able to grow significantly on AG, with 25% (B. longum subsp. longum NCC 2705) and 39% (Bac. caccae ATCC 43185) of AG degraded after 48-h fermentation, respectively. In this study, the β-galactanase, β-galactosidase, α-L-arabinofuranosidase, and β-L-arabinopyranosidase from both strains were investigated. The extracellular β-galactosidases of both B. longum subsp. longum NCC 2705 and Bac. caccae ATCC 43185 were able to cleave the β-1,3; 1,4 and 1,6 linkages. However, the β-galactosidase activity of B. longum subsp. longum NCC 2705 was weaker for the β-1,4 linkage, compared with the β-1,3 and 1,6 linkages. The arabinose side chains of AG inhibited the cleavage of β-1,3 and 1,6 linkages by the endo-β-galactanase from both strains, and partially inhibited the cleavage of β-1,4 linkages by the endo-β-1,4 galactanase from Bac. caccae ATCC 43185. The α-L-arabinofuranosidase and β-L-arabinopyranosidase from both strains were unable to cleave arabinose from AG under the conditions used. These results show limited breakdown of AG by these two strains in monoculture. When cocultured with Bac. caccae ATCC 43185, B. longum subsp. longum NCC 2705 grew significantly better than in monoculture on AG after 6 h of fermentation (p < 0.05). The coculture showed 48% AG degradation after 48 h of fermentation, along with reduced pH. Furthermore, compared to monoculture of Bac. caccae ATCC 43185, the concentration of succinate significantly increased from 0.01 ± 0.01 to 4.41 ± 0.61 mM, whereas propionate significantly decreased from 13.07 ± 0.37 to 9.75 ± 2.01 mM in the coculture (p < 0.05). These results suggest that the growth and metabolic activities of Bac. caccae ATCC 43185 were restrained in the coculture, as the pH decreased due to the metabolism of B. longum subsp. longum NCC 2705.
Collapse
|
10
|
Kujawska M, La Rosa SL, Roger LC, Pope PB, Hoyles L, McCartney AL, Hall LJ. Succession of Bifidobacterium longum Strains in Response to a Changing Early Life Nutritional Environment Reveals Dietary Substrate Adaptations. iScience 2020; 23:101368. [PMID: 32721872 PMCID: PMC7390879 DOI: 10.1016/j.isci.2020.101368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Diet-microbe interactions play a crucial role in modulation of the early life microbiota and infant health. Bifidobacterium dominates the breast-fed infant gut and may persist in individuals during transition from a milk-based to a more diversified diet. Here, we investigated adaptation of Bifidobacterium longum to the changing nutritional environment. Genomic characterization of 75 strains isolated from nine either exclusively breast- or formula-fed (pre-weaning) infants in their first 18 months revealed subspecies- and strain-specific intra-individual genomic diversity with respect to carbohydrate metabolism, which corresponded to different dietary stages. Complementary phenotypic studies indicated strain-specific differences in utilization of human milk oligosaccharides and plant carbohydrates, whereas proteomic profiling identified gene clusters involved in metabolism of selected carbohydrates. Our results indicate a strong link between infant diet and B. longum diversity and provide additional insights into possible competitive advantage mechanisms of this Bifidobacterium species and its persistence in a single host.
Collapse
Affiliation(s)
- Magdalena Kujawska
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Aas, Norway
| | - Laure C Roger
- Department of Food & Nutritional Sciences, University of Reading, Reading RG6 6LA, UK
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Aas, Norway; Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Aas, Norway
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Anne L McCartney
- Department of Food & Nutritional Sciences, University of Reading, Reading RG6 6LA, UK
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich Research Park, Norwich NR4 7UQ, UK; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; Chair of Intestinal Microbiome, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
11
|
Rawi MH, Zaman SA, Pa'ee KF, Leong SS, Sarbini SR. Prebiotics metabolism by gut-isolated probiotics. Journal of Food Science and Technology 2020; 57:2786-2799. [PMID: 32624588 DOI: 10.1007/s13197-020-04244-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
There are numerous species of bacteria resides in the lumen of human colon. The word 'colon', resembles colony or the colonization of microbiota of which plays an important role in the fermentation of prebiotics. The standpoint of prebiotic nowadays is well reported for attenuating gut dysbiosis in many clinical studies tested on animals and human. However, because of the huge amount of gut microbiome, the attempt to connect the dots between bacterial population and the host are not plainly discernible. Thus, a need to analyse recent research on the pathways of prebiotic metabolism adopted by commonly studied probiotics i.e. Bifidobacteria and Lactobacillus. Several different substrate-dependent gene expressions are induced to break down oligosaccharide molecules shown by those probiotics. The hydrolysis can occur either by membrane bound (extracellular) or cytoplasmic (intracellular) enzyme of the enteric bacteria. Therefore, this review narrates several prebiotic metabolisms occur during gut fermentation, and metabolite production i.e. organic acids conversion.
Collapse
Affiliation(s)
- Muhamad Hanif Rawi
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Siti Aisyah Zaman
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Khairul Faizal Pa'ee
- Food Technology Section, Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bio-Engineering Technology (UniKL-MICET), Bandar Vendor, Taboh Naning, 78000 Alor Gajah, Melaka Malaysia
| | - Sui Sien Leong
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Shahrul Razid Sarbini
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| |
Collapse
|
12
|
|
13
|
Torpenholt S, Poulsen JCN, Muderspach SJ, De Maria L, Lo Leggio L. Structure of Aspergillus aculeatus β-1,4-galactanase in complex with galactobiose. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2019; 75:399-404. [PMID: 31204685 DOI: 10.1107/s2053230x19005612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/24/2019] [Indexed: 11/10/2022]
Abstract
β-1,4-Galactanases are glycoside hydrolases that are involved in the degradation of pectin and belong to family 53 in the classification of glycoside hydrolases. Previous studies have elucidated the structures of several fungal and two bacterial galactanases, while biochemical studies have indicated differences in the product profiles of different members of the family. Structural studies of ligand complexes have to date been limited to the bacterial members of the family. Here, the first structure of a fungal galactanase in complex with a disaccharide is presented. Galactobiose binds to subsites -1 and -2, thus improving our understanding of ligand binding to galactanases.
Collapse
Affiliation(s)
- Søs Torpenholt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Jens Christian N Poulsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
14
|
González-Ayón MA, Licea-Claveríe Á, Valdez-Torres JB, Picos-Corrales LA, Vélez-de la Rocha R, Contreras-Esquivel JC, Labavitch JM, Sañudo-Barajas JA. Enzyme-Catalyzed Production of Potato Galactan-Oligosaccharides and Its Optimization by Response Surface Methodology. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1465. [PMID: 31067636 PMCID: PMC6539101 DOI: 10.3390/ma12091465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 11/30/2022]
Abstract
This work shows an optimized enzymatic hydrolysis of high molecular weight potato galactan yielding pectic galactan-oligosaccharides (PGOs), where endo-β-1,4-galactanase (galactanase) from Cellvibrio japonicus and Clostridium thermocellum was used. For this, response surface methodology (RSM) by central composite design (CCD) was applied. The parameters varied were temperature (°C), pH, incubation time (min), and enzyme/substrate ratio (U/mg). The optimized conditions for the production of low degree of polymerization (DP) PGOs were obtained for each enzyme by spectrophotometric assay and confirmed by chromatography. The optimal conditions predicted for the use of C. japonicus galactanase to obtain PGOs of DP = 2 were T = 51.8 °C, pH 5, E/S = 0.508 U/mg, and t = 77.5 min. For DP = 3, they were T = 21 °C, pH 9, E/S = 0.484 U/mg, and t = 12.5 min; and for DP = 4, they were T = 21 °C, pH 5, E/S = 0.462 U/mg, and t = 12.5 min. The efficiency results were 51.3% for substrate hydrolysis. C. thermocellum galactanase had a lower yield (35.7%) and optimized conditions predicted for PGOs of DP = 2 were T = 60 °C, pH 5, E/S = 0.525 U/mg, and time = 148 min; DP = 3 were T = 59.7 °C, pH 5, E/S = 0.506 U/mg, and time = 12.5 min; and DP = 4, were T = 34.5 °C, pH 11, E/S = 0.525 U/mg, and time = 222.5 min. Fourier transformed infrared (FT-IR) and nuclear magnetic resonance (NMR) characterizations of PGOs are presented.
Collapse
Affiliation(s)
| | - Ángel Licea-Claveríe
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Apartado Postal 1166, Tijuana, Baja California 22510, Mexico.
| | | | - Lorenzo A Picos-Corrales
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán 80013, Sinaloa, Mexico.
| | | | | | - John M Labavitch
- Plant Sciences Department, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
15
|
Ejby M, Guskov A, Pichler MJ, Zanten GC, Schoof E, Saburi W, Slotboom DJ, Abou Hachem M. Two binding proteins of the ABC transporter that confers growth of Bifidobacterium animalis subsp. lactis ATCC27673 on β-mannan possess distinct manno-oligosaccharide-binding profiles. Mol Microbiol 2019; 112:114-130. [PMID: 30947380 DOI: 10.1111/mmi.14257] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2019] [Indexed: 12/28/2022]
Abstract
Human gut bifidobacteria rely on ATP-binding cassette (ABC) transporters for oligosaccharide uptake. Multiple oligosaccharide-specific solute-binding protein (SBP) genes are occasionally associated with a single ABC transporter, but the significance of this multiplicity remains unclear. Here, we characterize BlMnBP1 and BlMnBP2, the two SBPs associated to the β-manno-oligosaccharide (MnOS) ABC transporter in Bifidobacterium animalis subsp. lactis. Despite similar overall specificity and preference to mannotriose (Kd ≈80 nM), affinity of BlMnBP1 is up to 2570-fold higher for disaccharides than BlMnBP2. Structural analysis revealed a substitution of an asparagine that recognizes the mannosyl at position 2 in BlMnBP1, by a glycine in BlMnBP2, which affects substrate affinity. Both substitution types occur in bifidobacterial SBPs, but BlMnBP1-like variants prevail in human gut isolates. B. animalis subsp. lactis ATCC27673 showed growth on gluco and galactomannans and was able to outcompete a mannan-degrading Bacteroides ovatus strain in co-cultures, attesting the efficiency of this ABC uptake system. By contrast, a strain that lacks this transporter failed to grow on mannan. This study highlights SBP diversification as a possible strategy to modulate oligosaccharide uptake preferences of bifidobacterial ABC-transporters during adaptation to specific ecological niches. Efficient metabolism of galactomannan by distinct bifidobacteria, merits evaluating this plant glycan as a potential prebiotic.
Collapse
Affiliation(s)
- M Ejby
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads building 224, Kgs Lyngby, 2800, Denmark
| | - A Guskov
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - M J Pichler
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads building 224, Kgs Lyngby, 2800, Denmark
| | - G C Zanten
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, Denmark
| | - E Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads building 224, Kgs Lyngby, 2800, Denmark
| | - W Saburi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - D J Slotboom
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - M Abou Hachem
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads building 224, Kgs Lyngby, 2800, Denmark
| |
Collapse
|
16
|
Arboleya S, Bottacini F, O'Connell-Motherway M, Ryan CA, Ross RP, van Sinderen D, Stanton C. Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains. BMC Genomics 2018; 19:33. [PMID: 29310579 PMCID: PMC5759876 DOI: 10.1186/s12864-017-4388-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
Background Bifidobacterium longum is a common member of the human gut microbiota and is frequently present at high numbers in the gut microbiota of humans throughout life, thus indicative of a close symbiotic host-microbe relationship. Different mechanisms may be responsible for the high competitiveness of this taxon in its human host to allow stable establishment in the complex and dynamic intestinal microbiota environment. The objective of this study was to assess the genetic and metabolic diversity in a set of 20 B. longum strains, most of which had previously been isolated from infants, by performing whole genome sequencing and comparative analysis, and to analyse their carbohydrate utilization abilities using a gene-trait matching approach. Results We analysed their pan-genome and their phylogenetic relatedness. All strains clustered in the B. longum ssp. longum phylogenetic subgroup, except for one individual strain which was found to cluster in the B. longum ssp. suis phylogenetic group. The examined strains exhibit genomic diversity, while they also varied in their sugar utilization profiles. This allowed us to perform a gene-trait matching exercise enabling the identification of five gene clusters involved in the utilization of xylo-oligosaccharides, arabinan, arabinoxylan, galactan and fucosyllactose, the latter of which is an abundant human milk oligosaccharide (HMO). Conclusions The results showed high diversity in terms of genes and predicted glycosyl-hydrolases, as well as the ability to metabolize a large range of sugars. Moreover, we corroborate the capability of B. longum ssp. longum to metabolise HMOs. Ultimately, their intraspecific genomic diversity and the ability to consume a wide assortment of carbohydrates, ranging from plant-derived carbohydrates to HMOs, may provide an explanation for the competitive advantage and persistence of B. longum in the human gut microbiome. Electronic supplementary material The online version of this article (10.1186/s12864-017-4388-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silvia Arboleya
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares, Villaviciosa, Asturias, Spain
| | - Francesca Bottacini
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Mary O'Connell-Motherway
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - C Anthony Ryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Institute, University College Cork, Cork, Ireland. .,Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
17
|
Requena T, Martínez-Cuesta MC, Peláez C. Diet and microbiota linked in health and disease. Food Funct 2018; 9:688-704. [DOI: 10.1039/c7fo01820g] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diet has shaped microbiota profiles through human evolution.
Collapse
Affiliation(s)
- T. Requena
- Department of Food Biotechnology and Microbiology
- Institute of Food Science Research
- 28049 Madrid
- Spain
| | - M. C. Martínez-Cuesta
- Department of Food Biotechnology and Microbiology
- Institute of Food Science Research
- 28049 Madrid
- Spain
| | - C. Peláez
- Department of Food Biotechnology and Microbiology
- Institute of Food Science Research
- 28049 Madrid
- Spain
| |
Collapse
|
18
|
C. K. Rajendran SR, Okolie CL, Udenigwe CC, Mason B. Structural features underlying prebiotic activity of conventional and potential prebiotic oligosaccharides in food and health. J Food Biochem 2017. [DOI: 10.1111/jfbc.12389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Subin R. C. K. Rajendran
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture; Dalhousie University; Nova Scotia B2N5E3, Canada
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University; Nova Scotia B1P6L2, Canada
| | - Chigozie Louis Okolie
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture; Dalhousie University; Nova Scotia B2N5E3, Canada
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University; Nova Scotia B1P6L2, Canada
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences; University of Ottawa; Ontario K1N6N5, Canada
| | - Beth Mason
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University; Nova Scotia B1P6L2, Canada
| |
Collapse
|
19
|
Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis. J Bacteriol 2016; 198:2887-96. [PMID: 27501980 DOI: 10.1128/jb.00468-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/29/2016] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis possesses different enzymes for the utilization of plant cell wall polysaccharides. This includes a gene cluster containing galactan degradation genes (ganA and ganB), two transporter component genes (ganQ and ganP), and the sugar-binding lipoprotein-encoding gene ganS (previously known as cycB). These genes form an operon that is regulated by GanR. The degradation of galactan by B. subtilis begins with the activity of extracellular GanB. GanB is an endo-β-1,4-galactanase and is a member of glycoside hydrolase (GH) family 53. This enzyme was active on high-molecular-weight arabinose-free galactan and mainly produced galactotetraose as well as galactotriose and galactobiose. These galacto-oligosaccharides may enter the cell via the GanQP transmembrane proteins of the galactan ABC transporter. The specificity of the galactan ABC transporter depends on the sugar-binding lipoprotein, GanS. Purified GanS was shown to bind galactotetraose and galactotriose using thermal shift assay. The energy for this transport is provided by MsmX, an ATP-binding protein. The transported galacto-oligosaccharides are further degraded by GanA. GanA is a β-galactosidase that belongs to GH family 42. The GanA enzyme was able to hydrolyze short-chain β-1,4-galacto-oligosaccharides as well as synthetic β-galactopyranosides into galactose. Thermal shift assay as well as electrophoretic mobility shift assay demonstrated that galactobiose is the inducer of the galactan operon regulated by GanR. DNase I footprinting revealed that the GanR protein binds to an operator overlapping the -35 box of the σ(A)-type promoter of Pgan, which is located upstream of ganS IMPORTANCE: Bacillus subtilis is a Gram-positive soil bacterium that utilizes different types of carbohydrates, such as pectin, as carbon sources. So far, most of the pectin degradation systems and enzymes have been thoroughly studied in B. subtilis Nevertheless, the B. subtilis utilization system of galactan, which is found as the side chain of the rhamnogalacturonan type I complex in pectin, has remained partially studied. Here, we investigated the galactan utilization system consisting of the ganSPQAB operon and its regulator ganR This study improves our knowledge of the carbohydrate degradation systems of B. subtilis, especially the pectin degradation systems. Moreover, the galactan-degrading enzymes may be exploited for the production of galacto-oligosaccharides, which are used as prebiotic substances in the food industry.
Collapse
|
20
|
Ruiz L, Delgado S, Ruas-Madiedo P, Margolles A, Sánchez B. Proteinaceous Molecules Mediating Bifidobacterium-Host Interactions. Front Microbiol 2016; 7:1193. [PMID: 27536282 PMCID: PMC4971063 DOI: 10.3389/fmicb.2016.01193] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022] Open
Abstract
Bifidobacteria are commensal microoganisms found in the gastrointestinal tract. Several strains have been attributed beneficial traits at local and systemic levels, through pathogen exclusion or immune modulation, among other benefits. This has promoted a growing industrial and scientific interest in bifidobacteria as probiotic supplements. However, the molecular mechanisms mediating this cross-talk with the human host remain unknown. High-throughput technologies, from functional genomics to transcriptomics, proteomics, and interactomics coupled to the development of both in vitro and in vivo models to study the dynamics of the intestinal microbiota and their effects on host cells, have eased the identification of key molecules in these interactions. Numerous secreted or surface-associated proteins or peptides have been identified as potential mediators of bifidobacteria-host interactions and molecular cross-talk, directly participating in sensing environmental factors, promoting intestinal colonization, or mediating a dialogue with mucosa-associated immune cells. On the other hand, bifidobacteria induce the production of proteins in the intestine, by epithelial or immune cells, and other gut bacteria, which are key elements in orchestrating interactions among bifidobacteria, gut microbiota, and host cells. This review aims to give a comprehensive overview on proteinaceous molecules described and characterized to date, as mediators of the dynamic interplay between bifidobacteria and the human host, providing a framework to identify knowledge gaps and future research needs.
Collapse
Affiliation(s)
- Lorena Ruiz
- Department of Nutrition, Food Science and Food Technology, Universidad Complutense de Madrid Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| |
Collapse
|
21
|
Cockburn DW, Koropatkin NM. Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease. J Mol Biol 2016; 428:3230-3252. [PMID: 27393306 DOI: 10.1016/j.jmb.2016.06.021] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023]
Abstract
Carbohydrates comprise a large fraction of the typical diet, yet humans are only able to directly process some types of starch and simple sugars. The remainder transits the large intestine where it becomes food for the commensal bacterial community. This is an environment of not only intense competition but also impressive cooperation for available glycans, as these bacteria work to maximize their energy harvest from these carbohydrates during their limited transit time through the gut. The species within the gut microbiota use a variety of strategies to process and scavenge both dietary and host-produced glycans such as mucins. Some act as generalists that are able to degrade a wide range of polysaccharides, while others are specialists that are only able to target a few select glycans. All are members of a metabolic network where substantial cross-feeding takes place, as by-products of one organism serve as important resources for another. Much of this metabolic activity influences host physiology, as secondary metabolites and fermentation end products are absorbed either by the epithelial layer or by transit via the portal vein to the liver where they can have additional effects. These microbially derived compounds influence cell proliferation and apoptosis, modulate the immune response, and can alter host metabolism. This review summarizes the molecular underpinnings of these polysaccharide degradation processes, their impact on human health, and how we can manipulate them through the use of prebiotics.
Collapse
Affiliation(s)
- Darrell W Cockburn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Maruthamuthu M, Jiménez DJ, Stevens P, van Elsas JD. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes. BMC Genomics 2016; 17:86. [PMID: 26822785 PMCID: PMC4730625 DOI: 10.1186/s12864-016-2404-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/18/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Functional metagenomics is a promising strategy for the exploration of the biocatalytic potential of microbiomes in order to uncover novel enzymes for industrial processes (e.g. biorefining or bleaching pulp). Most current methodologies used to screen for enzymes involved in plant biomass degradation are based on the use of single substrates. Moreover, highly diverse environments are used as metagenomic sources. However, such methods suffer from low hit rates of positive clones and hence the discovery of novel enzymatic activities from metagenomes has been hampered. RESULTS Here, we constructed fosmid libraries from two wheat straw-degrading microbial consortia, denoted RWS (bred on untreated wheat straw) and TWS (bred on heat-treated wheat straw). Approximately 22,000 clones from each library were screened for (hemi)cellulose-degrading enzymes using a multi-chromogenic substrate approach. The screens yielded 71 positive clones for both libraries, giving hit rates of 1:440 and 1:1,047 for RWS and TWS, respectively. Seven clones (NT2-2, T5-5, NT18-17, T4-1, 10BT, NT18-21 and T17-2) were selected for sequence analyses. Their inserts revealed the presence of 18 genes encoding enzymes belonging to twelve different glycosyl hydrolase families (GH2, GH3, GH13, GH17, GH20, GH27, GH32, GH39, GH53, GH58, GH65 and GH109). These encompassed several carbohydrate-active gene clusters traceable mainly to Klebsiella related species. Detailed functional analyses showed that clone NT2-2 (containing a beta-galactosidase of ~116 kDa) had highest enzymatic activity at 55 °C and pH 9.0. Additionally, clone T5-5 (containing a beta-xylosidase of ~86 kDa) showed > 90% of enzymatic activity at 55 °C and pH 10.0. CONCLUSIONS This study employed a high-throughput method for rapid screening of fosmid metagenomic libraries for (hemi)cellulose-degrading enzymes. The approach, consisting of screens on multi-substrates coupled to further analyses, revealed high hit rates, as compared with recent other studies. Two clones, 10BT and T4-1, required the presence of multiple substrates for detectable activity, indicating a new avenue in library activity screening. Finally, clones NT2-2, T5-5 and NT18-17 were found to encode putative novel thermo-alkaline enzymes, which could represent a starting point for further biotechnological applications.
Collapse
Affiliation(s)
- Mukil Maruthamuthu
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| | - Diego Javier Jiménez
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| | - Patricia Stevens
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
23
|
Bruce T, Leite FG, Miranda M, Thompson CC, Pereira N, Faber M, Thompson FL. Insights from genome of Clostridium butyricum INCQS635 reveal mechanisms to convert complex sugars for biofuel production. Arch Microbiol 2015; 198:115-27. [PMID: 26525220 DOI: 10.1007/s00203-015-1166-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/09/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Clostridium butyricum is widely used to produce organic solvents such as ethanol, butanol and acetone. We sequenced the entire genome of C. butyricum INCQS635 by using Ion Torrent technology. We found a high contribution of sequences assigned for carbohydrate subsystems (15-20 % of known sequences). Annotation based on protein-conserved domains revealed a higher diversity of glycoside hydrolases than previously found in C. acetobutylicum ATCC824 strain. More than 30 glycoside hydrolases (GH) families were found; families of GH involved in degradation of galactan, cellulose, starch and chitin were identified as most abundant (close to 50 % of all sequences assigned as GH) in C. butyricum INCQS635. KEGG metabolic pathways reconstruction allowed us to verify possible routes in the C. butyricum INCQS635 and C. acetobutylicum ATCC824 genomes. Metabolic pathways for ethanol synthesis are similar for both species, but alcohol dehydrogenase of C. butyricum INCQS635 and C. acetobutylicum ATCC824 was different. The genomic repertoire of C. butyricum is an important resource to underpin future studies towards improved solvents production.
Collapse
Affiliation(s)
- Thiago Bruce
- Faculdade de Tecnologia e Ciências, Laboratory of Environmental Biotechnology, Salvador, Brazil. .,Department of Biotechnology, Federal University of Bahia, Salvador, Brazil.
| | - Fernanda Gomes Leite
- Faculdade de Tecnologia e Ciências, Laboratory of Environmental Biotechnology, Salvador, Brazil
| | - Milene Miranda
- Laboratory of Microbiology and SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology and SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Nei Pereira
- Laboratory of Bioprocesses Development, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Mariana Faber
- Laboratory of Bioprocesses Development, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology and SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Gyawali R, Minor RC, Donovan B, Ibrahim SA. Inclusion of Oat in Feeding Can Increase the Potential Probiotic Bifidobacteria in Sow Milk. Animals (Basel) 2015; 5:610-23. [PMID: 26479377 PMCID: PMC4598697 DOI: 10.3390/ani5030375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/25/2015] [Accepted: 07/15/2015] [Indexed: 11/16/2022] Open
Abstract
The objectives of this study were to (i) investigate the impact of feeding oat on the population of bifidobacteria and (ii) evaluate their probiotic potential. In this study, we investigated the effects of supplementing sows' gestation and lactation feed with 15% oat (prebiotic source) on the levels of probiotic population in milk. We found that dietary inclusion of oat during lactation and gestation resulted in increased levels of bifidobacteria compared to lactobacilli in sow milk. Furthermore bifidobacteria within the sow milk samples were further evaluated for probiotic potential based on aggregating properties, and acid- and bile-tolerance after exposure to hydrochloric acid (pH 2.5) and bile salts (0%, 0.25%, 0.50%, 1.0% and 2.0%). All isolates survived under the condition of low pH and bile 2.0%. Autoaggregation ability ranged from 17.5% to 73%. These isolates also showed antimicrobial activity against E. coli O157:H7.Together our results suggest that inclusion of oat in feeding systems could have the potential to improve the intestinal health of piglets by increasing the population of bifidobacteria.
Collapse
Affiliation(s)
- Rabin Gyawali
- Food Microbiology and Biotechnology Laboratory, 173 Carver Hall, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA.
| | - Radiah C Minor
- Department of Animal Sciences, 107h Webb Hall, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA.
| | - Barry Donovan
- Department of Animal Sciences, 107h Webb Hall, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA.
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, 173 Carver Hall, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA.
| |
Collapse
|
25
|
Goh YJ, Klaenhammer TR. Genetic Mechanisms of Prebiotic Oligosaccharide Metabolism in Probiotic Microbes. Annu Rev Food Sci Technol 2015; 6:137-56. [DOI: 10.1146/annurev-food-022814-015706] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yong Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695; ,
| | - Todd R. Klaenhammer
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695; ,
| |
Collapse
|
26
|
Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin. Int J Food Microbiol 2015; 203:109-21. [PMID: 25817019 DOI: 10.1016/j.ijfoodmicro.2015.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/22/2015] [Accepted: 03/03/2015] [Indexed: 02/06/2023]
Abstract
Because increased proportions of particular commensal bacteria such as bifidobacteria and lactobacilli have been linked to human health through a variety of mechanisms, there is corresponding interest in identifying carbohydrates that promote growth and metabolic activity of these bacteria. We evaluated the ability of 20 carbohydrates, including several commercially available carbohydrates that are sold as prebiotic ingredients, to support growth of 32 human-derived isolates belonging to the genera Bifidobacterium and Lactobacillus, including those isolated from healthy elderly subjects. In general, bifidobacterial strains were shown to display more diverse carbohydrate utilization profiles compared to the tested Lactobacillus species, with several bifidobacterial strains capable of metabolizing xylo-oligosaccharide (XOS), arabinoxylan, maltodextrin, galactan and carbohydrates containing fructo-oligosaccharide (FOS) components. In contrast, maltodextrin, galactan, arabinogalactan and galactomannan did not support robust growth (≥0.8 OD600 nm) of any of the Lactobacillus strains assessed. Carbohydrate fermentation was variable among strains tested of the same species for both genera. This study advances our knowledge of polysaccharide utilization by human gut commensals, and provides information for the rational design of selective prebiotic food ingredients.
Collapse
|
27
|
Sakamoto T, Ishimaru M. Peculiarities and applications of galactanolytic enzymes that act on type I and II arabinogalactans. Appl Microbiol Biotechnol 2013; 97:5201-13. [PMID: 23666442 DOI: 10.1007/s00253-013-4946-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
Abstract
Arabinogalactans (AGs) are branched galactans to which arabinose residues are bound as side chains and are widely distributed in plant cell walls. They can be grouped into two types based on the structures of their backbones. Type I AGs have β-1,4-galactan backbones and are often covalently linked to the rhamnogalacturonan-I region of pectins. Type II AGs have β-1,3-galactan backbones and are often covalently linked to proteins. The main enzymes involved in the degradation of AGs are endo-β-galactanases, exo-β-galactanases, and β-galactosidases, although other enzymes such as α-L-arabinofuranosidases, β-L-arabinopyranosidases, and β-D-glucuronidases are required to remove the side chains for efficient degradation of the polysaccharides. Galactanolytic enzymes have a wide variety of potential uses, including the bioconversion of AGs to fermentable sugars for production of commodity chemicals like ethanol, biobleaching of cellulose pulp, modulation of pectin properties, improving animal feed, and determining the chemical structure of AGs. This review summarizes our current knowledge about the biochemical properties and potential applications of AG-degrading enzymes.
Collapse
Affiliation(s)
- Tatsuji Sakamoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | | |
Collapse
|
28
|
Tabachnikov O, Shoham Y. Functional characterization of the galactan utilization system of Geobacillus stearothermophilus. FEBS J 2013; 280:950-64. [PMID: 23216604 DOI: 10.1111/febs.12089] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/22/2012] [Accepted: 12/04/2012] [Indexed: 11/25/2022]
Abstract
UNLABELLED Type I galactan is a pectic polysaccharide composed of β-1,4 linked units of d-galactose and is part of the main plant cell wall polysaccharides, which are the most abundant sources of renewable carbon in the biosphere. The thermophilic bacterium Geobacillus stearothermophilus T-6 possesses an extensive system for the utilization of plant cell wall polysaccharides, including a 9.4-kb gene cluster, ganREFGBA, which encodes galactan-utilization elements. Based on enzyme activity assays, the ganEFGBA genes, which probably constitute an operon, are induced by short galactosaccharides but not by galactose. GanA is a glycoside hydrolase family 53 β-1,4-galactanase, active on high molecular weight galactan, producing galactotetraose as the main product. Homology modelling of the active site residues suggests that the enzyme can accommodate at least eight galactose molecules (at subsites -4 to +4) in the active site. GanB is a glycoside hydrolase family 42 β-galactosidase capable of hydrolyzing short β-1,4 galactosaccharides into galactose. Applying both GanA and GanB on galactan resulted in the full degradation of the polymer into galactose. The ganEFG genes encode an ATP-binding cassette sugar transport system whose sugar-binding lipoprotein, GanE, was shown to bind galacto-oligosaccharides. The utilization of galactan by G. stearothermophilus involves the extracellular galactanase GanA cleaving galactan into galacto-oligosaccharides that enter the cell via a specific transport system GanEFG. The galacto-oligosaccharides are further degraded by the intracellular β-galactosidase GanB into galactose, which is then metabolized into UDP-glucose via the Leloir pathway by the galKET gene products. DATABASE Nucleotide sequence data have been deposited in the GenBank database under the accession number JF327803.
Collapse
Affiliation(s)
- Orly Tabachnikov
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
29
|
O'Connell Motherway M, Kinsella M, Fitzgerald GF, van Sinderen D. Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Microb Biotechnol 2012. [PMID: 23199239 PMCID: PMC3815386 DOI: 10.1111/1751-7915.12011] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Several prebiotics, such as inulin, fructo-oligosaccharides and galacto-oligosaccharides, are widely used commercially in foods and there is convincing evidence, in particular for galacto-oligosaccharides, that prebiotics can modulate the microbiota and promote bifidobacterial growth in the intestinal tract of infants and adults. In this study we describe the identification and functional characterization of the genetic loci responsible for the transport and metabolism of purified galacto-oligosaccharides (PGOS) by Bifidobacterium breve UCC2003. We further demonstrate that an extracellular endogalactanase specified by several B. breve strains, including B. breve UCC2003, is essential for partial degradation of PGOS components with a high degree of polymerization. These partially hydrolysed PGOS components are presumed to be transported into the bifidobacterial cell via various ABC transport systems and sugar permeases where they are further degraded to galactose and glucose monomers that feed into the bifid shunt. This work significantly advances our molecular understanding of bifidobacterial PGOS metabolism and its associated genetic machinery to utilize this prebiotic.
Collapse
Affiliation(s)
- Mary O'Connell Motherway
- Alimentary Pharmabiotic Centre, National University of Ireland, Western Road, Cork, Ireland; Departments of Microbiology, National University of Ireland, Western Road, Cork, Ireland
| | | | | | | |
Collapse
|
30
|
Averina OV, Nezametdinova VZ, Alekseeva MG, Danilenko VN. Genetic instability of probiotic characteristics in the Bifidobacterium longum subsp. longum B379M strain during cultivation and maintenance. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412110026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Garrido D, Ruiz-Moyano S, Jimenez-Espinoza R, Eom HJ, Block DE, Mills DA. Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol 2012. [PMID: 23200660 DOI: 10.1016/j.fm.2012.10.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prebiotics are non-digestible substrates that stimulate the growth of beneficial microbial populations in the intestine, especially Bifidobacterium species. Among them, fructo- and galacto-oligosaccharides are commonly used in the food industry, especially as a supplement for infant formulas. Mechanistic details on the enrichment of bifidobacteria by these prebiotics are important to understand the effects of these dietary interventions. In this study the consumption of galactooligosaccharides was studied for 22 isolates of Bifidobacterium longum subsp. infantis, one of the most representative species in the infant gut microbiota. In general all isolates showed a vigorous growth on these oligosaccharides, but consumption of larger galactooligosaccharides was variable. Bifidobacterium infantis ATCC 15697 has five genes encoding β-galactosidases, and three of them were induced during bacterial growth on commercial galactooligosaccharides. Recombinant β-galactosidases from B. infantis ATCC 15697 displayed different preferences for β-galactosides such as 4' and 6'-galactobiose, and four β-galactosidases in this strain released monosaccharides from galactooligosaccharides. Finally, we determined the amounts of short chain fatty acids produced by strain ATCC 15697 after growth on different prebiotics. We observed that biomass and product yields of substrate were higher for lactose and galactooligosaccharides, but the amount of acids produced per cell was larger after growth on human milk oligosaccharides. These results provide a molecular basis for galactooligosaccharide consumption in B. infantis, and also represent evidence for physiological differences in the metabolism of prebiotics that might have a differential impact on the host.
Collapse
Affiliation(s)
- Daniel Garrido
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
32
|
Expression and characterization of a Bifidobacterium adolescentis beta-mannanase carrying mannan-binding and cell association motifs. Appl Environ Microbiol 2012; 79:133-40. [PMID: 23064345 DOI: 10.1128/aem.02118-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The gene encoding β-mannanase (EC 3.2.1.78) BaMan26A from the bacterium Bifidobacterium adolescentis (living in the human gut) was cloned and the gene product characterized. The enzyme was found to be modular and to contain a putative signal peptide. It possesses a catalytic module of the glycoside hydrolase family 26, a predicted immunoglobulin-like module, and two putative carbohydrate-binding modules (CBMs) of family 23. The enzyme is likely cell attached either by the sortase mechanism (LPXTG motif) or via a C-terminal transmembrane helix. The gene was expressed in Escherichia coli without the native signal peptide or the cell anchor. Two variants were made: one containing all four modules, designated BaMan26A-101K, and one truncated before the CBMs, designated BaMan26A-53K. BaMan26A-101K, which contains the CBMs, showed an affinity to carob galactomannan having a dissociation constant of 0.34 μM (8.8 mg/liter), whereas BaMan26A-53K did not bind, showing that at least one of the putative CBMs of family 23 is mannan binding. For BaMan26A-53K, k(cat) was determined to be 444 s(-1) and K(m) 21.3 g/liter using carob galactomannan as the substrate at the optimal pH of 5.3. Both of the enzyme variants hydrolyzed konjac glucomannan, as well as carob and guar gum galactomannans to a mixture of oligosaccharides. The dominant product from ivory nut mannan was found to be mannotriose. Mannobiose and mannotetraose were produced to a lesser extent, as shown by high-performance anion-exchange chromatography. Mannobiose was not hydrolyzed, and mannotriose was hydrolyzed at a significantly lower rate than the longer oligosaccharides.
Collapse
|
33
|
Garrido D, Barile D, Mills DA. A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv Nutr 2012; 3:415S-21S. [PMID: 22585920 PMCID: PMC3649478 DOI: 10.3945/an.111.001586] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bifidobacteria are commonly used as probiotics in dairy foods. Select bifidobacterial species are also early colonizers of the breast-fed infant colon; however, the mechanism for this enrichment is unclear. We previously showed that Bifidobacterium longum subsp. infantis is a prototypical bifidobacterial species that can readily utilize human milk oligosaccharides as the sole carbon source. MS-based glycoprofiling has revealed that numerous B. infantis strains preferentially consume small mass oligosaccharides, abundant in human milks. Genome sequencing revealed that B. infantis possesses a bias toward genes required to use mammalian-derived carbohydrates. Many of these genomic features encode enzymes that are active on milk oligosaccharides including a novel 40-kb region dedicated to oligosaccharide utilization. Biochemical and molecular characterization of the encoded glycosidases and transport proteins has further resolved the mechanism by which B. infantis selectively imports and catabolizes milk oligosaccharides. Expression studies indicate that many of these key functions are only induced during growth on milk oligosaccharides and not expressed during growth on other prebiotics. Analysis of numerous B. infantis isolates has confirmed that these genomic features are common among the B. infantis subspecies and likely constitute a competitive colonization strategy used by these unique bifidobacteria. By detailed characterization of the molecular mechanisms responsible, these studies provide a conceptual framework for bifidobacterial persistence and host interaction in the infant gastrointestinal tract mediated in part through consumption of human milk oligosaccharides.
Collapse
Affiliation(s)
- Daniel Garrido
- Departments of Viticulture and Enology,Foods for Health Institute, University of California Davis, Davis, CA
| | - Daniela Barile
- Food Science and Technology and,Foods for Health Institute, University of California Davis, Davis, CA
| | - David A. Mills
- Departments of Viticulture and Enology,Food Science and Technology and,Foods for Health Institute, University of California Davis, Davis, CA,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Torpenholt S, Le Nours J, Christensen U, Jahn M, Withers S, Østergaard PR, Borchert TV, Poulsen JC, Lo Leggio L. Activity of three β-1,4-galactanases on small chromogenic substrates. Carbohydr Res 2011; 346:2028-33. [DOI: 10.1016/j.carres.2011.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/28/2011] [Accepted: 05/15/2011] [Indexed: 10/18/2022]
|
35
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
36
|
O'Connell Motherway M, Fitzgerald GF, van Sinderen D. Metabolism of a plant derived galactose-containing polysaccharide by Bifidobacterium breve UCC2003. Microb Biotechnol 2010; 4:403-16. [PMID: 21375716 PMCID: PMC3818998 DOI: 10.1111/j.1751-7915.2010.00218.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we describe the functional characterization of the Bifidobacterium breve UCC2003 gal locus, which is dedicated to the utilization of galactan, a plant‐derived polysaccharide. Using a combination of molecular approaches we conclude that the galA gene of B. breve UCC2003 encodes a β‐1,4‐endogalactanase producing galacto‐oligosaccharides, which are specifically internalized by an ABC transport system, encoded by galBCDE, and which are then hydrolysed to galactose moieties by a dedicated intracellular β‐galactosidase, specified by galG. The generated galactose molecules are presumed to be fed into the fructose‐6‐phosphate phosphoketolase pathway via the Leloir pathway, thereby allowing B. breve UCC2003 to use galactan as its sole carbon and energy source. In addition to these findings we demonstrate that GalR is a LacI‐type DNA‐binding protein, which not only appears to control transcription of the galCDEGR operon, but also that of the galA gene.
Collapse
Affiliation(s)
- Mary O'Connell Motherway
- Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Western Road, Cork, Ireland
| | | | | |
Collapse
|
37
|
Le Nours J, De Maria L, Welner D, Jørgensen CT, Christensen LLH, Borchert TV, Larsen S, Lo Leggio L. Investigating the binding of β-1,4-galactan toBacillus licheniformisβ-1,4-galactanase by crystallography and computational modeling. Proteins 2009; 75:977-89. [PMID: 19089956 DOI: 10.1002/prot.22310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jérôme Le Nours
- Biophysical Chemistry Group, Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
38
|
O'Connell Motherway M, O'Driscoll J, Fitzgerald GF, Van Sinderen D. Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microb Biotechnol 2008; 2:321-32. [PMID: 21261927 PMCID: PMC3815753 DOI: 10.1111/j.1751-7915.2008.00071.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In silico analysis of the Bifidobacterium breve UCC2003 genome predicted two distinct loci, which encode three different restriction/modification systems, each comprising a modification methylase and a restriction endonuclease. Based on sequence homology and observed protection against restriction we conclude that the first restriction endonuclease, designated BbrI, is an isoschizomer of BbeI, the second, BbrII, is a neoschizomer of SalI, while the third, BbrIII, is an isoschizomer of PstI. Expression of each of the B. breve UCC2003 methylase‐encoding genes in B. breve JCM 7017 established that BbrII and BbrIII are active and restrict incoming DNA. By exploiting knowledge on restriction/modification in B. breve UCC2003 we successfully increased the transformation efficiency to a level that allows the reliable generation of mutants by homologous recombination using a non‐replicative plasmid.
Collapse
Affiliation(s)
- Mary O'Connell Motherway
- Alimentary Pharmabiotic Centre, Department of Microbiology and Department of Food and Nutritional Sciences , National University of Ireland, Cork, Western Road, Cork, Ireland
| | | | | | | |
Collapse
|
39
|
Van Den Broek LA, Voragen AG. Bifidobacterium glycoside hydrolases and (potential) prebiotics. INNOV FOOD SCI EMERG 2008. [DOI: 10.1016/j.ifset.2007.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
van den Broek LAM, Hinz SWA, Beldman G, Vincken JP, Voragen AGJ. Bifidobacterium carbohydrases-their role in breakdown and synthesis of (potential) prebiotics. Mol Nutr Food Res 2008; 52:146-63. [PMID: 18040988 DOI: 10.1002/mnfr.200700121] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is an increasing interest to positively influence the human intestinal microbiota through the diet by the use of prebiotics and/or probiotics. It is anticipated that this will balance the microbial composition in the gastrointestinal tract in favor of health promoting genera such as Bifidobacterium and Lactobacillus. Carbohydrates like non-digestible oligosaccharides are potential prebiotics. To understand how these bacteria can grow on these carbon sources, knowledge of the carbohydrate-modifying enzymes is needed. Little is known about the carbohydrate-modifying enzymes of bifidobacteria. The genome sequence of Bifidobacterium adolescentis and Bifidobacterium longum biotype longum has been completed and it was observed that for B. longum biotype longum more than 8% of the annotated genes were involved in carbohydrate metabolism. In addition more sequence data of individual carbohydrases from other Bifidobacterium spp. became available. Besides the degradation of (potential) prebiotics by bifidobacterial glycoside hydrolases, we will focus in this review on the possibilities to produce new classes of non-digestible oligosaccharides by showing the presence and (transglycosylation) activity of the most important carbohydrate modifying enzymes in bifidobacteria. Approaches to use and improve carbohydrate-modifying enzymes in prebiotic design will be discussed.
Collapse
|
41
|
Tu B, Maegawa T, Osawa R. Different Utilization of Oligosaccharides and Distribution of Several Genes Associated with Oligosaccharide Metabolism in <i>Bifidobacterium longum</i>. Biosci Microflora 2008. [DOI: 10.12938/bifidus.27.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
42
|
Ventura M, O'Connell-Motherway M, Leahy S, Moreno-Munoz JA, Fitzgerald GF, van Sinderen D. From bacterial genome to functionality; case bifidobacteria. Int J Food Microbiol 2007; 120:2-12. [PMID: 17629975 DOI: 10.1016/j.ijfoodmicro.2007.06.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 01/18/2007] [Indexed: 11/24/2022]
Abstract
The availability of complete bacterial genome sequences has significantly furthered our understanding of the genetics, physiology and biochemistry of the microorganisms in question, particularly those that have commercially important applications. Bifidobacteria are among such microorganisms, as they constitute mammalian commensals of biotechnological significance due to their perceived role in maintaining a balanced gastrointestinal (GIT) microflora. Bifidobacteria are therefore frequently used as health-promoting or probiotic components in functional food products. A fundamental understanding of the metabolic activities employed by these commensal bacteria, in particular their capability to utilize a wide range of complex oligosaccharides, can reveal ways to provide in vivo growth advantages relative to other competing gut bacteria or pathogens. Furthermore, an in depth analysis of adaptive responses to nutritional or environmental stresses may provide methodologies to retain viability and improve functionality during commercial preparation, storage and delivery of the probiotic organism.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Anthropology and Evolution, University of Parma, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Delangle A, Prouvost AF, Cogez V, Bohin JP, Lacroix JM, Cotte-Pattat NH. Characterization of the Erwinia chrysanthemi Gan locus, involved in galactan catabolism. J Bacteriol 2007; 189:7053-61. [PMID: 17644603 PMCID: PMC2045229 DOI: 10.1128/jb.00845-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 07/12/2007] [Indexed: 11/20/2022] Open
Abstract
beta-1,4-Galactan is a major component of the ramified regions of pectin. Analysis of the genome of the plant pathogenic bacteria Erwinia chrysanthemi revealed the presence of a cluster of eight genes encoding proteins potentially involved in galactan utilization. The predicted transport system would comprise a specific porin GanL and an ABC transporter made of four proteins, GanFGK(2). Degradation of galactans would be catalyzed by the periplasmic 1,4-beta-endogalactanase GanA, which released oligogalactans from trimer to hexamer. After their transport through the inner membrane, oligogalactans would be degraded into galactose by the cytoplasmic 1,4-beta-exogalactanase GanB. Mutants affected for the porin or endogalactanase were unable to grow on galactans, but they grew on galactose and on a mixture of galactotriose, galactotetraose, galactopentaose, and galactohexaose. Mutants affected for the periplasmic galactan binding protein, the transporter ATPase, or the exogalactanase were only able to grow on galactose. Thus, the phenotypes of these mutants confirmed the functionality of the gan locus in transport and catabolism of galactans. These mutations did not affect the virulence of E. chrysanthemi on chicory leaves, potato tubers, or Saintpaulia ionantha, suggesting an accessory role of galactan utilization in the bacterial pathogeny.
Collapse
Affiliation(s)
- Aurélie Delangle
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | |
Collapse
|
44
|
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007; 71:495-548. [PMID: 17804669 PMCID: PMC2168647 DOI: 10.1128/mmbr.00005-07] [Citation(s) in RCA: 597] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Actinobacteria constitute one of the largest phyla among bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, parco Area delle Scienze 11a, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ventura M, Canchaya C, Fitzgerald GF, Gupta RS, van Sinderen D. Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria. Antonie van Leeuwenhoek 2006; 91:351-72. [PMID: 17072531 DOI: 10.1007/s10482-006-9122-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 09/28/2006] [Indexed: 10/24/2022]
Abstract
The field of microbiology has in recent years been transformed by the ever increasing number of publicly available whole-genome sequences. This sequence information has significantly enhanced our understanding of the physiology, genetics and evolutionary development of bacteria. Among the latter group of microorganisms, bifidobacteria represent important human commensals because of their perceived contribution to maintaining a balanced gastrointestinal tract microbiota. In recent years bifidobacteria have drawn much scientific attention because of their use as live bacteria in numerous food preparations with various health-related claims. For this reason, these bacteria constitute a growing area of interest with respect to genomics, molecular biology and genetics. Recent genome sequencing of a number of bifidobacterial species has allowed access to the complete genetic make-up of these bacteria. In this review we will discuss how genomic data has allowed us to understand bifidobacterial evolution, while also revealing genetic functions that explains their presence in the particular ecological environment of the gastrointestinal tract.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Anthropology and Evolution, University of Parma, Parma, Italy.
| | | | | | | | | |
Collapse
|
46
|
Shipkowski S, Brenchley JE. Bioinformatic, genetic, and biochemical evidence that some glycoside hydrolase family 42 beta-galactosidases are arabinogalactan type I oligomer hydrolases. Appl Environ Microbiol 2006; 72:7730-8. [PMID: 17056685 PMCID: PMC1694227 DOI: 10.1128/aem.01306-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoside hydrolases are organized into glycoside hydrolase families (GHFs) and within this larger group, the beta-galactosidases are members of four families: 1, 2, 35, and 42. Most genes encoding GHF 42 enzymes are from prokaryotes unlikely to encounter lactose, suggesting a different substrate for these enzymes. In search of this substrate, we analyzed genes neighboring GHF 42 genes in databases and detected an arrangement implying that these enzymes might hydrolyze oligosaccharides released by GHF 53 enzymes from arabinogalactan type I, a pectic plant polysaccharide. Because Bacillus subtilis has adjacent GHF 42 and GHF 53 genes, we used it to test the hypothesis that a GHF 42 enzyme (LacA) could act on the oligosaccharides released by a GHF 53 enzyme (GalA) from galactan. We cloned these genes, plus a second GHF 42 gene from B. subtilis, yesZ, into Escherichia coli and demonstrated that cells expressing LacA with GalA gained the ability to use galactan as a carbon source. We constructed B. subtilis mutants and showed that the increased beta-galactosidase activity generated in response to the addition of galactan was eliminated by inactivating lacA or galA but unaffected by the inactivation of yesZ. As further demonstration, we overexpressed the LacA and GalA proteins in E. coli and demonstrated that these enzymes degrade galactan in vitro as assayed by thin-layer chromatography. Our work provides the first in vivo evidence for a function of some GHF 42 beta-galactosidases. Similar functions for other beta-galactosidases in both GHFs 2 and 42 are suggested by genomic data.
Collapse
Affiliation(s)
- Stephanie Shipkowski
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 209 South Frear, University Park, PA 16802, USA.
| | | |
Collapse
|