Ueno Y, Nakayama K, Ishii K, Tashiro F, Minoda Y, Omori T, Komagata K. Metabolism of T-2 toxin in Curtobacterium sp. strain 114-2.
Appl Environ Microbiol 1983;
46:120-7. [PMID:
6614901 PMCID:
PMC239276 DOI:
10.1128/aem.46.1.120-127.1983]
[Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The metabolic pathway of T-2 toxin in Curtobacterium sp. strain 114, one of the T-2 toxin-assimilating soil bacteria, was investigated by thin-layer and gas-liquid chromatographic analyses. T-2 toxin added to the basal medium as a single carbon and energy source was biotransformed into HT-2 toxin and an unknown metabolite. Infrared, mass spectrum, proton magnetic resonance, and other physico-chemical analyses identified this new metabolite as T-2 triol. T-2 toxin was first deacetylated by the bacterium into HT-2 toxin, and this metabolite was then biotransformed into T-2 triol without formation of neosolaniol and T-2 tetraol. No trichothecenes remained in the culture medium after prolonged culture. Some properties of T-2 toxin-hydrolyzing enzymes were observed with whole cells, the cell-free soluble fraction, and the culture filtrate. Besides T-2 toxin, trichothecenes such as diacetoxyscirpenol, neosolaniol, nivalenol, and fusarenon-X were also assimilated by this bacterium.
Collapse