1
|
Sharallah OA, Poddar NK, Alwadan OA. Delineation of the role of G6PD in Alzheimer's disease and potential enhancement through microfluidic and nanoparticle approaches. Ageing Res Rev 2024; 99:102394. [PMID: 38950868 DOI: 10.1016/j.arr.2024.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative pathologic entity characterized by the abnormal presence of tau and macromolecular Aβ deposition that leads to the degeneration or death of neurons. In addition to that, glucose-6-phosphate dehydrogenase (G6PD) has a multifaceted role in the process of AD development, where it can be used as both a marker and a target. G6PD activity is dysregulated due to its contribution to oxidative stress, neuroinflammation, and neuronal death. In this context, the current review presents a vivid depiction of recent findings on the relationship between AD progression and changes in the expression or activity of G6PD. The efficacy of the proposed G6PD-based therapeutics has been demonstrated in multiple studies using AD mouse models as representative animal model systems for cognitive decline and neurodegeneration associated with this disease. Innovative therapeutic insights are made for the boosting of G6PD activity via novel innovative nanotechnology and microfluidics tools in drug administration technology. Such approaches provide innovative methods of surpassing the blood-brain barrier, targeting step-by-step specific neural pathways, and overcoming biochemical disturbances that accompany AD. Using different nanoparticles loaded with G6DP to target specific organs, e.g., G6DP-loaded liposomes, enhances BBB penetration and brain distribution of G6DP. Many nanoparticles, which are used for different purposes, are briefly discussed in the paper. Such methods to mimic BBB on organs on-chip offer precise disease modeling and drug testing using microfluidic chips, requiring lower sample amounts and producing faster findings compared to conventional techniques. There are other contributions to microfluid in AD that are discussed briefly. However, there are some limitations accompanying microfluidics that need to be worked on to be used for AD. This study aims to bridge the gap in understanding AD with the synergistic use of promising technologies; microfluid and nanotechnology for future advancements.
Collapse
Affiliation(s)
- Omnya A Sharallah
- PharmD Program, Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| | - Omnia A Alwadan
- PharmD Program, Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt
| |
Collapse
|
2
|
Goret J, Le Roy C, Touati A, Mesureur J, Renaudin H, Claverol S, Bébéar C, Béven L, Pereyre S. Surface lipoproteome of Mycoplasma hominis PG21 and differential expression after contact with human dendritic cells. Future Microbiol 2016; 11:179-94. [DOI: 10.2217/fmb.15.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To assess the lipoproteins that are involved in the interaction between Mycoplasma hominis and human dendritic cells. Materials & methods: The surface lipoproteome of M. hominis PG21 was characterized by using Triton X-114 extraction and LC–MS/MS identification. The transcriptional changes in lipoprotein genes upon contact with human dendritic cells were determined by using reverse transcription quantitative PCR after identification of reference genes suitable for normalization. Results: A large-scale overexpression of lipoprotein genes was observed with 21 upregulated transcripts. Seven genes of unknown function were M. hominis species specific and six genes were putatively associated with increased nutrient capture from the host cell and adhesion. Conclusion: M. hominis regulates lipoprotein gene expression and may use species-specific mechanisms during the host colonization process.
Collapse
Affiliation(s)
- Julien Goret
- Université de Bordeaux, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- INRA, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Chloé Le Roy
- Université de Bordeaux, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- INRA, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
| | - Arabella Touati
- Université de Bordeaux, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- INRA, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
| | | | - Hélène Renaudin
- Université de Bordeaux, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Stéphane Claverol
- Pôle Protéomique, Plateforme Génomique Fonctionnelle de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Cécile Bébéar
- Université de Bordeaux, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- INRA, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Laure Béven
- INRA, UMR 1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Université de Bordeaux, UMR 1332, Biologie du Fruit et Pathologie, Bordeaux, France
| | - Sabine Pereyre
- Université de Bordeaux, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- INRA, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| |
Collapse
|
3
|
Hasebe A, Mu HH, Cole BC. A potential pathogenic factor from Mycoplasma hominis is a TLR2-dependent, macrophage-activating, P50-related adhesin. Am J Reprod Immunol 2014; 72:285-95. [PMID: 24938999 DOI: 10.1111/aji.12279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/21/2014] [Indexed: 11/27/2022] Open
Abstract
PROBLEM Mycoplasma hominis has been implicated in many inflammatory conditions of the human urogenital tract in particular amniotic infections that lead to fetal and neonatal disease and pre-term labor. The mechanisms responsible are poorly defined. METHOD OF STUDY Biochemical and immunological methods were used to extract, purify, and characterize an inflammatory component present in M. hominis. RESULTS We isolated and purified to homogeneity a 40-kDa bioactive lipoprotein from M. hominis that was a potent TLR2-dependent, CD14-independent activator of the human THP-1 macrophage cell line. Homology searches of the N-terminal sequence revealed that 22 of the first 23 residues were identical to those seen for the phase-variable M. hominis p50 adhesin. The truncated P50t lipoprotein importantly retained its adhesive properties for human macrophages. CONCLUSION The unique adhesin/macrophage activator may play a key role in M. hominis infections by triggering an inflammatory cytokine cascade.
Collapse
Affiliation(s)
- Akira Hasebe
- Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | | | | |
Collapse
|
4
|
Mutation of two Mycoplasma arthritidis surface lipoproteins with divergent functions in cytadherence. Infect Immun 2008; 76:5768-76. [PMID: 18794296 DOI: 10.1128/iai.00160-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma arthritidis is a natural pathogen of rats, causing an acute polyarthritis. Previous studies identified two membrane-bound lipoproteins, Maa1 and Maa2, thought to be associated with cytadherence of M. arthritidis strain 158p10p9. We have since confirmed that Maa1 is a major adhesin, although the role of Maa2 has proven more elusive. Both proteins were capable of eliciting protective immunity in rats against challenge with the virulent strain 158p10p9, suggesting that they may be important in pathogenesis. The purpose of this study was to better understand the roles of Maa1 and Maa2 in cytadherence in vitro. Insertion mutants were created for both genes by transposon mutagenesis. In vitro adherence of the Maa1 mutant KOMaa1 to rat L2 lung cells was reduced to the level previously reported for a spontaneous low-adherence mutant of 158p10p9 in which Maa1 is truncated and nonfunctional. Surprisingly, adherence of the Maa2 mutant KOMaa2 was approximately fivefold greater than that of the wild type. Complementation of KOMaa1 and KOMaa2 with wild-type alleles of maa1 and maa2, respectively, returned adherence to wild-type levels. This work confirms our earlier observation that Maa1 is a major adhesin for M. arthritidis strain 158p10p9. Maa2, on the other hand, may play a suppressive or modulatory role, possibly serving to release organisms from microcolonies at certain stages of infection.
Collapse
|
5
|
Association of Mycoplasma arthritidis mitogen with lethal toxicity but not with arthritis in mice. Infect Immun 2008; 76:4989-98. [PMID: 18779340 DOI: 10.1128/iai.00667-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma arthritidis induces an acute to chronic arthritis in rodents. Arthritis induced in mice histologically resembles human rheumatoid arthritis and can be associated with lethal toxicity following systemic injection. The M. arthritidis mitogen (MAM) superantigen has long been implicated as having a role in pathogenesis, but its significance with respect to toxicity and arthritogenicity in mycoplasma-induced disease is unclear. To study the pathogenic significance of MAM, M. arthritidis mutants that overproduced or failed to produce MAM were developed. MAM overproduction and knockout mutants were more and less mitogenic, respectively, than the wild-type strain. The degree of mitogenic activity correlated with lethal toxicity in DBA/2J mice. In contrast, histopathological studies detected no correlation between MAM production and the severity of arthritis induced in DBA/2J and CBA/J mice.
Collapse
|
6
|
Abstract
The genomes of several species of mycoplasma have been sequenced. Most of these species rely on the glycolytic pathway for energy production, with the one exception of Ureaplasma, a species that breaks down urea as its principle source of acquiring energy. Several species, including as Mycoplasma arthritidis, are nonglycolytic and can use arginine as their source of energy. Described here are the genome sequence and a transposon library of M. arthritidis. The genome of 820,453 bp is typical in size for a mycoplasma and contains two large families of genes that are predicted to code for phase-variable proteins. The transposon library was constructed using a minitransposon that inserts stably into the mycoplasma genome. Of the 635 predicted coding regions, 218 were disrupted in a library of 1,100 members. Dispensable genes included the gene coding for the MAM superantigen and genes coding for ribosomal proteins S15, S18, and L15.
Collapse
|
7
|
Hasebe A, Mu HH, Washburn LR, Chan FV, Pennock ND, Taylor ML, Cole BC. Inflammatory lipoproteins purified from a toxigenic and arthritogenic strain of Mycoplasma arthritidis are dependent on Toll-like receptor 2 and CD14. Infect Immun 2007; 75:1820-6. [PMID: 17283106 PMCID: PMC1865712 DOI: 10.1128/iai.00516-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma arthritidis is a naturally occurring murine pathogen, and the disease model has been used extensively to understand inflammatory mechanisms. Recently, Triton X-114 extracts of a virulent strain of M. arthritidis were found to be more potent in activating macrophages than were those from an avirulent strain, suggesting a role in disease. Here, octyl glucoside extraction of cells was used to identify four distinct bioactive moieties, with molecular masses of approximately 41, 37, 34, and 17 kDa. Their bioactivities were resistant to proteinase K but were destroyed by alkaline hydrolysis and oxidation. As for MALP-2, all were dependent upon Toll-like receptor 2, but unlike MALP-2, they were also dependent upon CD14. The M. arthritidis lipoproteins exhibited infrared absorbances at 2,900 cm(-1) and 1,662 cm(-1), similar to those seen in Pam(3)-Cys-Ser-(Lys)(4). Edman degradation failed to reveal N-terminal sequences, suggesting that they were blocked and therefore might be triacylated. However, mass spectrometry of fragments revealed that the 41-kDa moiety, which binds to serum apolipoprotein A-1, had similarity with the recently described MlpD lipoprotein of M. arthritidis.
Collapse
Affiliation(s)
- Akira Hasebe
- Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Cole BC, Mu HH, Pennock ND, Hasebe A, Chan FV, Washburn LR, Peltier MR. Isolation and partial purification of macrophage- and dendritic cell-activating components from Mycoplasma arthritidis: association with organism virulence and involvement with Toll-like receptor 2. Infect Immun 2005; 73:6039-47. [PMID: 16113324 PMCID: PMC1231055 DOI: 10.1128/iai.73.9.6039-6047.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mycoplasma arthritidis induces toxicity, arthritis, and dermal necrosis in mice. Virulence factors include a superantigen and membrane adhesins and possibly also a bacteriophage component. Here we compare the biological properties of Triton X-114 extracts derived from avirulent and virulent M. arthritidis strains. Macrophage cell lines and resident peritoneal macrophages were used to assess inflammatory potential as indicated by production of tumor necrosis factor alpha, interleukin-6, and/or nitric oxide. The activity resided exclusively within the hydrophobic detergent phase, was unaffected by heat treatment at 100 degrees C for 30 min, and was resistant to proteinase K digestion, suggesting involvement of a lipopeptide. Contamination of extracts with endotoxin or superantigen was excluded. Extracts of the more virulent strain had higher activity than did those of the avirulent strain. Using CHO cells expressing Toll-like receptor 2 (TLR2) or TLR4, both with transfected CD14, we showed that extracts activated these cells via TLR2 but not by TLR4. Also, macrophages from C57BL/6 TLR2(-/-) mice failed to respond to the extracts, whereas those from TLR2(+/+) cells did respond. The preparations from the virulent strain of M. arthritidis were also more potent in activating dendritic cells, as evidenced by up-regulation of major histocompatibility complex class II, CD40, B7-1, and B7-2. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent elution of gel slices revealed the presence of three active moieties which corresponded to molecular masses of approximately 24, 28, and 40 kDa. Three active components were also found by reverse-phase chromatography. We suggest that macrophage activation by M. arthritidis could play a significant role in the inflammatory response induced in the host by this organism.
Collapse
Affiliation(s)
- Barry C Cole
- Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Clapper B, Tu AHT, Elgavish A, Dybvig K. The vir gene of bacteriophage MAV1 confers resistance to phage infection on Mycoplasma arthritidis. J Bacteriol 2004; 186:5715-20. [PMID: 15317776 PMCID: PMC516842 DOI: 10.1128/jb.186.17.5715-5720.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 05/28/2004] [Indexed: 11/20/2022] Open
Abstract
Lysogenization of Mycoplasma arthritidis with the MAV1 bacteriophage increases the virulence of the mycoplasma in rats. The MAV1 vir gene is one of only two constitutively transcribed phage genes in the lysogen. We show here that Vir is a lipoprotein and is located on the outer surface of the cell membrane. To investigate whether Vir is a virulence factor, the vir gene was cloned into the transposon vector Tn4001T and inserted in the genome of the nonlysogen strain 158. The virulence of the resulting transformants was no different from that of the parent strain. Interestingly, all vir-containing transformants were resistant to infection by MAV1. Vir had no effect on MAV1 adsorption. We conclude that Vir is not a virulence factor but functions to exclude superinfecting phage, possibly by blocking the injection of phage DNA into the bacterial cytoplasm.
Collapse
Affiliation(s)
- Brenda Clapper
- Department of Microbiology, KAUL, Rm 720, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA
| | | | | | | |
Collapse
|
10
|
Washburn LR, Bird DW, Dybvig K. Restoration of cytoadherence to an adherence-deficient mutant of Mycoplasma arthritidis by genetic complementation. Infect Immun 2003; 71:671-5. [PMID: 12540544 PMCID: PMC145394 DOI: 10.1128/iai.71.2.671-675.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma arthritidis causes a severe septic arthritis in rats under natural and experimental conditions. An earlier study implicated a membrane lipoprotein designated MAA1 in cytadherence of M. arthritidis. In addition, a spontaneous adherence-deficient mutant was shown to contain a nonsense mutation in the gene encoding MAA1, resulting in production of a truncated product, MAA1Delta. In the present study, a wild-type maa1 gene carried on transposon Tn4001T was introduced into the low-adherence mutant by polyethylene glycol-mediated transformation. The presence of the tranposon and the wild-type maa1 gene in the chromosome of transformants was confirmed by PCR and Southern hybridization. The latter procedure also confirmed that each transformant contained a single copy of the transposon. Western immunoblotting showed that transformants produced both wild-type MAA1 and MAA1Delta, indicating that the introduced wild-type maa1 gene was functional. This phenotype was stably maintained after multiple subcultures even in the absence of antibiotic selection. Finally, transformants were shown to adhere to rat L-2 lung cells in culture at wild-type levels, providing confirmation for an important role for MAA1 in adherence.
Collapse
Affiliation(s)
- Leigh R Washburn
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion 57069, USA.
| | | | | |
Collapse
|
11
|
Mu HH, Sawitzke AD, Cole BC. Modulation of cytokine profiles by the Mycoplasma superantigen Mycoplasma arthritidis mitogen parallels susceptibility to arthritis induced by M. arthritidis. Infect Immun 2000; 68:1142-9. [PMID: 10678918 PMCID: PMC97259 DOI: 10.1128/iai.68.3.1142-1149.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma arthritidis mitogen (MAM) is a potent superantigen secreted by M. arthritidis, an agent of murine arthritis. Here we compare the abilities of MAM to induce a panel of cytokines in vitro and in vivo in BALB/c and C3H/HeJ mouse strains that differ in susceptibility to mycoplasmal arthritis. Splenocytes from both mouse strains produced high levels of all cytokines by 24 h following in vitro exposure to MAM. No differences in cytokine profiles were seen irrespective of the MAM dose. However, there were striking differences in cytokine profiles present in supernatants of splenocytes that had been collected from mice after intravenous (i.v. ) injection of MAM and subsequently rechallenged with MAM in vitro. Splenocytes collected 24 and 72 h after i.v. injection of MAM and challenged in vitro with MAM showed the most marked divergence in the secreted cytokines. Type 1 cytokines were markedly elevated in C3H/HeJ cell supernatants, whereas they were depressed or remained low in BALB/c cell supernatants. In contrast, the levels of type 2 cytokines were all greatly increased in BALB/c cell cultures but were decreased or remained low in C3H/HeJ supernatants. Interleukin-12 mRNA and protein was also markedly elevated in C3H/HeJ mice, as were the levels of immunoglobulin G2a. The data indicate a major skewing in cytokine profiles to a type 1 inflammatory response in C3H/HeJ mice but to a protective type 2 response in BALB/c mice. These cytokine changes appear to be associated with the severe arthritis in C3H/HeJ mice following injection of M. arthritidis in comparison to the mild disease seen in injected BALB/c mice.
Collapse
Affiliation(s)
- H H Mu
- Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
12
|
Washburn LR, Miller EJ, Weaver KE. Molecular characterization of Mycoplasma arthritidis membrane lipoprotein MAA1. Infect Immun 2000; 68:437-42. [PMID: 10639401 PMCID: PMC97160 DOI: 10.1128/iai.68.2.437-442.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes encoding the Mycoplasma arthritidis surface-exposed lipoprotein MAA1 were cloned and sequenced from MAA1-expressing strains 158p10p9 and PG6, from a low-adherence (LA) variant derived from 158p10p9 that expresses a truncated version of MAA1 (MAA1Delta) and from two MAA1-negative strains, 158 and H39. The deduced amino acid sequences of maa1 from 158p10p9 and PG6 predicted, respectively, 86.5- and 86.4-kDa basic, largely hydrophilic lipoproteins with 29-amino-acid signal peptides and predicted cleavage sites for signal peptidase II (Ala-Ala-Ala downward arrowCys). The truncation in the LA variant resulted from a G-->T substitution at nucleotide 695, which created a premature stop codon. This, in turn, generated a predicted 26.6-kDa prolipoprotein (23.6 kDa after processing), consistent with an M(r) of approximately 24,000 calculated for MAA1Delta. Similarly, absence of MAA1 expression in H39 and 158 resulted from C-->A substitutions at nucleotide 208, generating premature stop codons at that site in both strains.
Collapse
Affiliation(s)
- L R Washburn
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota 57069-2390, USA.
| | | | | |
Collapse
|
13
|
Voelker LL, Dybvig K. Sequence analysis of the Mycoplasma arthritidis bacteriophage MAV1 genome identifies the putative virulence factor. Gene 1999; 233:101-7. [PMID: 10375626 DOI: 10.1016/s0378-1119(99)00150-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The bacteriophage MAV1 is required for the development of arthritis in rats after infection with its host Mycoplasma arthritidis. To identify the phage-encoded virulence factor for this arthritis, the complete nucleotide sequence of MAV1 was determined. The linear double-stranded genome of MAV1 is 15644bp and contains 15 ORFs. Putative protein products from these ORFs were identified by comparison of the deduced amino acid sequences to known proteins and comprise DNA replication, restriction-modification, structural, regulatory, and integration/excision proteins. Eight putative promoters were identified; four of these would produce polycistronic transcripts. Translation of each ORF appears to be initiated independently, with each having its own RBS. A single ORF, vir, was identified on the minus strand of the phage genome. The putative protein product of vir contains a classic prokaryotic lipoprotein signal sequence and is a strong candidate for the MAV1-encoded virulence determinant.
Collapse
Affiliation(s)
- L L Voelker
- University of Alabama at Birmingham, Department of Comparative Medicine, Birmingham, AL 35294-0019, USA.
| | | |
Collapse
|
14
|
Washburn LR, Weaver KE, Weaver EJ, Donelan W, Al-Sheboul S. Molecular characterization of Mycoplasma arthritidis variable surface protein MAA2. Infect Immun 1998; 66:2576-86. [PMID: 9596719 PMCID: PMC108241 DOI: 10.1128/iai.66.6.2576-2586.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Earlier studies implied a role for Mycoplasma arthritidis surface protein MAA2 in cytadherence and virulence and showed that it exhibited both size and phase variability. Here we report the further analysis of MAA2 and the cloning and sequencing of the maa2 gene from two M. arthritidis strains, 158p10p9 and H606, expressing two size variants of MAA2. Triton X-114 partitioning and metabolic labeling with [3H]palmitic acid suggested lipid modification of MAA2. Surface exposure of the C terminus was indicated by cleavage of monoclonal antibody-specific epitopes from intact cells by carboxypeptidase Y. The maa2 genes from both strains were highly conserved, consisting largely of six (for 158p10p9) or five (for H606) nearly identical, 264-bp tandem direct repeats. The deduced amino acid sequence predicted a largely hydrophilic, highly basic protein with a 29-amino-acid lipoprotein signal peptide. The maa2 gene was expressed in Escherichia coli from the lacZ promoter of vector pGEM-T. The recombinant product was approximately 3 kDa larger than the native protein, suggesting that the signal peptide was not processed in E. coli. The maa2 gene and upstream DNA sequences were cloned from M. arthritidis clonal variants differing in MAA2 expression state. Expression state correlated with the length of a poly(T) tract just upstream of a putative -10 box. Full-sized recombinant MAA2 was expressed in E. coli from genes derived from both ON and OFF expression variants, indicating that control of expression did not include alterations within the coding region.
Collapse
Affiliation(s)
- L R Washburn
- Department of Microbiology, University of South Dakota, Vermillion, South Dakota 57069, USA.
| | | | | | | | | |
Collapse
|