1
|
He J, Lin X, Zhang D, Hu H, Chen X, Xu F, Zhou M. Wake biofilm up to enhance suicidal uptake of gallium for chronic lung infection treatment. Biomaterials 2024; 310:122619. [PMID: 38805955 DOI: 10.1016/j.biomaterials.2024.122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
The hypometabolic and nutrient-limiting condition of dormant bacteria inside biofilms reduces their susceptibility to antibacterial agents, making the treatment of biofilm-dominating chronic infections difficult. Herein, we demonstrate an intratracheal aerosolized maltohexaose-modified catalase-gallium integrated nanosystem that can 'wake up' dormant Pseudomonas aeruginosa biofilm to increase the metabolism and nutritional iron demand by reconciling the oxygen gradient. The activated bacteria then enhance suicidal gallium uptake since gallium acts as a 'Trojan horse' to mimic iron. The internalized gallium ions disrupt biofilms by interfering with the physiological processes of iron ion acquisition and utilization, biofilm formation, and quorum sensing. Furthermore, aerosol microsprayer administration and bacteria-specific maltohexaose modification enable accumulation at biofilm-infected lung and targeted release of gallium into bacteria to improve the therapeutic effect. This work provides a potential strategy for treating infection by reversing the dormant biofilm's resistance condition.
Collapse
Affiliation(s)
- Jian He
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xiuhui Lin
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Dongxiao Zhang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
| | - Huiqun Hu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou, 310027, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
2
|
Greenwald MA, Meinig SL, Plott LM, Roca C, Higgs MG, Vitko NP, Markovetz MR, Rouillard KR, Carpenter J, Kesimer M, Hill DB, Schisler JC, Wolfgang MC. Mucus polymer concentration and in vivo adaptation converge to define the antibiotic response of Pseudomonas aeruginosa during chronic lung infection. mBio 2024; 15:e0345123. [PMID: 38651896 PMCID: PMC11237767 DOI: 10.1128/mbio.03451-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa, which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic tolerance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro. We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa. Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. IMPORTANCE Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro, is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.
Collapse
Affiliation(s)
- Matthew A Greenwald
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Suzanne L Meinig
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lucas M Plott
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cristian Roca
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew G Higgs
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nicholas P Vitko
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew R Markovetz
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kaitlyn R Rouillard
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jerome Carpenter
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David B Hill
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jonathan C Schisler
- Department of Pharmacology, The University of North Carolina, Chapel Hill, North Carolina, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew C Wolfgang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Greenwald MA, Meinig SL, Plott LM, Roca C, Higgs MG, Vitko NP, Markovetz MR, Rouillard KR, Carpenter J, Kesimer M, Hill DB, Schisler JC, Wolfgang MC. Mucus polymer concentration and in vivo adaptation converge to define the antibiotic response of Pseudomonas aeruginosa during chronic lung infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572620. [PMID: 38187602 PMCID: PMC10769284 DOI: 10.1101/2023.12.20.572620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa , which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic recalcitrance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro . We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa . Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. Importance Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro , is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.
Collapse
|
4
|
Holger DJ, El Ghali A, Bhutani N, Lev KL, Stamper K, Kebriaei R, Kunz Coyne AJ, Morrisette T, Shah R, Alexander J, Lehman SM, Rojas LJ, Marshall SH, Bonomo RA, Rybak MJ. Phage-antibiotic combinations against multidrug-resistant Pseudomonas aeruginosa in in vitro static and dynamic biofilm models. Antimicrob Agents Chemother 2023; 67:e0057823. [PMID: 37855639 PMCID: PMC10648846 DOI: 10.1128/aac.00578-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 10/20/2023] Open
Abstract
Biofilm-producing Pseudomonas aeruginosa infections pose a severe threat to public health and are responsible for high morbidity and mortality. Phage-antibiotic combinations (PACs) are a promising strategy for combatting multidrug-resistant (MDR), extensively drug-resistant (XDR), and difficult-to-treat P. aeruginosa infections. Ten MDR/XDR P. aeruginosa strains and five P. aeruginosa-specific phages were genetically characterized and evaluated based upon their antibiotic susceptibilities and phage sensitivities. Two selected strains, AR351 (XDR) and I0003-1 (MDR), were treated singly and in combination with either a broad-spectrum or narrow-spectrum phage, phage EM-T3762627-2_AH (EM), or 14207, respectively, and bactericidal antibiotics of five classes in biofilm time-kill analyses. Synergy and/or bactericidal activity was demonstrated with all PACs against one or both drug-resistant P. aeruginosa strains (average reduction: -Δ3.32 log10 CFU/cm2). Slightly improved ciprofloxacin susceptibility was observed in both strains after exposure to phages (EM and 14207) in combination with ciprofloxacin and colistin. Based on phage cocktail optimization with four phages (EM, 14207, E20050-C (EC), and 109), we identified several effective phage-antibiotic cocktails for further analysis in a 4-day pharmacokinetic/pharmacodynamic in vitro biofilm model. Three-phage cocktail, EM + EC + 109, in combination with ciprofloxacin demonstrated the greatest biofilm reduction against AR351 (-Δ4.70 log10 CFU/cm2 from baseline). Of remarkable interest, the addition of phage 109 prevented phage resistance development to EM and EC in the biofilm model. PACs can demonstrate synergy and offer enhanced eradication of biofilm against drug-resistant P. aeruginosa while preventing the emergence of resistance.
Collapse
Affiliation(s)
- Dana J. Holger
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Amer El Ghali
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Natasha Bhutani
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Katherine L. Lev
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Kyle Stamper
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Ashlan J. Kunz Coyne
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Taylor Morrisette
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Rahi Shah
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Jose Alexander
- Department of Microbiology, Virology, and Immunology, AdventHealth Central Florida, Orlando, Florida, USA
| | - Susan M. Lehman
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Laura J. Rojas
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Antimicrobial Resistance and Epidemiology, Veterans Affairs Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Steven H. Marshall
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Antimicrobial Resistance and Epidemiology, Veterans Affairs Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit Medical Center, Detroit, Michigan, USA
- Department of Medicine, Division of Infectious Diseases, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
5
|
Bao X, Goeteyn E, Crabbé A, Coenye T. Effect of malate on the activity of ciprofloxacin against Pseudomonas aeruginosa in different in vivo and in vivo-like infection models. Antimicrob Agents Chemother 2023; 67:e0068223. [PMID: 37819115 PMCID: PMC10649037 DOI: 10.1128/aac.00682-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
The clinical significance of Pseudomonas aeruginosa infections and the tolerance of this opportunistic pathogen to antibiotic therapy makes the development of novel antimicrobial strategies an urgent need. We previously found that D,L-malic acid potentiates the activity of ciprofloxacin against P. aeruginosa biofilms grown in a synthetic cystic fibrosis sputum medium by increasing metabolic activity and tricarboxylic acid cycle activity. This suggested a potential new strategy to improve antibiotic therapy in P. aeruginosa infections. Considering the importance of the microenvironment on microbial antibiotic susceptibility, the present study aims to further investigate the effect of D,L-malate on ciprofloxacin activity against P. aeruginosa in physiologically relevant infection models, aiming to mimic the infection environment more closely. We used Caenorhabditis elegans nematodes, Galleria mellonella larvae, and a 3-D lung epithelial cell model to assess the effect of D,L-malate on ciprofloxacin activity against P. aeruginosa. D,L-malate was able to significantly enhance ciprofloxacin activity against P. aeruginosa in both G. mellonella larvae and the 3-D lung epithelial cell model. In addition, ciprofloxacin combined with D,L-malate significantly improved the survival of infected 3-D cells compared to ciprofloxacin alone. No significant effect of D,L-malate on ciprofloxacin activity against P. aeruginosa in C. elegans nematodes was observed. Overall, these data indicate that the outcome of the experiment is influenced by the model system used which emphasizes the importance of using models that reflect the in vivo environment as closely as possible. Nevertheless, this study confirms the potential of D,L-malate to enhance ciprofloxacin activity against P. aeruginosa-associated infections.
Collapse
Affiliation(s)
- Xuerui Bao
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Schultheis JM, Durham ME, Kram SJ, Kuhrt M, Gilstrap DL, Parish A, Green CL, Kram BL. Incidence and associated risk factors for systemic drug levels with inhaled aminoglycoside therapy. J Antimicrob Chemother 2023; 78:450-456. [PMID: 36512376 PMCID: PMC10169422 DOI: 10.1093/jac/dkac412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To characterize the incidence of and risk factors for a detectable drug level (DDL) in patients that received inhaled aminoglycoside therapy. METHODS This retrospective, single-centre study included adult patients who received at least one dose of an inhaled aminoglycoside with a drug level during inpatient hospitalization. Patients were excluded if they received an aminoglycoside intravenously within 7 days or if the drug level was not drawn within 4 h of the next dose. A repeated measures logistic regression model evaluated the association between potential risk factors and a DDL. RESULTS Among 286 drug levels, 88 (30.8%) drug levels were detectable. In multivariable analysis, cystic fibrosis (CF) (OR: 3.03; 95% CI: 1.10-8.35), chronic kidney disease (CKD) (OR: 4.25; 95% CI: 1.84-9.83), lung transplant recipient (OR: 3.08; 95% CI: 1.09-8.73), mechanical ventilation (OR: 2.99; 95% CI: 1.25-7.15) and tobramycin (OR: 5.26; 95% CI: 2.35-11.78) were associated with higher odds of a DDL. Among those with a DDL, inhaled aminoglycoside type and drug level concentration were not associated with acute kidney injury (P = 0.161). CONCLUSIONS Among 286 drug levels identified among inpatients receiving inhaled aminoglycoside therapy, 88 (30.8%) unique drug levels were detectable. Based on the results of this study, periodic trough concentrations should be considered for patients receiving inhaled aminoglycoside therapy with CF, CKD, lung transplantation, mechanical ventilation or tobramycin.
Collapse
Affiliation(s)
| | - Mary E Durham
- Department of Pharmacy, Premier Inc., Charlotte, NC, USA
| | - Shawn J Kram
- Department of Pharmacy, Duke University Hospital, Durham, NC, USA
| | - Michelle Kuhrt
- Department of Pharmacy, Duke University Hospital, Durham, NC, USA
| | - Daniel L Gilstrap
- Department of Pulmonary, Allergy, and Critical Care Medicine, Duke University Hospital, Durham, NC, USA
| | - Alice Parish
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Cynthia L Green
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Bridgette L Kram
- Department of Pharmacy, Duke University Hospital, Durham, NC, USA
| |
Collapse
|
7
|
Ge C, Huang X, Zhang S, Yuan M, Tan Z, Xu C, Jie Q, Zhang J, Zou J, Zhu Y, Feng D, Zhang Y, Aa J. In vitro co-culture systems of hepatic and intestinal cells for cellular pharmacokinetic and pharmacodynamic studies of capecitabine against colorectal cancer. Cancer Cell Int 2023; 23:14. [PMID: 36717845 PMCID: PMC9887786 DOI: 10.1186/s12935-023-02853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/15/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND As a prodrug of 5-fluorouracil (5-FU), orally administrated capecitabine (CAP) undergoes preliminary conversion into active metabolites in the liver and then releases 5-FU in the gut to exert the anti-tumor activity. Since metabolic changes of CAP play a key role in its activation, a single kind of intestinal or hepatic cell can never be used in vitro to evaluate the pharmacokinetics (PK) and pharmacodynamics (PD) nature. Hence, we aimed to establish a novel in vitro system to effectively assess the PK and PD of these kinds of prodrugs. METHODS Co-culture cellular models were established by simultaneously using colorectal cancer (CRC) and hepatocarcinoma cell lines in one system. Cell Counting Kit-8 (CCK-8) and flow cytometric analysis were used to evaluate cell viability and apoptosis, respectively. Apoptosis-related protein expression levels were measured using western blot analysis. A selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for cellular PK in co-culture models. RESULTS CAP had little anti-proliferative effect on the five monolayer CRC cell lines (SW480, LoVo, HCT-8, HCT-116 and SW620) or the hepatocarcinoma cell line (HepG2). However, CAP exerted marked anti-tumor activities on each of the CRC cell lines in the co-culture models containing both CRC and hepatocarcinoma cell lines, although its effect on the five CRC cell lines varied. Moreover, after pre-incubation of CAP with HepG2 cells, the culture media containing the active metabolites of CAP also showed an anti-tumor effect on the five CRC cell lines, indicating the crucial role of hepatic cells in the activation of CAP. CONCLUSION The simple and cost‑effective co-culture models with both CRC and hepatocarcinoma cells could mimic the in vivo process of a prodrug dependent on metabolic conversion to active metabolites in the liver, providing a valuable strategy for evaluating the PK and PD characteristics of CAP-like prodrugs in vitro at the early stage of drug development.
Collapse
Affiliation(s)
- Chun Ge
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Xintong Huang
- grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Sujie Zhang
- grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Man Yuan
- grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Zhaoyi Tan
- grid.254147.10000 0000 9776 7793Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| | - Chen Xu
- grid.254147.10000 0000 9776 7793Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| | - Qiong Jie
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Jingjing Zhang
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Jianjun Zou
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Yubing Zhu
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Dong Feng
- Nanjing Southern Pharmaceutical Technology Co., Ltd., Nanjing, 211100 China
| | - Yue Zhang
- grid.254147.10000 0000 9776 7793Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| | - Jiye Aa
- grid.254147.10000 0000 9776 7793Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
8
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Sass G, Scherpe L, Martinez M, Marsh JJ, Stevens DA. Metrics of Antifungal Effects of Ciprofloxacin on Aspergillus fumigatus Planktonic Growth and Biofilm Metabolism; Effects of Iron and Siderophores. J Fungi (Basel) 2022; 8:jof8030240. [PMID: 35330242 PMCID: PMC8950033 DOI: 10.3390/jof8030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
Pseudomonas aeruginosa and Aspergillus fumigatus frequently coexist in the airways of immunocompromised patients or individuals with cystic fibrosis. Ciprofloxacin (CIP) is a synthetic quinolone antibiotic commonly used to treat bacterial infections, such as those produced by Pseudomonas aeruginosa. CIP binds iron, and it is unclear what effect this complex would have on the mycobiome. The effects of CIP on Aspergillus were dependent on the iron levels present, and on the presence of Aspergillus siderophores. We found that CIP alone stimulated wildtype planktonic growth, but not biofilm metabolism. At high concentrations, CIP antagonized a profungal effect of iron on wildtype Aspergillus metabolism, presumably owing to iron chelation. CIP interfered with the metabolism and growth of an Aspergillus siderophore mutant, with the effect on metabolism being antagonized by iron. CIP acted synergistically with iron on the growth of the mutant, and, to a lesser extent, the wildtype. In summary, CIP can increase fungal growth or affect fungal metabolism, depending on the local iron concentration and available siderophores. Therefore, high local CIP concentrations during treatment of Pseudomonas–Aspergillus co-infections may increase the fungal burden.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA; (L.S.); (M.M.); (J.J.M.); (D.A.S.)
- Correspondence: ; Tel.: +1-408-998-4557
| | - Lynn Scherpe
- California Institute for Medical Research, San Jose, CA 95128, USA; (L.S.); (M.M.); (J.J.M.); (D.A.S.)
- Faculty of Science and Engineering, Maastricht University, 6229 EN Maastricht, The Netherlands
| | - Marife Martinez
- California Institute for Medical Research, San Jose, CA 95128, USA; (L.S.); (M.M.); (J.J.M.); (D.A.S.)
| | - Julianne J. Marsh
- California Institute for Medical Research, San Jose, CA 95128, USA; (L.S.); (M.M.); (J.J.M.); (D.A.S.)
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (L.S.); (M.M.); (J.J.M.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Ekkelenkamp MB, Díez-Aguilar M, Tunney MM, Elborn JS, Fluit AC, Cantón R. Establishing antimicrobial susceptibility testing methods and clinical breakpoints for inhaled antibiotic therapy. Open Forum Infect Dis 2022; 9:ofac082. [PMID: 35265731 PMCID: PMC8900927 DOI: 10.1093/ofid/ofac082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 12/05/2022] Open
Abstract
Inhaled antibiotics are a common and valuable therapy for patients suffering from chronic lung infection, with this particularly well demonstrated for patients with cystic fibrosis. However, in vitro tests to predict patient response to inhaled antibiotic therapy are currently lacking. There are indications that antimicrobial susceptibility testing (AST) may have a role in guidance of therapy, but which tests would correlate best still needs to be researched in clinical studies or animal models. Applying the principles of European Committee on Antimicrobial Susceptibility Testing methodology, the analysis of relevant and reliable data correlating different AST tests to patients’ outcomes may yield clinical breakpoints for susceptibility, but these data are currently unavailable. At present, we believe that it is unlikely that standard determination of minimum inhibitory concentration will prove the best predictor.
Collapse
Affiliation(s)
- Miquel B Ekkelenkamp
- University Medical Center Utrecht, Department of Medical Microbiology, Utrecht, The Netherlands
| | - María Díez-Aguilar
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Servicio de Microbiología y Parasitología, Hospital Universitario La Princesa, Madrid, Spain
| | - Michael M Tunney
- Queen’s University Belfast, Department of Pulmonology, Belfast, United Kingdom
| | - J Stuart Elborn
- Queen’s University Belfast, Department of Pulmonology, Belfast, United Kingdom
| | - Ad C Fluit
- University Medical Center Utrecht, Department of Medical Microbiology, Utrecht, The Netherlands
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
11
|
Schwarz C, Procaccianti C, Mignot B, Sadafi H, Schwenck N, Murgia X, Bianco F. Deposition of Inhaled Levofloxacin in Cystic Fibrosis Lungs Assessed by Functional Respiratory Imaging. Pharmaceutics 2021; 13:2051. [PMID: 34959333 PMCID: PMC8708197 DOI: 10.3390/pharmaceutics13122051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary infections caused by Pseudomonas aeruginosa (PA) represent the leading cause of pulmonary morbidity in adults with cystic fibrosis (CF). In addition to tobramycin, colistin, and aztreonam, levofloxacin has been approved in Europe to treat PA infections. Nevertheless, no lung deposition data on inhaled levofloxacin are yet available. We conducted a Functional Respiratory Imaging (FRI) study to predict the lung deposition of levofloxacin in the lungs of patients with CF. Three-dimensional airway models were digitally reconstructed from twenty high-resolution computed tomography scans obtained from historical patients' records. Levofloxacin aerosols generated with the corresponding approved nebuliser were characterised according to pharmacopeia. The obtained data were used to inform a computational fluid dynamics simulation of levofloxacin lung deposition using breathing patterns averaged from actual CF patients' spirometry data. Levofloxacin deposition in the lung periphery was significantly reduced by breathing patterns with low inspiratory times and high inspiratory flow rates. The intrathoracic levofloxacin deposition percentages for moderate and mild CF lungs were, respectively, 37.0% ± 13.6 and 39.5% ± 12.9 of the nominal dose. A significant albeit modest correlation was found between the central-to-peripheral deposition (C/P) ratio of levofloxacin and FEV1. FRI analysis also detected structural differences between mild and moderate CF airways. FRI revealed a significant intrathoracic deposition of levofloxacin aerosols, which distributed preferentially to the lower lung lobes, with an influence of the deterioration of FEV1 on the C/P ratio. The three-dimensional rendering of CF airways also detected structural differences between the airways of patients with mild and moderate CF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Federico Bianco
- Global Medical Affairs, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy;
| |
Collapse
|
12
|
Son YJ, Miller DP, Weers JG. Optimizing Spray-Dried Porous Particles for High Dose Delivery with a Portable Dry Powder Inhaler. Pharmaceutics 2021; 13:pharmaceutics13091528. [PMID: 34575603 PMCID: PMC8470347 DOI: 10.3390/pharmaceutics13091528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
This manuscript critically reviews the design and delivery of spray-dried particles for the achievement of high total lung doses (TLD) with a portable dry powder inhaler. We introduce a new metric termed the product density, which is simply the TLD of a drug divided by the volume of the receptacle it is contained within. The product density is given by the product of three terms: the packing density (the mass of powder divided by the volume of the receptacle), the drug loading (the mass of drug divided by the mass of powder), and the aerosol performance (the TLD divided by the mass of drug). This manuscript discusses strategies for maximizing each of these terms. Spray drying at low drying rates with small amounts of a shell-forming excipient (low Peclet number) leads to the formation of higher density particles with high packing densities. This enables ultrahigh TLD (>100 mg of drug) to be achieved from a single receptacle. The emptying of powder from capsules is directly proportional to the mass of powder in the receptacle, requiring an inhaled volume of about 1 L for fill masses between 40 and 50 mg and up to 3.2 L for a fill mass of 150 mg.
Collapse
Affiliation(s)
- Yoen-Ju Son
- Genentech, South San Francisco, CA 94080, USA;
| | | | - Jeffry G. Weers
- Cystetic Medicines, Inc., Burlingame, CA 94010, USA;
- Correspondence: ; Tel.: +1-650-339-3832
| |
Collapse
|
13
|
Elborn JS, Flume PA, Van Devanter DR, Procaccianti C. Management of chronic Pseudomonas aeruginosa infection with inhaled levofloxacin in people with cystic fibrosis. Future Microbiol 2021; 16:1087-1104. [PMID: 34384254 DOI: 10.2217/fmb-2021-0150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
People with cystic fibrosis (CF) are highly susceptible to bacterial infections of the airways. By adulthood, chronic Pseudomonas aeruginosa (Pa) is the most prevalent infective organism and is difficult to eradicate owing to its adaptation to the CF lung microenvironment. Long-term suppressive treatment with inhaled antimicrobials is the standard care for reducing exacerbation frequency, improving quality of life and increasing measures of lung function. Levofloxacin (a fluoroquinolone antimicrobial) has been approved as an inhaled solution in Europe and Canada, for the treatment of adults with CF with chronic P. aeruginosa pulmonary infections. Here, we review the clinical principles relating to the use of inhaled antimicrobials and inhaled levofloxacin for the management of P. aeruginosa infections in patients with CF.
Collapse
Affiliation(s)
- J Stuart Elborn
- Faculty of Medicine, Health & Life Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Patrick A Flume
- Departments of Medicine & Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Donald R Van Devanter
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
14
|
Pharmacokinetics and pharmacodynamics of antibiotics in cystic fibrosis: a narrative review. Int J Antimicrob Agents 2021; 58:106381. [PMID: 34157401 DOI: 10.1016/j.ijantimicag.2021.106381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
Cystic fibrosis affects several organs, predisposing patients to severe bacterial respiratory infections, including those caused by methicillin-resistant Staphylococcus aureus. Cystic fibrosis is also associated with a wide spectrum of pathological changes that can significantly affect the absorption, distribution, metabolism, and/or elimination of several drugs, including antibacterial agents. Therefore, awareness of the pharmacokinetic derangements in patients with cystic fibrosis is mandatory for the optimisation of antibiotic therapy. This review discusses the basic principles of pharmacokinetics and the pathophysiology of the pharmacokinetics changes associated with cystic fibrosis; it also provides an update of available data for the most widely used antibiotics. Evidence accumulated in the last few years has clearly shown that a significant number of cystic fibrosis patients treated with conventional dosing schemes have sub-therapeutic antibiotic concentrations, increasing their risk of therapeutic failure and/or the emergence of resistant pathogens. Some proposals to optimise antibiotic therapies in this clinical setting based on therapeutic drug monitoring are also discussed.
Collapse
|
15
|
Debnath SK, Srivastava R, Debnath M, Omri A. Status of inhalable antimicrobial agents for lung infection: progress and prospects. Expert Rev Respir Med 2021; 15:1251-1270. [PMID: 33866900 DOI: 10.1080/17476348.2021.1919514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Available parenteral and oral administration of antimicrobial agents (AMAs) in respiratory infections often show less penetration into the lung parenchyma. Due to inappropriate dose availability, the rate of antibiotic resistance is increasing gradually. Inhaled antibiotics intensely improve the availability of drugs at the site of respiratory infections. This targeted delivery minimizes systemic exposure and associated toxicity.Area covers: This review was performed by searching in the scientific database like PubMed and several trusted government sites like fda.gov, cdc.gov, ClinicalTrials.gov, etc. For better understanding, AMAs are classified in different stages of approval. Mechanism and characterization of pulmonary drug deposition section helps to understand the effective delivery of AMAs to the respiratory tract. There is a need for proper adoption of delivery devices for inhalable AMAs. Thus, delivery devices are extensively explained. Inspiratory flow has a remarkable impact on the delivery device that has been explained in detail.Expert opinion: Pulmonary delivery restricts the bulk administration of drugs in comparison with other routes. Therefore, novel AMAs with higher bactericidal activity at lower concentrations need to be synthesized. Extensive research is indeed in developing innovative delivery devices that would able to deliver higher doses of AMAs through the pulmonary route.
Collapse
Affiliation(s)
- Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Monalisha Debnath
- School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, India
| | - Abdelwahab Omri
- Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
16
|
Kumar M, Rao M, Mathur T, Barman TK, Joshi V, Chaira T, Singhal S, Pandya M, Al Khodor S, Upadhyay DJ, Masuda N. Azithromycin Exhibits Activity Against Pseudomonas aeruginosa in Chronic Rat Lung Infection Model. Front Microbiol 2021; 12:603151. [PMID: 33967970 PMCID: PMC8102702 DOI: 10.3389/fmicb.2021.603151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa forms biofilms in the lungs of chronically infected cystic fibrosis patients, which are tolerant to both the treatment of antibiotics and the host immune system. Normally, antibiotics are less effective against bacteria growing in biofilms; azithromycin has shown a potent efficacy in cystic fibrosis patients chronically infected with P. aeruginosa and improved their lung function. The present study was conducted to evaluate the effect of azithromycin on P. aeruginosa biofilm. We show that azithromycin exhibited a potent activity against P. aeruginosa biofilm, and microscopic observation revealed that azithromycin substantially inhibited the formation of solid surface biofilms. Interestingly, we observed that azithromycin restricted P. aeruginosa biofilm formation by inhibiting the expression of pel genes, which has been previously shown to play an essential role in bacterial attachment to solid-surface biofilm. In a rat model of chronic P. aeruginosa lung infection, we show that azithromycin treatment resulted in the suppression of quorum sensing-regulated virulence factors, significantly improving the clearance of P. aeruginosa biofilms compared to that in the placebo control. We conclude that azithromycin attenuates P. aeruginosa biofilm formation, impairs its ability to produce extracellular biofilm matrix, and increases its sensitivity to the immune system, which may explain the clinical efficacy of azithromycin in cystic fibrosis patients.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India.,Research Department, Sidra Medicine, Doha, Qatar
| | - Madhvi Rao
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - Tarun Mathur
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - Tarani Kanta Barman
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - Vattan Joshi
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - Tridib Chaira
- Department of Pharmacokinetics and Metabolism, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - Smita Singhal
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - Manisha Pandya
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | | | - Dilip J Upadhyay
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - Nobuhisa Masuda
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| |
Collapse
|
17
|
Pseudomonas aeruginosa Susceptibility Patterns and Associated Clinical Outcomes in People with Cystic Fibrosis following Approval of Aztreonam Lysine for Inhalation. Antimicrob Agents Chemother 2021; 65:AAC.02327-20. [PMID: 33318007 PMCID: PMC8092527 DOI: 10.1128/aac.02327-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/06/2020] [Indexed: 11/20/2022] Open
Abstract
The approval of aztreonam lysine for inhalation solution (AZLI) raised concerns that additional antibiotic exposure would potentially affect the susceptibility profiles of Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients. This 5-year, prospective, observational study tracked susceptibility changes and clinical outcomes in CF patients in the United States with chronic P. aeruginosa infection. Sputum cultures were collected annually (2011 to 2016). The primary study endpoint was the proportion of subjects whose least susceptible P. aeruginosa isolate had an aztreonam MIC that was >8 μg/ml (parenteral breakpoint) and increased ≥4-fold compared with the least susceptible isolate from the previous year. Annualized data for pulmonary exacerbations, hospitalizations, and percent of predicted forced expiratory volume in 1 s (FEV1% predicted) were obtained from the CF Foundation Patient Registry and compared between subjects meeting and those not meeting the primary endpoint. A total of 510 subjects were enrolled; 334 (65%) completed the study. A consistent proportion of evaluable subjects (13 to 22%) met the primary endpoint each year, and AZLI use during the previous 12 months was not associated with meeting the primary endpoint. While the annual declines in lung function were comparable for subjects meeting and those not meeting the primary endpoint, more pulmonary exacerbations and hospitalizations were experienced by those who met it. The aztreonam susceptibility of P. aeruginosa remained consistent during the 5-year study. The relationship between P. aeruginosa isolate susceptibilities and clinical outcomes is complex; reduced susceptibility was not associated with an accelerated decline in lung function but was associated with more exacerbations and hospitalizations, likely reflecting increased overall antibiotic exposure. (This study has been registered at ClinicalTrials.gov under identifier NCT01375036.).
Collapse
|
18
|
Matera MG, Calzetta L, Ora J, Rogliani P, Cazzola M. Pharmacokinetic/pharmacodynamic approaches to drug delivery design for inhalation drugs. Expert Opin Drug Deliv 2021; 18:891-906. [PMID: 33412922 DOI: 10.1080/17425247.2021.1873271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Inhaled drugs are important in the treatment of many lung pathologies, but to be therapeutically effective they must reach unbound concentrations at their effect site in the lung that are adequate to interact with their pharmacodynamic properties (PD) and exert the pharmacological action over an appropriate dosing interval. Therefore, the evaluation of pharmacokinetic (PK)/PD relationship is critical to predict their possible therapeutic effect.Areas covered: We review the approaches used to assess the PK/PD relationship of the major classes of inhaled drugs that are prescribed to treat pulmonary pathologies.Expert opinion: There are still great difficulties in producing data on lung concentrations of inhaled drugs and interpreting them as to their ability to induce the desired therapeutic action. The structural complexity of the lungs, the multiplicity of processes involved simultaneously and the physical interactions between the lungs and drug make any PK/PD approach to drug delivery design for inhalation medications extremely challenging. New approaches/methods are increasing our understanding about what happens to inhaled drugs, but they are still not ready for regulatory purposes. Therefore, we must still rely on plasma concentrations based on the axiom that they reflect both the extent and the pattern of deposition within the lungs.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Dept. Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Dept. Medicine and Surgery, University of Parma, Parma, Italy
| | - Josuel Ora
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
19
|
Frost F, Young GR, Wright L, Miah N, Smith DL, Winstanley C, Walshaw MJ, Fothergill JL, Nazareth D. The clinical and microbiological utility of inhaled aztreonam lysine for the treatment of acute pulmonary exacerbations of cystic fibrosis: An open-label randomised crossover study (AZTEC-CF). J Cyst Fibros 2020; 20:994-1002. [PMID: 33358119 DOI: 10.1016/j.jcf.2020.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND The objective of this study was to explore the clinical and microbiological outcomes associated with substituting inhaled aztreonam lysine for an intravenous antibiotic in the treatment of acute pulmonary exacerbations of CF. METHODS An open-label randomised crossover pilot trial was conducted at a UK CF centre among 16 adults with CF and P. aeruginosa infection. Median [IQR] age was 29.5 [24.5-32.5], mean ± SD forced expiratory volume in 1 second (FEV1) was 52.4 ± 14.7 % predicted. Over the course of two exacerbations, participants were randomised to sequentially receive 14 days of inhaled aztreonam lysine plus IV colistimethate (AZLI+IV), or dual IV antibiotics (IV+IV). Primary outcome was absolute change in % predicted FEV1. Other outcomes evaluated changes in quality of life, bacterial load and the lung microbiota. RESULTS The difference between mean change in lung function at day 14 between AZLI+IV and IV+IV was +4.6% (95% CI 2.1-7.2, p=0.002). The minimum clinically important difference of the Cystic Fibrosis Revised Questionnaire (CFQ-R) was achieved more frequently with AZLI+IV (10/12, 83.3%) than IV+IV (7/16, 43.8%), p=0.05. No differences were observed for modulation of serum white cell count, C-reactive protein or sputum bacterial load. Microbiome compositional changes were observed with IV+IV (Bray-Curtis r2=0.14, p=0.02), but not AZLI+IV (r2=0.03, p=0.64). CONCLUSION In adults with CF and P. aeruginosa infection experiencing an acute pulmonary exacerbation, AZLI+IV improved lung function and quality of life compared to the current standard treatment. These findings support the need for larger definitive trials of inhaled antibiotics in the acute setting. CLINICAL TRIAL REGISTRATION EudraCT 2016-002832-34 ClinicalTrials.org NCT02894684.
Collapse
Affiliation(s)
- Freddy Frost
- Adult CF Centre, Liverpool Heart & Chest Hospital, UK; Institute of Infection & Global Health, University of Liverpool, UK.
| | - Gregory R Young
- Faculty of Health and Life Sciences, University of Northumbria, UK
| | - Laura Wright
- Institute of Infection & Global Health, University of Liverpool, UK
| | - Nahida Miah
- Institute of Infection & Global Health, University of Liverpool, UK
| | - Darren L Smith
- Faculty of Health and Life Sciences, University of Northumbria, UK
| | - Craig Winstanley
- Institute of Infection & Global Health, University of Liverpool, UK
| | - Martin J Walshaw
- Adult CF Centre, Liverpool Heart & Chest Hospital, UK; Institute of Infection & Global Health, University of Liverpool, UK
| | | | - Dilip Nazareth
- Adult CF Centre, Liverpool Heart & Chest Hospital, UK; Institute of Infection & Global Health, University of Liverpool, UK
| |
Collapse
|
20
|
Shetty N, Zhang Y, Park H, Zemlyanov D, Shah D, He A, Ahn P, Mutukuri TT, Chan HK, Zhou QT. Surface Composition and Aerosolization Stability of an Inhalable Combinational Powder Formulation Spray Dried Using a Three-Fluid Nozzle. Pharm Res 2020; 37:219. [PMID: 33037471 DOI: 10.1007/s11095-020-02937-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE This study aims to understand the impact of spray drying nozzles on particle surface composition and aerosol stability. METHODS The combination formulations of colistin and azithromycin were formulated by 2-fluid nozzle (2 N) or 3-fluid (3 N) spray drying in a molar ratio of 1:1. A 3-factor, 2-level (23) factorial design was selected to investigate effects of flow rate, inlet temperature and feed concentration on yield of spray drying and the performance of the spray dried formulations for the 3 N. RESULTS FPF values for the 2 N formulation (72.9 ± 1.9% for azithromycin & 73.4 ± 0.8% for colistin) were higher than those for the 3 N formulation (56.5 ± 3.8% for azithromycin & 55.1 ± 1.6% for colistin) when stored at 20% RH for 1 day, which could be attributed to smaller physical size for the 2 N. There was no change in FPF for both drugs in the 2 N formulation after storage at 75% RH for 90 days; however, there was a slight increase in FPF for colistin in the 3 N formulation at the same storage conditions. Surface enrichment of hydrophobic azithromycin was measured by X-ray photoelectron spectroscopy for both 2 N and 3 N formulations and interactions were studied using FTIR. CONCLUSIONS The 3-fluid nozzle provides flexibility in choosing different solvents and has the capability to spray dry at higher feed solid concentrations. This study highlights the impact of hydrophobic azithromycin enrichment on particle surface irrespective of the nozzle type, on the prevention of moisture-induced deterioration of FPF for hygroscopic colistin.
Collapse
Affiliation(s)
- Nivedita Shetty
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA.,Department of Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Yiwen Zhang
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana, 47907, USA
| | - Dishan Shah
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Athena He
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Patricia Ahn
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Tarun Tejasvi Mutukuri
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Hak-Kim Chan
- Sydney Pharmacy School, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
21
|
de la Rosa Carrillo D, López-Campos JL, Alcázar Navarrete B, Calle Rubio M, Cantón Moreno R, García-Rivero JL, Máiz Carro L, Olveira Fuster C, Martínez-García MÁ. Consensus Document on the Diagnosis and Treatment of Chronic Bronchial Infection in Chronic Obstructive Pulmonary Disease. Arch Bronconeumol 2020; 56:651-664. [PMID: 32540279 DOI: 10.1016/j.arbres.2020.04.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Although the chronic presence of microorganisms in the airways of patients with stable chronic obstructive pulmonary disease (COPD) confers a poor outcome, no recommendations have been established in disease management guidelines on how to diagnose and treat these cases. In order to guide professionals, the Spanish Society of Pulmonology and Thoracic Surgery (SEPAR) has prepared a document which aims to answer questions on the clinical management of COPD patients in whom microorganisms are occasionally or habitually isolated. Since the available scientific evidence is too heterogeneous to use in the creation of a clinical practice guideline, we have drawn up a document based on existing scientific literature and clinical experience, addressing the definition of different clinical situations and their diagnosis and management. The text was drawn up by consensus and approved by a large group of respiratory medicine experts with extensive clinical and scientific experience in the field, and has been endorsed by the SEPAR Scientific Committee.
Collapse
Affiliation(s)
| | - José Luís López-Campos
- Servicio de Neumología, Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España
| | - Bernardino Alcázar Navarrete
- Servicio de Neumología, Hospital Regional Universitario de Málaga. Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, España
| | - Myriam Calle Rubio
- Servicio de Neumología, Hospital de Alta Resolución de Loja, Loja, Granada, España
| | - Rafael Cantón Moreno
- Servicio de Neumología, Unidad de Infección Bronquial Crónica, Fibrosis Quística y Bronquiectasias, Hospital Universitario Ramón y Cajal, Madrid, España
| | - Juan Luis García-Rivero
- Servicio de Neumología, Hospital Clínico San Carlos. Departamento de Medicina, Facultad de Medicina, UCM, Madrid, España
| | - Luís Máiz Carro
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, España
| | | | | |
Collapse
|
22
|
Nebulization of Vancomycin Provides Higher Lung Tissue Concentrations than Intravenous Administration in Ventilated Female Piglets with Healthy Lungs. Anesthesiology 2020; 132:1516-1527. [PMID: 32053565 DOI: 10.1097/aln.0000000000003171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Intravenous vancomycin is used to treat ventilator-associated pneumonia caused by methicillin-resistant Staphylococcus aureus, but achieves high rates of failure. Vancomycin nebulization may be efficient to provide high vancomycin lung tissue concentrations. The aim of this study was to compare lung tissue and serum concentrations of vancomycin administered intravenously and by aerosol in mechanically ventilated and anesthetized healthy piglets. METHODS Twelve female piglets received a single intravenous dose of vancomycin (15 mg/kg) and were killed 1 (n = 6) or 12 h (n = 6) after the end of administration. Twelve piglets received a single nebulized dose of vancomycin (37.5 mg/kg) and were killed 1 (n = 6) or 12 h (n = 6) after the end of the aerosol administration. In each group, vancomycin lung tissue concentrations were assessed on postmortem lung specimens using high-performance liquid chromatography. Blood samples were collected for serum vancomycin concentration measurement 30 min and 1, 2, 4, 6, 8, and 12 h after the end of vancomycin administration. Pharmacokinetics was analyzed by nonlinear mixed effect modeling. RESULTS One hour after vancomycin administration, lung tissue concentrations in the aerosol group were 13 times the concentrations in the intravenous group (median and interquartile range: 161 [71, 301] μg/g versus 12 [4, 42] μg/g; P < 0.0001). Twelve hours after vancomycin administration, lung tissue concentrations in the aerosol group were 63 (23, 119) μg/g and 0 (0, 19) μg/g in the intravenous group (P < 0.0001). A two-compartment weight-scaled allometric model with first-order absorption and elimination best fit serum pharmacokinetics after both routes of administration. Area under the time-concentration curve from 0 to 12 h was lower in the aerosol group in comparison to the intravenous group (56 [8, 70] mg · h · l vs. 121 [103, 149] mg · h · l, P = 0.002). Using a population model, vancomycin bioavailability was 13% (95% CI, 6 to 69; coefficient of variation = 85%) and absorption rate was slow (absorption half life = 0.3 h). CONCLUSIONS Administration of vancomycin by nebulization resulted in higher lung tissue concentrations than the intravenous route.
Collapse
|
23
|
De Sutter PJ, Gasthuys E, Van Braeckel E, Schelstraete P, Van Biervliet S, Van Bocxlaer J, Vermeulen A. Pharmacokinetics in Patients with Cystic Fibrosis: A Systematic Review of Data Published Between 1999 and 2019. Clin Pharmacokinet 2020; 59:1551-1573. [DOI: 10.1007/s40262-020-00932-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Máiz Carro L, Blanco-Aparicio M. Nuevos antibióticos inhalados y formas de administración. OPEN RESPIRATORY ARCHIVES 2020. [DOI: 10.1016/j.opresp.2020.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
25
|
Kruizinga MD, Birkhoff WAJ, van Esdonk MJ, Klarenbeek NB, Cholewinski T, Nelemans T, Dröge MJ, Cohen AF, Zuiker RGJA. Pharmacokinetics of intravenous and inhaled salbutamol and tobramycin: An exploratory study to investigate the potential of exhaled breath condensate as a matrix for pharmacokinetic analysis. Br J Clin Pharmacol 2020; 86:175-181. [PMID: 31658494 PMCID: PMC6983506 DOI: 10.1111/bcp.14156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Concentrations of drugs acting in the lungs are difficult to measure, resulting in relatively unknown local pharmacokinetics. The aim of this study is to assess the potential of exhaled breath condensate (EBC) as a matrix for pharmacokinetic analysis of inhaled and intravenous medication. A 4‐way crossover study was conducted in 12 volunteers with tobramycin and salbutamol intravenously and via inhalation. EBC and plasma samples were collected postdose and analysed for drug concentrations. Sample dilution, calculated using urea concentrations, was used to estimate the epithelial lining fluid concentration. Salbutamol and tobramycin were largely undetectable in EBC after intravenous administration and were detectable after inhaled administration in all subjects in 50.8 and 51.5% of EBC samples, respectively. Correction of EBC concentrations for sample dilution did not explain the high variability. This high variability of EBC drug concentrations seems to preclude EBC as a matrix for pharmacokinetic analysis of tobramycin and salbutamol.
Collapse
Affiliation(s)
| | | | - Michiel J van Esdonk
- Centre for Human Drug Research, Leiden, the Netherlands.,Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | | | | | | | | | - Adam F Cohen
- Centre for Human Drug Research, Leiden, the Netherlands
| | | |
Collapse
|
26
|
Lung Pharmacokinetics of Tobramycin by Intravenous and Nebulized Dosing in a Mechanically Ventilated Healthy Ovine Model. Anesthesiology 2019; 131:344-355. [PMID: 31107274 DOI: 10.1097/aln.0000000000002752] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Nebulized antibiotics may be used to treat ventilator-associated pneumonia. In previous pharmacokinetic studies, lung interstitial space fluid concentrations have never been reported. The aim of the study was to compare intravenous and nebulized tobramycin concentrations in the lung interstitial space fluid, epithelial lining fluid, and plasma in mechanically ventilated sheep with healthy lungs. METHODS Ten anesthetized and mechanically ventilated healthy ewes underwent surgical insertion of microdialysis catheters in upper and lower lobes of both lungs and the jugular vein. Five ewes were given intravenous tobramycin 400 mg, and five were given nebulized tobramycin 400 mg. Microdialysis samples were collected every 20 min for 8 h. Bronchoalveolar lavage was performed at 1 and 6 h. RESULTS The peak lung interstitial space fluid concentrations were lower with intravenous tobramycin 20.2 mg/l (interquartile range, 12 mg/l, 26.2 mg/l) versus the nebulized route 48.3 mg/l (interquartile range, 8.7 mg/l, 513 mg/l), P = 0.002. For nebulized tobramycin, the median epithelial lining fluid concentrations were higher than the interstitial space fluid concentrations at 1 h (1,637; interquartile range, 650, 1,781, vs. 16 mg/l, interquartile range, 7, 86, P < 0.001) and 6 h (48, interquartile range, 17, 93, vs. 4 mg/l, interquartile range, 2, 9, P < 0.001). For intravenous tobramycin, the median epithelial lining fluid concentrations were lower than the interstitial space fluid concentrations at 1 h (0.19, interquartile range, 0.11, 0.31, vs. 18.5 mg/l, interquartile range, 9.8, 23.4, P < 0.001) and 6 h (0.34, interquartile range, 0.2, 0.48, vs. 3.2 mg/l, interquartile range, 0.9, 4.4, P < 0.001). CONCLUSIONS Compared with intravenous tobramycin, nebulized tobramycin achieved higher lung interstitial fluid and epithelial lining fluid concentrations without increasing systemic concentrations.
Collapse
|
27
|
Martinez-Oliva D, Rennert-May E, Somayaji R, Conly J. Diagnosis and Treatment of Carbapenemase-Producing Organisms—an Update. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2019. [DOI: 10.1007/s40506-019-00202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Burgener EB, Sweere JM, Bach MS, Secor PR, Haddock N, Jennings LK, Marvig RL, Johansen HK, Rossi E, Cao X, Tian L, Nedelec L, Molin S, Bollyky PL, Milla CE. Filamentous bacteriophages are associated with chronic Pseudomonas lung infections and antibiotic resistance in cystic fibrosis. Sci Transl Med 2019; 11:eaau9748. [PMID: 30996083 PMCID: PMC7021451 DOI: 10.1126/scitranslmed.aau9748] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/14/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022]
Abstract
Filamentous bacteriophage (Pf phage) contribute to the virulence of Pseudomonas aeruginosa infections in animal models, but their relevance to human disease is unclear. We sought to interrogate the prevalence and clinical relevance of Pf phage in patients with cystic fibrosis (CF) using sputum samples from two well-characterized patient cohorts. Bacterial genomic analysis in a Danish longitudinal cohort of 34 patients with CF revealed that 26.5% (n = 9) were consistently Pf phage positive. In the second cohort, a prospective cross-sectional cohort of 58 patients with CF at Stanford, sputum qPCR analysis showed that 36.2% (n = 21) of patients were Pf phage positive. In both cohorts, patients positive for Pf phage were older, and in the Stanford CF cohort, patients positive for Pf phage were more likely to have chronic P. aeruginosa infection and had greater declines in pulmonary function during exacerbations than patients negative for Pf phage presence in the sputum. Last, P. aeruginosa strains carrying Pf phage exhibited increased resistance to antipseudomonal antibiotics. Mechanistically, in vitro analysis showed that Pf phage sequesters these same antibiotics, suggesting that this mechanism may thereby contribute to the selection of antibiotic resistance over time. These data provide evidence that Pf phage may contribute to clinical outcomes in P. aeruginosa infection in CF.
Collapse
Affiliation(s)
- Elizabeth B Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| | - Johanna M Sweere
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
- Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michelle S Bach
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Naomi Haddock
- Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Laura K Jennings
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Rasmus L Marvig
- Center for Genomic Medicine, Rigshospitalet-Copenhagen University Hospital, Copenhagen, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen Ø, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Elio Rossi
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen Ø, Denmark
| | - Xiou Cao
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Lu Tian
- Biomedical Data Science Administration and Statistics, Stanford University, Stanford, CA 94305, USA
| | - Laurence Nedelec
- Primary Care and Population Health, Stanford University, Stanford, CA 94305, USA
| | - Søren Molin
- Primary Care and Population Health, Stanford University, Stanford, CA 94305, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
- Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Carlos E Milla
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Boothe DM, Bush KM, Boothe HW, Davis HA. Pharmacokinetics and pharmacodynamics of oral pradofloxacin administration in dogs. Am J Vet Res 2019; 79:1268-1276. [PMID: 30457901 DOI: 10.2460/ajvr.79.12.1268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether target values for pharmacokinetic-pharmacodynamic (PK-PD) indices against selected canine pathogens were achievable for pradofloxacin in various canine fluids and leukocytes. ANIMALS 8 healthy adult hounds (experiments 1 and 2) and 6 healthy adult dogs (experiment 3). PROCEDURES In 3 experiments, pradofloxacin (3, 6, or 12 mg/kg) and enrofloxacin (5 or 10 mg/kg) were orally administered once a day for 5 days, and blood, interstitial fluid (ISF), and other fluid samples were collected at various points. Sample drug concentrations were measured, and noncompartmental pharmacokinetic analysis was performed; then, PK-PD indices (ratios between maximum observed concentration [Cmax] and minimum inhibitory or mutant prevention concentrations) were determined for 7 bacterial species. RESULTS PK-PD values for pradofloxacin at 3 mg/kg were approximately 5 times as high in leukocyte versus plasma and were lowest in CSF, synovial fluid, and aqueous humor. No significant differences were noted between serum and ISF. Value ratios for serum versus other body fluids were numerically higher for pradofloxacin (vs enrofloxacin) for all fluid types except CSF and aqueous humor. Target PK-PD values were exceeded for pradofloxacin against all 7 bacterial species in leukocytes and against all species except Bacteroides spp in serum and ISF. Enrofloxacin achieved the target Cmax-to-minimum inhibitory concentration ratio against Pasteurella multocida in serum, ISF, and leukocytes and for Staphylococcus pseudintermedius in serum and leukocytes. A Cmax-to-mutant prevention concentration ratio ≥ 1 against Eschericha coli was achieved for pradofloxacin at 6 mg/kg. CONCLUSIONS AND CLINICAL RELEVANCE These findings supported once-daily oral administration of pradofloxacin to dogs at the currently recommended dose (7.5 mg/kg).
Collapse
|
30
|
Competitive Fitness of Essential Gene Knockdowns Reveals a Broad-Spectrum Antibacterial Inhibitor of the Cell Division Protein FtsZ. Antimicrob Agents Chemother 2018; 62:AAC.01231-18. [PMID: 30297366 PMCID: PMC6256756 DOI: 10.1128/aac.01231-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/01/2018] [Indexed: 12/26/2022] Open
Abstract
To streamline the elucidation of antibacterial compounds' mechanism of action, comprehensive high-throughput assays interrogating multiple putative targets are necessary. However, current chemogenomic approaches for antibiotic target identification have not fully utilized the multiplexing potential of next-generation sequencing. Here, we used Illumina sequencing of transposon insertions to track the competitive fitness of a Burkholderia cenocepacia library containing essential gene knockdowns. Using this method, we characterized a novel benzothiadiazole derivative, 10126109 (C109), with antibacterial activity against B. cenocepacia, for which whole-genome sequencing of low-frequency spontaneous drug-resistant mutants had failed to identify the drug target. By combining the identification of hypersusceptible mutants and morphology screening, we show that C109 targets cell division. Furthermore, fluorescence microscopy of bacteria harboring green fluorescent protein (GFP) cell division protein fusions revealed that C109 prevents divisome formation by altering the localization of the essential cell division protein FtsZ. In agreement with this, C109 inhibited both the GTPase and polymerization activities of purified B. cenocepacia FtsZ. C109 displayed antibacterial activity against Gram-positive and Gram-negative cystic fibrosis pathogens, including Mycobacterium abscessus C109 effectively cleared B. cenocepacia infection in the Caenorhabditis elegans model and exhibited additive interactions with clinically relevant antibiotics. Hence, C109 is an enticing candidate for further drug development.
Collapse
|
31
|
Kidd TJ, Canton R, Ekkelenkamp M, Johansen HK, Gilligan P, LiPuma JJ, Bell SC, Elborn JS, Flume PA, VanDevanter DR, Waters VJ. Defining antimicrobial resistance in cystic fibrosis. J Cyst Fibros 2018; 17:696-704. [PMID: 30266518 DOI: 10.1016/j.jcf.2018.08.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/21/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022]
Abstract
Antimicrobial resistance (AMR) can present significant challenges in the treatment of cystic fibrosis (CF) lung infections. In CF and other chronic diseases, AMR has a different profile and clinical consequences compared to acute infections and this requires different diagnostic and treatment approaches. This review defines AMR, explains how it occurs, describes the methods used to measure AMR as well as their limitations, and concludes with future directions for research and development in the area of AMR in CF.
Collapse
Affiliation(s)
- Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Miquel Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Peter Gilligan
- Clinical Microbiology-Immunology Laboratories, UNC HealthCare, Chapel Hill, NC, USA.
| | - John J LiPuma
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital and QIMR Berghofer Medical Researhc Institute, Brisbane, Australia.
| | - J Stuart Elborn
- Imperial College and Royal Brompton Hospital, London, Queen's University Belfast, United Kingdom.
| | - Patrick A Flume
- Departments of Medicine and Pediatrics, Medical University of South Carolina, Charleston, SC, USA.
| | - Donald R VanDevanter
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Valerie J Waters
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, USA.
| | | |
Collapse
|
32
|
Müller L, Murgia X, Siebenbürger L, Börger C, Schwarzkopf K, Sewald K, Häussler S, Braun A, Lehr CM, Hittinger M, Wronski S. Human airway mucus alters susceptibility of Pseudomonas aeruginosa biofilms to tobramycin, but not colistin. J Antimicrob Chemother 2018; 73:2762-2769. [DOI: 10.1093/jac/dky241] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/26/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Laura Müller
- Fraunhofer Institute for Toxicology and Experimental Medicine (Fraunhofer ITEM), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Member of the REBIRTH Cluster of Excellence, Nikolai-Fuchs-Straße 1, Hannover, Germany
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research (HIPS), Helmholtz Centre for Infection Research, Universitätscampus E8.1, Saarbrücken, Germany
- Korea Institute of Science and Technology, KIST Europe, Campus E7.1, Saarbrücken, Germany
| | | | | | - Konrad Schwarzkopf
- Department of Anaesthesia and Intensive Care, Klinikum Saarbrücken, Winterberg 1, Saarbrücken, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (Fraunhofer ITEM), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Member of the REBIRTH Cluster of Excellence, Nikolai-Fuchs-Straße 1, Hannover, Germany
| | - Susanne Häussler
- Helmholtz Institute for Infection Research, Inhoffenstraße 7, Braunschweig, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Straße 7, Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine (Fraunhofer ITEM), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Member of the REBIRTH Cluster of Excellence, Nikolai-Fuchs-Straße 1, Hannover, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research (HIPS), Helmholtz Centre for Infection Research, Universitätscampus E8.1, Saarbrücken, Germany
- PharmBioTec GmbH, Science Park 1, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus, Saarbrücken, Germany
| | | | - Sabine Wronski
- Fraunhofer Institute for Toxicology and Experimental Medicine (Fraunhofer ITEM), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Member of the REBIRTH Cluster of Excellence, Nikolai-Fuchs-Straße 1, Hannover, Germany
| |
Collapse
|
33
|
Bos AC, Mouton JW, van Westreenen M, Andrinopoulou ER, Janssens HM, Tiddens HAWM. Patient-specific modelling of regional tobramycin concentration levels in airways of patients with cystic fibrosis: can we dose once daily? J Antimicrob Chemother 2018; 72:3435-3442. [PMID: 29029057 DOI: 10.1093/jac/dkx293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/18/2017] [Indexed: 01/28/2023] Open
Abstract
Background Inhaled tobramycin is important in the treatment of Pseudomonas aeruginosa (Pa) infections in cystic fibrosis (CF). However, despite its use it fails to attenuate the clinical progression of CF lung disease. The bactericidal efficacy of tobramycin is known to be concentration-dependent and hence changing the dosing regimen from a twice-daily (q12h) inhalation to a once-daily (q24h) inhaled double dose could improve treatment outcomes. Objectives To predict local concentrations of nebulized tobramycin in the airways of patients with CF, delivered with the small airway-targeting Akita® system or standard PARI-LC® Plus system, with different inspiratory flow profiles. Methods Computational fluid dynamic (CFD) methods were applied to patient-specific airway models reconstructed from chest CT scans. The following q12h and q24h dosing regimens were evaluated: Akita® (150 and 300 mg) and PARI-LC® Plus (300 and 600 mg). Site-specific concentrations were calculated. Results Twelve CT scans from patients aged 12-17 years (median = 15.7) were selected. Small airway concentrations were 762-2999 mg/L for the q12h dosing regimen and 1523-5997 mg/L for the q24h dosing regimen, well above the MIC for WT Pa strains. Importantly, the q24h regimen appeared to be more suitable than the q12h regimen against more resistant Pa strains and the inhibitory effects of sputum on tobramycin activity. Conclusions CFD modelling showed that high concentrations of inhaled tobramycin are indeed delivered to the airways, with the Akita® system being twice as efficient as the PARI-LC® system. Ultimately, the q24h dosing regimen appears more effective against subpopulations with high MICs (i.e. more resistant strains).
Collapse
Affiliation(s)
- Aukje C Bos
- Department of Pediatric Pulmonology, Erasmus Medical Centre (MC)-Sophia Children's Hospital, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.,Department of Radiology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Mireille van Westreenen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | | | - Hettie M Janssens
- Department of Pediatric Pulmonology, Erasmus Medical Centre (MC)-Sophia Children's Hospital, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Harm A W M Tiddens
- Department of Pediatric Pulmonology, Erasmus Medical Centre (MC)-Sophia Children's Hospital, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.,Department of Radiology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
34
|
Targeting the Nonmevalonate Pathway in Burkholderia cenocepacia Increases Susceptibility to Certain β-Lactam Antibiotics. Antimicrob Agents Chemother 2018; 62:AAC.02607-17. [PMID: 29439968 DOI: 10.1128/aac.02607-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/07/2018] [Indexed: 11/20/2022] Open
Abstract
The nonmevalonate pathway is the sole pathway for isoprenoid biosynthesis in Burkholderia cenocepacia and is possibly a novel target for the development of antibacterial chemotherapy. The goals of the present study were to evaluate the essentiality of dxr, the second gene of the nonmevalonate pathway, in B. cenocepacia and to determine whether interfering with the nonmevalonate pathway increases susceptibility toward antibiotics. To this end, a rhamnose-inducible conditional dxr knockdown mutant of B. cenocepacia strain K56-2 (B. cenocepacia K56-2dxr) was constructed, using a plasmid which enables the delivery of a rhamnose-inducible promoter in the chromosome. Expression of dxr is essential for bacterial growth; the growth defect observed in the dxr mutant could be complemented by expressing dxr in trans under the control of a constitutive promoter, but not by providing 2-C-methyl-d-erythritol-4-phosphate, the reaction product of DXR (1-deoxy-d-xylulose 5-phosphate reductoisomerase). B. cenocepacia K56-2dxr showed markedly increased susceptibility to the β-lactam antibiotics aztreonam, ceftazidime, and cefotaxime, while susceptibility to other antibiotics was not (or was much less) affected; this increased susceptibility could also be complemented by in trans expression of dxr A similarly increased susceptibility was observed when antibiotics were combined with FR900098, a known DXR inhibitor. Our data confirm that the nonmevalonate pathway is essential in B. cenocepacia and suggest that combining potent DXR inhibitors with selected β-lactam antibiotics is a useful strategy to combat B. cenocepacia infections.
Collapse
|
35
|
Gur D, Glinert I, Aftalion M, Vagima Y, Levy Y, Rotem S, Zauberman A, Tidhar A, Tal A, Maoz S, Ber R, Pass A, Mamroud E. Inhalational Gentamicin Treatment Is Effective Against Pneumonic Plague in a Mouse Model. Front Microbiol 2018; 9:741. [PMID: 29740404 PMCID: PMC5928325 DOI: 10.3389/fmicb.2018.00741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
Pneumonic plague is an infectious disease characterized by rapid and fulminant development of acute pneumonia and septicemia that results in death within days of exposure. The causative agent of pneumonic plague, Yersinia pestis (Y. pestis), is a Tier-1 bio-threat agent. Parenteral antibiotic treatment is effective when given within a narrow therapeutic window after symptom onset. However, the non-specific “flu-like” symptoms often lead to delayed diagnosis and therapy. In this study, we evaluated inhalational gentamicin therapy in an infected mouse model as a means to improve antibiotic treatment efficacy. Inhalation is an attractive route for treating lung infections. The advantages include directly dosing the main infection site, the relative accessibility for administration and the lack of extensive enzymatic drug degradation machinery. In this study, we show that inhalational gentamicin treatment administered 24 h post-infection, prior to the appearance of symptoms, protected against lethal intranasal challenge with the fully virulent Y. pestis Kimberley53 strain (Kim53). Similarly, a high survival rate was demonstrated in mice treated by inhalation with another aminoglycoside, tobramycin, for which an FDA-approved inhaled formulation is clinically available for cystic fibrosis patients. Inhalational treatment with gentamicin 48 h post-infection (to symptomatic mice) was also successful against a Y. pestis challenge dose of 10 i.n.LD50. Whole-body imaging using IVIS technology demonstrated that adding inhalational gentamicin to parenteral therapy accelerated the clearance of Y. pestis from the lungs of infected animals. This may reduce disease severity and the risk of secondary infections. In conclusion, our data suggest that inhalational therapy with aerosolized gentamicin may be an effective prophylactic treatment against pneumonic plague. We also demonstrate the benefit of combining this treatment with a conventional parenteral treatment against this rapidly progressing infectious disease. We suggest the inhalational administration route as a clinically relevant treatment modality against pneumonic plague and other respiratory bacterial pathogens.
Collapse
Affiliation(s)
- David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Itai Glinert
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Yaron Vagima
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Yinon Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Arnon Tal
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Sharon Maoz
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Raphael Ber
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Avi Pass
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
36
|
Müsken M, Klimmek K, Sauer-Heilborn A, Donnert M, Sedlacek L, Suerbaum S, Häussler S. Towards individualized diagnostics of biofilm-associated infections: a case study. NPJ Biofilms Microbiomes 2017; 3:22. [PMID: 28970943 PMCID: PMC5620081 DOI: 10.1038/s41522-017-0030-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/21/2022] Open
Abstract
Organized within biofilm communities, bacteria exhibit resistance towards a broad spectrum of antibiotics. Thus, one might argue that bacteria isolated from biofilm-associated chronic infections should be subjected to resistance profiling under biofilm growth conditions. Various test systems have been developed to determine the biofilm-associated resistance; however, it is not clear to what extent the in vitro results reflect the situation in vivo, and whether the biofilm-resistance profile should guide clinicians in their treatment choice. To address this issue, we used confocal microscopy in combination with live/dead staining, and profiled biofilm-associated resistance of a large number (>130) of clinical Pseudomonas aeruginosa isolates from overall 15 cystic fibrosis patients. Our results demonstrate that in addition to a general non-responsiveness of bacteria when grown under biofilm conditions, there is an isolate-specific and antibiotic-specific biofilm-resistance profile. This individual resistance profile is independent on the structural properties of the biofilms. Furthermore, biofilm resistance is not linked to the resistance profile under planktonic growth conditions, or a mucoid, or small colony morphology of the tested isolates. Instead, it seems that individual biofilm structures evolve during biofilm-associated growth and are shaped by environment-specific cues. In conclusion, our results demonstrate that biofilm resistance profiles are isolate specific and cannot be deduced from commonly studied phenotypes. Further clinical studies will have to show the added value of biofilm-resistance profiling. Individualized diagnosis of biofilm resistance might lead to more rational recommendations for antimicrobial therapy and, thus, increased effectiveness of the treatment of chronically infected patients.
Collapse
Affiliation(s)
- Mathias Müsken
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Present Address: Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kathi Klimmek
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Monique Donnert
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ludwig Sedlacek
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Sebastian Suerbaum
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Max von Pettenkofer Institute, Medical Microbiology and Hospital Epidemiology, München, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
37
|
Nebulized antibiotics in mechanically ventilated patients: a challenge for translational research from technology to clinical care. Ann Intensive Care 2017; 7:78. [PMID: 28766281 PMCID: PMC5539056 DOI: 10.1186/s13613-017-0301-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/17/2017] [Indexed: 01/20/2023] Open
Abstract
Nebulized antibiotic therapy directly targets airways and lung parenchyma resulting in high local concentrations and potentially lower systemic toxicities. Experimental and clinical studies have provided evidence for elevated lung concentrations and rapid bacterial killing following the administration of nebulized antibiotics during mechanical ventilation. Delivery of high concentrations of antibiotics to infected lung regions is the key to achieving efficient nebulized antibiotic therapy. However, current non-standardized clinical practice, the difficulties with implementing optimal nebulization techniques and the lack of robust clinical data have limited its widespread adoption. The present review summarizes the techniques and clinical constraints for optimal delivery of nebulized antibiotics to lung parenchyma during invasive mechanical ventilation. Pulmonary pharmacokinetics and pharmacodynamics of nebulized antibiotic therapy to treat ventilator-associated pneumonia are discussed and put into perspective. Experimental and clinical pharmacokinetics and pharmacodynamics support the use of nebulized antibiotics. However, its clinical benefits compared to intravenous therapy remain to be proved. Future investigations should focus on continuous improvement of nebulization practices and techniques. Before expanding its clinical use, careful design of large phase III randomized trials implementing adequate therapeutic strategies in targeted populations is required to demonstrate the clinical effectiveness of nebulized antibiotics in terms of patient outcomes and reduction in the emergence of antibiotic resistance.
Collapse
|
38
|
Moore JE, Mastoridis P. Clinical implications of Pseudomonas aeruginosa location in the lungs of patients with cystic fibrosis. J Clin Pharm Ther 2017; 42:259-267. [PMID: 28374433 DOI: 10.1111/jcpt.12521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/05/2017] [Indexed: 12/18/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Pseudomonas aeruginosa is the leading cause of lung infection in patients with cystic fibrosis (CF) and is associated with significant morbidity and mortality. Antibiotics are regarded as the foundational pharmacological treatment for the suppressive management of chronic P. aeruginosa infections and to eradicate the first infection by P. aeruginosa. Inhalation remains a preferred route for drug administration, providing direct access to the site of infection while minimizing systemic side effects. Effective suppressive management of P. aeruginosa infections, however, requires an understanding of the location of the bacteria in the lungs and consideration of the factors that could limit access of the inhaled antibiotic to the infected area. This review provides a systematic assessment of the scientific literature to gain insight into the location of P. aeruginosa in the lungs of patients with CF and its clinical implications. The characteristics of antibiotic inhalation systems are also discussed in this context. METHODS We reviewed evidence-based literature from both human and animal studies in which P. aeruginosa lung location was reported. Relevant publications were identified through a screening strategy and summarized by reported P. aeruginosa location. RESULTS AND DISCUSSION Most areas of the conductive and respiratory zones of the lungs are susceptible to P. aeruginosa colonization. Deposition of an inhaled antibiotic is dependent on the device and formulation characteristics, as well as the ability of the patient to generate sufficient inhaled volume. As patients with CF often experience a decline in lung function, the challenge is to ensure that the inhaled antibiotic can be delivered throughout the bronchial tree. WHAT IS NEW AND CONCLUSION An effective drug delivery system that can target P. aeruginosa in both the respiratory and conductive zones is required. The chosen inhalation device should also offer a drug formulation that can be quickly and effectively delivered to specific lung locations, with minimal inspiratory effort from the patient.
Collapse
Affiliation(s)
- J E Moore
- Northern Ireland Public Health Laboratory, Department of Bacteriology, Belfast City Hospital, Belfast, UK
| | - P Mastoridis
- Respiratory Department, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
39
|
Waters V, Stanojevic S, Ratjen F. Special considerations for the treatment of pulmonary exacerbations in children with cystic fibrosis. Expert Rev Respir Med 2016; 10:1221-1228. [PMID: 27718754 DOI: 10.1080/17476348.2017.1246963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a disease characterized by recurrent flares of respiratory symptoms, known as pulmonary exacerbations (PExs), which have a cumulative, detrimental effect on lung function decline and overall mortality. Although much research has been done on the effects of PExs in adults with CF, considerably less is known about these events in young children with CF. Areas covered: This review describes the typical presentation of PExs in children and their impact on long-term clinical outcomes. Traditional and new monitoring techniques, such as pulmonary function testing using multiple breath washout, radiographic modalities and microbiological screening methods are reviewed. Finally, the choice, administration and duration of antimicrobial treatment as well as the potential use of antiviral therapy is discussed. Expert commentary: Although it is now well recognized that a significant proportion of patients do not recover their lung function following PExs, to date, little progress has been made to improve outcomes in this group. Additional therapies, to complement antimicrobials, may be required to treat infection and inflammation during PExs. Trials of anti-inflammatories such as corticosteroids or other novel drugs need to be done in the setting of PExs with the goal of complete lung function recovery for all individuals with CF.
Collapse
Affiliation(s)
- Valerie Waters
- a Division of Infectious Diseases, Department of Pediatrics, Hospital for Sick Children , University of Toronto , Toronto , Canada
| | - Sanja Stanojevic
- b Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children , University of Toronto , Toronto , Canada
| | - Felix Ratjen
- b Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children , University of Toronto , Toronto , Canada
| |
Collapse
|
40
|
Wenzler E, Fraidenburg DR, Scardina T, Danziger LH. Inhaled Antibiotics for Gram-Negative Respiratory Infections. Clin Microbiol Rev 2016; 29:581-632. [PMID: 27226088 PMCID: PMC4978611 DOI: 10.1128/cmr.00101-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative organisms comprise a large portion of the pathogens responsible for lower respiratory tract infections, especially those that are nosocomially acquired, and the rate of antibiotic resistance among these organisms continues to rise. Systemically administered antibiotics used to treat these infections often have poor penetration into the lung parenchyma and narrow therapeutic windows between efficacy and toxicity. The use of inhaled antibiotics allows for maximization of target site concentrations and optimization of pharmacokinetic/pharmacodynamic indices while minimizing systemic exposure and toxicity. This review is a comprehensive discussion of formulation and drug delivery aspects, in vitro and microbiological considerations, pharmacokinetics, and clinical outcomes with inhaled antibiotics as they apply to disease states other than cystic fibrosis. In reviewing the literature surrounding the use of inhaled antibiotics, we also highlight the complexities related to this route of administration and the shortcomings in the available evidence. The lack of novel anti-Gram-negative antibiotics in the developmental pipeline will encourage the innovative use of our existing agents, and the inhaled route is one that deserves to be further studied and adopted in the clinical arena.
Collapse
Affiliation(s)
- Eric Wenzler
- University of Illinois at Chicago, College of Pharmacy, Chicago, Illinois, USA
| | - Dustin R Fraidenburg
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tonya Scardina
- Loyola University Medical Center, Chicago, Illinois, USA
| | - Larry H Danziger
- University of Illinois at Chicago, College of Pharmacy, Chicago, Illinois, USA University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
41
|
Smith DJ, Ramsay KA, Yerkovich ST, Reid DW, Wainwright CE, Grimwood K, Bell SC, Kidd TJ. Pseudomonas aeruginosa antibiotic resistance in Australian cystic fibrosis centres. Respirology 2015; 21:329-37. [PMID: 26711802 DOI: 10.1111/resp.12714] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/20/2015] [Accepted: 08/29/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVE In cystic fibrosis (CF), chronic Pseudomonas aeruginosa infection is associated with increased morbidity, antibiotic treatments and mortality. By linking Australian CF registry data with a national microbiological data set, we examined the association between where treatment was delivered, its intensity and P. aeruginosa antibiotic resistance. METHODS Sputa were collected from paediatric and adult CF patients attending 18 Australian CF centres. P. aeruginosa antibiotic susceptibilities determined by local laboratories were correlated with clinical characteristics, treatment intensity and infection with strains commonly shared among Australian CF patients. Between-centre differences in treatment and antibiotic resistance were also compared. RESULTS Large variations in antibiotic usage, maintenance treatment practices and multi-antibiotic resistant P. aeruginosa (MARPA) prevalence exist between Australian CF centres, although the overall proportions of MARPA isolates were similar in paediatric and adult centres (31% vs 35%, P = 0.29). Among paediatric centres, MARPA correlated with intravenous antibiotic usage and the Australian state where treatment was delivered, while azithromycin, reduced lung function and treating state predicted intravenous antibiotic usage. In adult centres, body mass index (BMI) and treating state were associated with MARPA, while intravenous antibiotic use was predicted by gender, BMI, dornase-alpha, azithromycin, lung function and treating state. In adults, P. aeruginosa strains AUST-01 and AUST-02 independently predicted intravenous antibiotic usage. CONCLUSION Increased treatment intensity in paediatric centres and the Australian state where treatment was received are both associated with greater risk of MARPA, but not worse clinical outcomes.
Collapse
Affiliation(s)
- Daniel J Smith
- The Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Brisbane, Queensland, Australia.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,The Infection and Inflammation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kay A Ramsay
- Queensland Children's Medical Research Institute, Children's Health Queensland, Brisbane, Queensland, Australia.,The Lung Bacteria Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stephanie T Yerkovich
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - David W Reid
- The Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Brisbane, Queensland, Australia.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,The Infection and Inflammation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Claire E Wainwright
- Queensland Children's Medical Research Institute, Children's Health Queensland, Brisbane, Queensland, Australia.,Department of Respiratory Medicine, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - Keith Grimwood
- Queensland Children's Medical Research Institute, Children's Health Queensland, Brisbane, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University and Gold Coast University Hospital, Gold Coast, Queensland, Australia
| | - Scott C Bell
- The Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Brisbane, Queensland, Australia.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Children's Medical Research Institute, Children's Health Queensland, Brisbane, Queensland, Australia.,The Lung Bacteria Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Timothy J Kidd
- The Lung Bacteria Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Centre for Infection & Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
42
|
MacLoughlin RJ, van Amerongen G, Fink JB, Janssens HM, Duprex WP, de Swart RL. Optimization and Dose Estimation of Aerosol Delivery to Non-Human Primates. J Aerosol Med Pulm Drug Deliv 2015; 29:281-7. [PMID: 26646908 DOI: 10.1089/jamp.2015.1250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In pre-clinical animal studies, the uniformity of dosing across subjects and routes of administration is a crucial requirement. In preparation for a study in which aerosolized live-attenuated measles virus vaccine was administered to cynomolgus monkeys (Macaca fascicularis) by inhalation, we assessed the percentage of a nebulized dose inhaled under varying conditions. METHODS Drug delivery varies with breathing parameters. Therefore we determined macaque breathing patterns (tidal volume, breathing frequency, and inspiratory to expiratory (I:E) ratio) across a range of 3.3-6.5 kg body weight, using a pediatric pneumotachometer interfaced either with an endotracheal tube or a facemask. Subsequently, these breathing patterns were reproduced using a breathing simulator attached to a filter to collect the inhaled dose. Albuterol was nebulized using a vibrating mesh nebulizer and the percentage inhaled dose was determined by extraction of drug from the filter and subsequent quantification. RESULTS Tidal volumes ranged from 24 to 46 mL, breathing frequencies from 19 to 31 breaths per minute and I:E ratios from 0.7 to 1.6. A small pediatric resuscitation mask was identified as the best fitting interface between animal and pneumotachometer. The average efficiency of inhaled dose delivery was 32.1% (standard deviation 7.5, range 24%-48%), with variation in tidal volumes as the most important determinant. CONCLUSIONS Studies in non-human primates aimed at comparing aerosol delivery with other routes of administration should take both the inter-subject variation and relatively low efficiency of delivery to these low body weight mammals into account.
Collapse
Affiliation(s)
| | | | - James B Fink
- 3 Division of Respiratory Therapy, Georgia State University , Atlanta, Georgia
| | - Hettie M Janssens
- 4 Department of Pediatric Pulmonology, Erasmus MC-Sophia Children's Hospital , Rotterdam, Netherlands
| | - W Paul Duprex
- 5 Department of Microbiology, Boston University School of Medicine , Boston, Massachusetts
| | - Rik L de Swart
- 2 Department of Viroscience, Erasmus MC , Rotterdam, Netherlands
| |
Collapse
|
43
|
Mukker JK, Singh RSP, Derendorf H. Pharmacokinetic and pharmacodynamic implications in inhalable antimicrobial therapy. Adv Drug Deliv Rev 2015; 85:57-64. [PMID: 25770775 DOI: 10.1016/j.addr.2015.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/14/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Inhaled antimicrobials provide a promising alternative to the systemically delivered drugs for the treatment of acute and chronic lung infections. The delivery of antimicrobials via inhalation route decreases the systemic exposure while increasing the local concentration in the lungs, enabling the use of antimicrobials with severe systemic side effects. The inhalation route of administration has several challenges in pharmacokinetic (PK) and pharmacodynamic (PD) assessments. This review discusses various issues that need to be considered during study, data analysis, and interpretation of PK and PD of inhaled antimicrobials. Advancements overcoming the challenges are also discussed.
Collapse
|
44
|
Patient-specific modeling of regional antibiotic concentration levels in airways of patients with cystic fibrosis: are we dosing high enough? PLoS One 2015; 10:e0118454. [PMID: 25734630 PMCID: PMC4348481 DOI: 10.1371/journal.pone.0118454] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/20/2015] [Indexed: 11/30/2022] Open
Abstract
Background Pseudomonas aeruginosa (Pa) infection is an important contributor to the progression of cystic fibrosis (CF) lung disease. The cornerstone treatment for Pa infection is the use of inhaled antibiotics. However, there is substantial lung disease heterogeneity within and between patients that likely impacts deposition patterns of inhaled antibiotics. Therefore, this may result in airways below the minimal inhibitory concentration of the inhaled agent. Very little is known about antibiotic concentrations in small airways, in particular the effect of structural lung abnormalities. We therefore aimed to develop a patient-specific airway model to predict concentrations of inhaled antibiotics and to study the impact of structural lung changes and breathing profile on local concentrations in airways of patients with CF. Methods In- and expiratory CT-scans of children with CF (5–17 years) were scored (CF-CT score), segmented and reconstructed into 3D airway models. Computational fluid dynamic (CFD) simulations were performed on 40 airway models to predict local Aztreonam lysine for inhalation (AZLI) concentrations. Patient-specific lobar flow distribution and nebulization of 75 mg AZLI through a digital Pari eFlow model with mass median aerodynamic diameter range were used at the inlet of the airway model. AZLI concentrations for central and small airways were computed for different breathing patterns and airway surface liquid thicknesses. Results In most simulated conditions, concentrations in both central and small airways were well above the minimal inhibitory concentration. However, small airways in more diseased lobes were likely to receive suboptimal AZLI. Structural lung disease and increased tidal volumes, respiratory rates and larger particle sizes greatly reduced small airway concentrations. Conclusions CFD modeling showed that concentrations of inhaled antibiotic delivered to the small airways are highly patient specific and vary throughout the bronchial tree. These results suggest that anti-Pa treatment of especially the small airways can be improved.
Collapse
|