1
|
Stauning MA, Jensen CS, Staalsøe T, Kurtzhals JAL. Detection and quantification of Plasmodium falciparum in human blood by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a proof of concept study. Malar J 2023; 22:285. [PMID: 37752504 PMCID: PMC10523782 DOI: 10.1186/s12936-023-04719-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) has revolutionized identification of bacteria and is becoming available in an increasing number of laboratories in malaria-endemic countries. The purpose of this proof-of-concept study was to explore the potential of MALDI-TOF as a diagnostic tool for direct detection and quantification of Plasmodium falciparum in human blood. METHODS Three different P. falciparum strains (3D7, HB3 and IT4) were cultured and synchronized following standard protocols. Ring-stages were diluted in fresh blood group 0 blood drawn in EDTA from healthy subjects to mimic clinical samples. Samples were treated with saponin and washed in PBS to concentrate protein material. Samples were analysed using a Microflex LT MALDI-TOF and resulting mass spectra were compared using FlexAnalysis software. RESULTS More than 10 peaks specific for P. falciparum were identified. The identified peaks were consistent among the three genetically unrelated strains. Identification was possible in clinically relevant concentrations of 0.1% infected red blood cells, and a close relationship between peak intensity and the percentage of infected red blood cells was seen. CONCLUSION The findings indicate that the method has the potential to detect and quantify P. falciparum at clinically relevant infection intensities and provides proof-of-concept for MALDI-TOF-based diagnosis of human malaria. Further research is needed to include other Plasmodium spp., wildtype parasite isolates and to increase sensitivity. MALDI-TOF may be a useful tool for mass-screening purposes and for diagnosis of malaria in settings where it is readily available.
Collapse
Affiliation(s)
- Marius Ahm Stauning
- Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | - Christian Salgård Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Trine Staalsøe
- Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen A L Kurtzhals
- Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Singh A, Banerjee T, Shukla SK, Upadhyay S, Verma A. Creep in nitroimidazole inhibitory concentration among the Entamoeba histolytica isolates causing amoebic liver abscess and screening of andrographolide as a repurposing drug. Sci Rep 2023; 13:12192. [PMID: 37500681 PMCID: PMC10374660 DOI: 10.1038/s41598-023-39382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Infections by Entamoeba histolytica (E. histolytica) lead to considerable morbidity and mortality worldwide and treatment is reliant on a single class of drugs, nitroimidazoles. Treatment failures and intermittent reports of relapse from different parts of world indicate towards development of clinical drug resistance. In the present study, susceptibility testing of clinical isolates of E. histolytica was carried against metronidazole and tinidazole. Additionally, anti-amoebic property of active compounds of Andrographis paniculata was also evaluated. Prevalence of metronidazole resistance gene (nim) in patients attending hospital was also done to get comprehensive insight of present situation of drug resistance in E. histolytica. Mean inhibitory concentration 50 (IC50) value of E. histolytica isolates against metronidazole and tinidazole was 20.01 and 16.1 µM respectively. Andrographolide showed minimum mean IC50 value (3.06 µM). Significant percentage inhibition of E. histolytica isolates by andrographolide was seen as compared to metronidazole (p = 0.0495). None of E. histolytica isolates showed presence of nim gene. However, in stool samples from hospital attending population, prevalence of nimE gene was found to be 76.6% (69/90) and 62.2% (56/90) in diarrheal and non-diarrheal samples respectively. Inhibitory concentration of commonly used nitroimidazoles against clinical isolates of E. histolytica are on rise. Percentage inhibition of E. histolytica isolates by andrographolide was significantly higher than control drug metronidazole.
Collapse
Affiliation(s)
- Aradhana Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Sunit Kumar Shukla
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Soumya Upadhyay
- Department of Life Sciences, Banasthali Vidyapeeth, Jaipur, 302001, India
| | - Ashish Verma
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
3
|
Król G, Fortunka K, Majchrzak M, Piktel E, Paprocka P, Mańkowska A, Lesiak A, Karasiński M, Strzelecka A, Durnaś B, Bucki R. Metallic Nanoparticles and Core-Shell Nanosystems in the Treatment, Diagnosis, and Prevention of Parasitic Diseases. Pathogens 2023; 12:838. [PMID: 37375528 DOI: 10.3390/pathogens12060838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The usage of nanotechnology in the fight against parasitic diseases is in the early stages of development, but it brings hopes that this new field will provide a solution to target the early stages of parasitosis, compensate for the lack of vaccines for most parasitic diseases, and also provide new treatment options for diseases in which parasites show increased resistance to current drugs. The huge physicochemical diversity of nanomaterials developed so far, mainly for antibacterial and anti-cancer therapies, requires additional studies to determine their antiparasitic potential. When designing metallic nanoparticles (MeNPs) and specific nanosystems, such as complexes of MeNPs, with the shell of attached drugs, several physicochemical properties need to be considered. The most important are: size, shape, surface charge, type of surfactants that control their dispersion, and shell molecules that should assure specific molecular interaction with targeted molecules of parasites' cells. Therefore, it can be expected that the development of antiparasitic drugs using strategies provided by nanotechnology and the use of nanomaterials for diagnostic purposes will soon provide new and effective methods of antiparasitic therapy and effective diagnostic tools that will improve the prevention and reduce the morbidity and mortality caused by these diseases.
Collapse
Affiliation(s)
- Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Kamila Fortunka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Michał Majchrzak
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222 Białystok, Poland
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Angelika Mańkowska
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Agata Lesiak
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Maciej Karasiński
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| | - Agnieszka Strzelecka
- Department of Public Health , Institute of Health Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Bonita Durnaś
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Robert Bucki
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| |
Collapse
|
4
|
Role of Host Small GTPases in Apicomplexan Parasite Infection. Microorganisms 2022; 10:microorganisms10071370. [PMID: 35889089 PMCID: PMC9319929 DOI: 10.3390/microorganisms10071370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
The Apicomplexa are obligate intracellular parasites responsible for several important human diseases. These protozoan organisms have evolved several strategies to modify the host cell environment to create a favorable niche for their survival. The host cytoskeleton is widely manipulated during all phases of apicomplexan intracellular infection. Moreover, the localization and organization of host organelles are altered in order to scavenge nutrients from the host. Small GTPases are a class of proteins widely involved in intracellular pathways governing different processes, from cytoskeletal and organelle organization to gene transcription and intracellular trafficking. These proteins are already known to be involved in infection by several intracellular pathogens, including viruses, bacteria and protozoan parasites. In this review, we recapitulate the mechanisms by which apicomplexan parasites manipulate the host cell during infection, focusing on the role of host small GTPases. We also discuss the possibility of considering small GTPases as potential targets for the development of novel host-targeted therapies against apicomplexan infections.
Collapse
|
5
|
Condé CASR, De Almeida MV, Da Silva GDS, Sodré MBPDA, Rodrigues JCF, Navarro M. Synthesis, characterization and antileishmanial activity of copper(II) and zinc(II) complexes with diamine ligands. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Sammarro Silva KJ, Sabogal-Paz LP. Giardia spp. cysts and Cryptosporidium spp. oocysts in drinking water treatment residues: comparison of recovery methods for quantity assessment. ENVIRONMENTAL TECHNOLOGY 2021; 42:3144-3153. [PMID: 31994991 DOI: 10.1080/09593330.2020.1723712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Water treatment plant (WTP) residues, e.g. sludge and filter backwash water (FBW), may contain pathogenic microorganisms, as Giardia spp. and Cryptosporidium spp. However, recovering protozoa from such matrices lacks a formal and precise protocol, which is imperative to improve research in their detection, removal and inactivation. The latter includes a deeper challenge as some recovery methods may compromise viability. This study applied different recovery methods for G. muris cysts and C. parvum oocysts spiked into settled sludge and FBW obtained from a bench treatment. Procedures in sludge involved direct centrifugation, alkaline and acid flocculation, including purification by immunomagnetic separation (IMS). FBW samples were tested for membrane filtration (MF) and heated Tween® scrapings followed or not by IMS. Propidium iodide (PI) inclusion was used for oocyst viability evaluation prior and after recovery. Results with purified suspensions lead to higher recovery efficiencies (RE) for C. parvum, which was assumed to relate to poor G. muris fluorescence. Analytical quality assessments were carried out with ColorSeed® for the methods that stood out for each matrix and the results indicated lower RE than when organisms from purified suspensions were recovered. Ferric sulphate flocculation and MF, both followed by IMS reached 32.25% and 11.00% RE for Giardia spp. and 19.61% and 2.00% for Cryptosporidium spp., respectively. All of the tested methods affected oocyst viability. These results encourage further research to overcome the matrices complexity explained in this paper and increase RE, taking effects in protozoa viability into consideration.
Collapse
Affiliation(s)
- Kamila Jessie Sammarro Silva
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Anthony EJ, Bolitho EM, Bridgewater HE, Carter OWL, Donnelly JM, Imberti C, Lant EC, Lermyte F, Needham RJ, Palau M, Sadler PJ, Shi H, Wang FX, Zhang WY, Zhang Z. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem Sci 2020; 11:12888-12917. [PMID: 34123239 PMCID: PMC8163330 DOI: 10.1039/d0sc04082g] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Metals play vital roles in nutrients and medicines and provide chemical functionalities that are not accessible to purely organic compounds. At least 10 metals are essential for human life and about 46 other non-essential metals (including radionuclides) are also used in drug therapies and diagnostic agents. These include platinum drugs (in 50% of cancer chemotherapies), lithium (bipolar disorders), silver (antimicrobials), and bismuth (broad-spectrum antibiotics). While the quest for novel and better drugs is now as urgent as ever, drug discovery and development pipelines established for organic drugs and based on target identification and high-throughput screening of compound libraries are less effective when applied to metallodrugs. Metallodrugs are often prodrugs which undergo activation by ligand substitution or redox reactions, and are multi-targeting, all of which need to be considered when establishing structure-activity relationships. We focus on early-stage in vitro drug discovery, highlighting the challenges of evaluating anticancer, antimicrobial and antiviral metallo-pharmacophores in cultured cells, and identifying their targets. We highlight advances in the application of metal-specific techniques that can assist the preclinical development, including synchrotron X-ray spectro(micro)scopy, luminescence, and mass spectrometry-based methods, combined with proteomic and genomic (metallomic) approaches. A deeper understanding of the behavior of metals and metallodrugs in biological systems is not only key to the design of novel agents with unique mechanisms of action, but also to new understanding of clinically-established drugs.
Collapse
Affiliation(s)
- Elizabeth J Anthony
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Elizabeth M Bolitho
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Hannah E Bridgewater
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Oliver W L Carter
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Jane M Donnelly
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Cinzia Imberti
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Edward C Lant
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Frederik Lermyte
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Russell J Needham
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Marta Palau
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Huayun Shi
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Fang-Xin Wang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Wen-Ying Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Zijin Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
8
|
Recombinant C-Terminal Domains from Scorpine-like Peptides Inhibit the Plasmodium berghei Ookinete Development In Vitro. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|