1
|
Mehrizi AA, Rezvani N, Zakeri S, Gholami A, Babaeekhou L. Poly(I:C) adjuvant strongly enhances parasite-inhibitory antibodies and Th1 response against Plasmodium falciparum merozoite surface protein-1 (42-kDa fragment) in BALB/c mice. Med Microbiol Immunol 2018; 207:151-166. [PMID: 29397427 DOI: 10.1007/s00430-018-0535-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
Abstract
Malaria vaccine development has been confronted with various challenges such as poor immunogenicity of malaria vaccine candidate antigens, which is considered as the main challenge. However, this problem can be managed using appropriate formulations of antigens and adjuvants. Poly(I:C) is a potent Th1 inducer and a human compatible adjuvant capable of stimulating both B- and T-cell immunity. Plasmodium falciparum merozoite surface protein 142 (PfMSP-142) is a promising vaccine candidate for blood stage of malaria that has faced several difficulties in clinical trials, mainly due to improper adjuvants. Therefore, in the current study, poly(I:C), as a potent Th1 inducer adjuvant, was evaluated to improve the immunogenicity of recombinant PfMSP-142, when compared to CFA/IFA, as reference adjuvant. Poly(I:C) produced high level and titers of anti-PfMSP-142 IgG antibodies in which was comparable to CFA/IFA adjuvant. In addition, PfMSP-142 formulated with poly(I:C) elicited a higher ratio of IFN-γ/IL-4 (23.9) and IgG2a/IgG1 (3.77) with more persistent, higher avidity, and titer of IgG2a relative to CFA/IFA, indicating a potent Th1 immune response. Poly(I:C) could also help to induce anti-PfMSP-142 antibodies with higher growth-inhibitory activity than CFA/IFA. Altogether, the results of the current study demonstrated that poly(I:C) is a potent adjuvant that can be appropriate for being used in PfMSP-142-based vaccine formulations.
Collapse
Affiliation(s)
- Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran.
| | - Niloufar Rezvani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran.,Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Atefeh Gholami
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Laleh Babaeekhou
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Tehran, Iran
| |
Collapse
|
2
|
Pusic K, Clements D, Kobuch S, Hui G. Antibody and T cell responses in reciprocal prime-boost studies with full-length and truncated merozoite surface protein 1-42 vaccines. PLoS One 2013; 8:e75939. [PMID: 24098747 PMCID: PMC3786974 DOI: 10.1371/journal.pone.0075939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
The P. falciparum Merozoite Surface Protein 1-42 (MSP1-42) is one of the most studied malaria subunit vaccine candidates. The N-terminal fragment of MSP1-42, MSP1-33, is primarily composed of allelic sequences, and has been shown to possess T helper epitopes that influence protective antibody responses toward the C-terminal region, MSP1-19. A truncated MSP1-42 vaccine, Construct 33-I, consisting of exclusively conserved T epitope regions of MSP1-33 expressed in tandem with MSP1-19, was previously shown to be a more effective immunogen than the full-length MSP1-42 vaccine. Here, by way of reciprocal priming/boosting immunization regimens, we studied the immunogenicity of Construct 33-I in the context of recognition by immune responses induced by the full-length native MSP1-42 protein, in order to gauge the effects of pre- and post-exposures to MSP1-42 on vaccine induced responses. Judging by immune responsiveness, antibody and T cell responses, Construct 33-I was effective as the priming antigen followed by full-length MSP1-42 boosting, as well as the boosting antigen following full-length MSP1-42 priming. In particular, Construct 33-I priming elicited the broadest responsiveness in immunized animals subsequently exposed to MSP1-42. Moreover, Construct 33-I, with its conserved MSP1-33 specific T cell epitopes, was equally well recognized by homologous and heterologous allelic forms of MSP1-42. Serum antibodies raised against Construct 33-I efficiently inhibited the growth of parasites carrying the heterologous MSP1-42 allele. These results suggest that Construct 33-I maintains and/or enhances its immunogenicity in an allelic or strain transcending fashion when deployed in populations having prior or subsequent exposures to native MSP1-42s.
Collapse
Affiliation(s)
- Kae Pusic
- University of Hawaii, School of Medicine, Department of Tropical Medicine, Honolulu, Hawaii, United States of America
- * E-mail:
| | - Danielle Clements
- University of Hawaii, School of Medicine, Department of Tropical Medicine, Honolulu, Hawaii, United States of America
| | - Sophie Kobuch
- University of Hawaii, School of Medicine, Department of Tropical Medicine, Honolulu, Hawaii, United States of America
| | - George Hui
- University of Hawaii, School of Medicine, Department of Tropical Medicine, Honolulu, Hawaii, United States of America
| |
Collapse
|
3
|
Pusic K, Aguilar Z, McLoughlin J, Kobuch S, Xu H, Tsang M, Wang A, Hui G. Iron oxide nanoparticles as a clinically acceptable delivery platform for a recombinant blood-stage human malaria vaccine. FASEB J 2012. [PMID: 23195035 DOI: 10.1096/fj.12-218362] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study explored the novel use of iron oxide (IO) nanoparticles (<20 nm) as a vaccine delivery platform without additional adjuvants. A recombinant malaria vaccine antigen, the merozoite surface protein 1 (rMSP1), was conjugated to IO nanoparticles (rMSP1-IO). Immunizations in outbred mice with rMSP1-IO achieved 100% responsiveness with antibody titers comparable to those obtained with rMSP1 formulated with a clinically acceptable adjuvant, Montanide ISA51 (2.7×10 vs. 1.6×10; respectively). Only rMSP1-1O could induce significant levels (80%) of parasite inhibitory antibodies. The rMSP1-IO was highly stable at 4°C and was amenable to lyophilization, maintaining its antigenicity, immunogenicity, and ability to induce inhibitory antibodies. Further testing in nonhuman primates, Aotus monkeys, also elicited 100% immune responsiveness and high levels of parasite inhibitory antibodies (55-100% inhibition). No apparent local or systemic toxicity was associated with IO immunizations. Murine macrophages and dendritic cells efficiently (>90%) internalized IO nanoparticles, but only the latter were significantly activated, with elevated expression/secretion of CD86, cytokines (IL-6, TNF-α, IL1-b, IFN-γ, and IL-12), and chemokines (CXCL1, CXCL2, CCL2, CCL3, CCL4, and CXCL10). Thus, the IO nanoparticles is a novel, safe, and effective vaccine platform, with built-in adjuvancy, that is highly stable and field deployable for cost-effective vaccine delivery.
Collapse
Affiliation(s)
- Kae Pusic
- University of Hawaii, School of Medicine, Department of Tropical Medicine, 651 Ilalo St., BSB320, Honolulu, Hawaii 96813, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Sá MS, de Menezes MN, Krettli AU, Ribeiro IM, Tomassini TCB, Ribeiro dos Santos R, de Azevedo WF, Soares MBP. Antimalarial activity of physalins B, D, F, and G. JOURNAL OF NATURAL PRODUCTS 2011; 74:2269-2272. [PMID: 21954931 DOI: 10.1021/np200260f] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The antimalarial activities of physalins B, D, F, and G (1-4), isolated from Physalis angulata, were investigated. In silico analysis using the similarity ensemble approach (SEA) database predicted the antimalarial activity of each of these compounds, which were shown using an in vitro assay against Plasmodium falciparum. However, treatment of P. berghei-infected mice with 3 increased parasitemia levels and mortality, whereas treatment with 2 was protective, causing a parasitemia reduction and a delay in mortality in P. berghei-infected mice. The exacerbation of in vivo infection by treatment with 3 is probably due to its potent immunosuppressive activity, which is not evident for 2.
Collapse
Affiliation(s)
- Matheus S Sá
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Blood stage merozoite surface protein conjugated to nanoparticles induce potent parasite inhibitory antibodies. Vaccine 2011; 29:8898-908. [PMID: 21963870 DOI: 10.1016/j.vaccine.2011.09.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/23/2011] [Accepted: 09/16/2011] [Indexed: 11/21/2022]
Abstract
In this proof-of-concept study we report the use of <15 nm, water soluble, inorganic nanoparticles as a vaccine delivery system for a blood stage malaria vaccine. The recombinant malarial antigen, Merozoite Surface Protein 1 (rMSP1) of Plasmodium falciparum served as the model vaccine. The rMSP1 was covalently conjugated to polymer-coated quantum dot CdSe/ZnS nanoparticles (QDs) via surface carboxyl groups, forming rMSP1-QDs. Anti-MSP1 antibody responses induced by rMSP1-QDs were found to have 2-3 log higher titers than those obtained with rMSP1 administered with the conventional adjuvants, Montanide ISA51 and CFA. Moreover, the immune responsiveness and the induction of parasite inhibitory antibodies were significantly superior in mice injected with rMSP1-QDs. The rMSP1-QDs delivered via intra-peritoneal (i.p.), intra-muscular (i.m.), and subcutaneous (s.c.) routes were equally efficacious. The high level of immunogenicity exhibited by the rMSP1-QDs was achieved without further addition of other adjuvant components. Bone marrow derived dendritic cells were shown to efficiently take up the nanoparticles leading to their activation and the expression/secretion of key cytokines, suggesting that this may be a mode of action for the enhanced immunogenicity. This study provides promising results for the use of water soluble, inorganic nanoparticles (<15 nm) as potent vehicles/platforms to enhance the immunogenicity of polypeptide antigens in adjuvant-free immunizations.
Collapse
|
6
|
Pusic KM, Hashimoto CN, Lehrer A, Aniya C, Clements DE, Hui GS. T cell epitope regions of the P. falciparum MSP1-33 critically influence immune responses and in vitro efficacy of MSP1-42 vaccines. PLoS One 2011; 6:e24782. [PMID: 21931852 PMCID: PMC3172285 DOI: 10.1371/journal.pone.0024782] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/17/2011] [Indexed: 12/01/2022] Open
Abstract
The C-terminal 42 kDa fragments of the P. falciparum Merozoite Surface Protein 1, MSP1-42 is a leading malaria vaccine candidate. MSP1-33, the N-terminal processed fragment of MSP1-42, is rich in T cell epitopes and it is hypothesized that they enhance antibody response toward MSP1-19. Here, we gave in vivo evidence that T cell epitope regions of MSP1-33 provide functional help in inducing anti-MSP1-19 antibodies. Eleven truncated MSP1-33 segments were expressed in tandem with MSP1-19, and immunogenicity was evaluated in Swiss Webster mice and New Zealand White rabbits. Analyses of anti-MSP1-19 antibody responses revealed striking differences in these segments' helper function despite that they all possess T cell epitopes. Only a few fragments induced a generalized response (100%) in outbred mice. These were comparable to or surpassed the responses observed with the full length MSP1-42. In rabbits, only a subset of truncated antigens induced potent parasite growth inhibitory antibodies. Notably, two constructs were more efficacious than MSP1-42, with one containing only conserved T cell epitopes. Moreover, another T cell epitope region induced high titers of non-inhibitory antibodies and they interfered with the inhibitory activities of anti-MSP1-42 antibodies. In mice, this region also induced a skewed TH2 cellular response. This is the first demonstration that T cell epitope regions of MSP1-33 positively or negatively influenced antibody responses. Differential recognition of these regions by humans may play critical roles in vaccine induced and/or natural immunity to MSP1-42. This study provides the rational basis to re-engineer more efficacious MSP1-42 vaccines by selective inclusion and exclusion of MSP1-33 specific T cell epitopes.
Collapse
Affiliation(s)
- Kae M Pusic
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America.
| | | | | | | | | | | |
Collapse
|
7
|
Kusi KA, Faber BW, Riasat V, Thomas AW, Kocken CHM, Remarque EJ. Generation of humoral immune responses to multi-allele PfAMA1 vaccines; effect of adjuvant and number of component alleles on the breadth of response. PLoS One 2010; 5:e15391. [PMID: 21082025 PMCID: PMC2972715 DOI: 10.1371/journal.pone.0015391] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/31/2010] [Indexed: 12/20/2022] Open
Abstract
There is increasing interest in multi-allele vaccines to overcome strain-specificity against polymorphic vaccine targets such as Apical Membrane Antigen 1 (AMA1). These have been shown to induce broad inhibitory antibodies in vitro and formed the basis for the design of three Diversity-Covering (DiCo) proteins with similar immunological effects. The antibodies produced are to epitopes that are shared between vaccine alleles and theoretically, increasing the number of component AMA1 alleles is expected to broaden the antibody response. A plateau effect could however impose a limit on the number of alleles needed to achieve the broadest specificity. Moreover, production cost and the vaccine formulation process would limit the number of component alleles. In this paper, we compare rabbit antibody responses elicited with multi-allele vaccines incorporating seven (three DiCos and four natural AMA1 alleles) and three (DiCo mix) antigens for gains in broadened specificity. We also investigate the effect of three adjuvant platforms on antigen specificity and antibody functionality. Our data confirms a broadened response after immunisation with DiCo mix in all three adjuvants. Higher antibody titres were elicited with either CoVaccine HT™ or Montanide ISA 51, resulting in similar in vitro inhibition (65–82%) of five out of six culture-adapted P. falciparum strains. The antigen binding specificities of elicited antibodies were also similar and independent of the adjuvant used or the number of vaccine component alleles. Thus neither the four extra antigens nor adjuvant had any observable benefits with respect to specificity broadening, although adjuvant choice influenced the absolute antibody levels and thus the extent of parasite inhibition. Our data confirms the feasibility and potential of multi-allele PfAMA1 formulations, and highlights the need for adjuvants with improved antibody potentiation properties for AMA1-based vaccines.
Collapse
Affiliation(s)
- Kwadwo A. Kusi
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Bart W. Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Vanessa Riasat
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Alan W. Thomas
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Clemens H. M. Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Edmond J. Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- * E-mail:
| |
Collapse
|